MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  znrrg Structured version   Visualization version   GIF version

Theorem znrrg 21584
Description: The regular elements of ℤ/n are exactly the units. (This theorem fails for 𝑁 = 0, where all nonzero integers are regular, but only ±1 are units.) (Contributed by Mario Carneiro, 18-Apr-2016.)
Hypotheses
Ref Expression
znchr.y 𝑌 = (ℤ/nℤ‘𝑁)
znunit.u 𝑈 = (Unit‘𝑌)
znrrg.e 𝐸 = (RLReg‘𝑌)
Assertion
Ref Expression
znrrg (𝑁 ∈ ℕ → 𝐸 = 𝑈)

Proof of Theorem znrrg
Dummy variables 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnnn0 12533 . . . . . . 7 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
2 znchr.y . . . . . . . 8 𝑌 = (ℤ/nℤ‘𝑁)
3 eqid 2737 . . . . . . . 8 (Base‘𝑌) = (Base‘𝑌)
4 eqid 2737 . . . . . . . 8 (ℤRHom‘𝑌) = (ℤRHom‘𝑌)
52, 3, 4znzrhfo 21566 . . . . . . 7 (𝑁 ∈ ℕ0 → (ℤRHom‘𝑌):ℤ–onto→(Base‘𝑌))
61, 5syl 17 . . . . . 6 (𝑁 ∈ ℕ → (ℤRHom‘𝑌):ℤ–onto→(Base‘𝑌))
7 znrrg.e . . . . . . . 8 𝐸 = (RLReg‘𝑌)
87, 3rrgss 20702 . . . . . . 7 𝐸 ⊆ (Base‘𝑌)
98sseli 3979 . . . . . 6 (𝑥𝐸𝑥 ∈ (Base‘𝑌))
10 foelrn 7127 . . . . . 6 (((ℤRHom‘𝑌):ℤ–onto→(Base‘𝑌) ∧ 𝑥 ∈ (Base‘𝑌)) → ∃𝑛 ∈ ℤ 𝑥 = ((ℤRHom‘𝑌)‘𝑛))
116, 9, 10syl2an 596 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑥𝐸) → ∃𝑛 ∈ ℤ 𝑥 = ((ℤRHom‘𝑌)‘𝑛))
1211ex 412 . . . 4 (𝑁 ∈ ℕ → (𝑥𝐸 → ∃𝑛 ∈ ℤ 𝑥 = ((ℤRHom‘𝑌)‘𝑛)))
13 nncn 12274 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
1413ad2antrr 726 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → 𝑁 ∈ ℂ)
15 simplr 769 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → 𝑛 ∈ ℤ)
16 nnz 12634 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
1716ad2antrr 726 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → 𝑁 ∈ ℤ)
18 nnne0 12300 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ ℕ → 𝑁 ≠ 0)
1918ad2antrr 726 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → 𝑁 ≠ 0)
20 simpr 484 . . . . . . . . . . . . . . . . . . 19 ((𝑛 = 0 ∧ 𝑁 = 0) → 𝑁 = 0)
2120necon3ai 2965 . . . . . . . . . . . . . . . . . 18 (𝑁 ≠ 0 → ¬ (𝑛 = 0 ∧ 𝑁 = 0))
2219, 21syl 17 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → ¬ (𝑛 = 0 ∧ 𝑁 = 0))
23 gcdn0cl 16539 . . . . . . . . . . . . . . . . 17 (((𝑛 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑛 = 0 ∧ 𝑁 = 0)) → (𝑛 gcd 𝑁) ∈ ℕ)
2415, 17, 22, 23syl21anc 838 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → (𝑛 gcd 𝑁) ∈ ℕ)
2524nncnd 12282 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → (𝑛 gcd 𝑁) ∈ ℂ)
2624nnne0d 12316 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → (𝑛 gcd 𝑁) ≠ 0)
2714, 25, 26divcan2d 12045 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → ((𝑛 gcd 𝑁) · (𝑁 / (𝑛 gcd 𝑁))) = 𝑁)
28 gcddvds 16540 . . . . . . . . . . . . . . . . 17 ((𝑛 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑛 gcd 𝑁) ∥ 𝑛 ∧ (𝑛 gcd 𝑁) ∥ 𝑁))
2915, 17, 28syl2anc 584 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → ((𝑛 gcd 𝑁) ∥ 𝑛 ∧ (𝑛 gcd 𝑁) ∥ 𝑁))
3029simpld 494 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → (𝑛 gcd 𝑁) ∥ 𝑛)
3124nnzd 12640 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → (𝑛 gcd 𝑁) ∈ ℤ)
3229simprd 495 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → (𝑛 gcd 𝑁) ∥ 𝑁)
33 simpll 767 . . . . . . . . . . . . . . . . . . 19 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → 𝑁 ∈ ℕ)
34 nndivdvds 16299 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ ℕ ∧ (𝑛 gcd 𝑁) ∈ ℕ) → ((𝑛 gcd 𝑁) ∥ 𝑁 ↔ (𝑁 / (𝑛 gcd 𝑁)) ∈ ℕ))
3533, 24, 34syl2anc 584 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → ((𝑛 gcd 𝑁) ∥ 𝑁 ↔ (𝑁 / (𝑛 gcd 𝑁)) ∈ ℕ))
3632, 35mpbid 232 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → (𝑁 / (𝑛 gcd 𝑁)) ∈ ℕ)
3736nnzd 12640 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → (𝑁 / (𝑛 gcd 𝑁)) ∈ ℤ)
38 dvdsmulc 16321 . . . . . . . . . . . . . . . 16 (((𝑛 gcd 𝑁) ∈ ℤ ∧ 𝑛 ∈ ℤ ∧ (𝑁 / (𝑛 gcd 𝑁)) ∈ ℤ) → ((𝑛 gcd 𝑁) ∥ 𝑛 → ((𝑛 gcd 𝑁) · (𝑁 / (𝑛 gcd 𝑁))) ∥ (𝑛 · (𝑁 / (𝑛 gcd 𝑁)))))
3931, 15, 37, 38syl3anc 1373 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → ((𝑛 gcd 𝑁) ∥ 𝑛 → ((𝑛 gcd 𝑁) · (𝑁 / (𝑛 gcd 𝑁))) ∥ (𝑛 · (𝑁 / (𝑛 gcd 𝑁)))))
4030, 39mpd 15 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → ((𝑛 gcd 𝑁) · (𝑁 / (𝑛 gcd 𝑁))) ∥ (𝑛 · (𝑁 / (𝑛 gcd 𝑁))))
4127, 40eqbrtrrd 5167 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → 𝑁 ∥ (𝑛 · (𝑁 / (𝑛 gcd 𝑁))))
42 simpr 484 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸)
431ad2antrr 726 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → 𝑁 ∈ ℕ0)
4443, 5syl 17 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → (ℤRHom‘𝑌):ℤ–onto→(Base‘𝑌))
45 fof 6820 . . . . . . . . . . . . . . . . 17 ((ℤRHom‘𝑌):ℤ–onto→(Base‘𝑌) → (ℤRHom‘𝑌):ℤ⟶(Base‘𝑌))
4644, 45syl 17 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → (ℤRHom‘𝑌):ℤ⟶(Base‘𝑌))
4746, 37ffvelcdmd 7105 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → ((ℤRHom‘𝑌)‘(𝑁 / (𝑛 gcd 𝑁))) ∈ (Base‘𝑌))
48 eqid 2737 . . . . . . . . . . . . . . . 16 (.r𝑌) = (.r𝑌)
49 eqid 2737 . . . . . . . . . . . . . . . 16 (0g𝑌) = (0g𝑌)
507, 3, 48, 49rrgeq0i 20699 . . . . . . . . . . . . . . 15 ((((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸 ∧ ((ℤRHom‘𝑌)‘(𝑁 / (𝑛 gcd 𝑁))) ∈ (Base‘𝑌)) → ((((ℤRHom‘𝑌)‘𝑛)(.r𝑌)((ℤRHom‘𝑌)‘(𝑁 / (𝑛 gcd 𝑁)))) = (0g𝑌) → ((ℤRHom‘𝑌)‘(𝑁 / (𝑛 gcd 𝑁))) = (0g𝑌)))
5142, 47, 50syl2anc 584 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → ((((ℤRHom‘𝑌)‘𝑛)(.r𝑌)((ℤRHom‘𝑌)‘(𝑁 / (𝑛 gcd 𝑁)))) = (0g𝑌) → ((ℤRHom‘𝑌)‘(𝑁 / (𝑛 gcd 𝑁))) = (0g𝑌)))
522zncrng 21563 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ ℕ0𝑌 ∈ CRing)
531, 52syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ ℕ → 𝑌 ∈ CRing)
54 crngring 20242 . . . . . . . . . . . . . . . . . . . 20 (𝑌 ∈ CRing → 𝑌 ∈ Ring)
5553, 54syl 17 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ ℕ → 𝑌 ∈ Ring)
5655ad2antrr 726 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → 𝑌 ∈ Ring)
574zrhrhm 21522 . . . . . . . . . . . . . . . . . 18 (𝑌 ∈ Ring → (ℤRHom‘𝑌) ∈ (ℤring RingHom 𝑌))
5856, 57syl 17 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → (ℤRHom‘𝑌) ∈ (ℤring RingHom 𝑌))
59 zringbas 21464 . . . . . . . . . . . . . . . . . 18 ℤ = (Base‘ℤring)
60 zringmulr 21468 . . . . . . . . . . . . . . . . . 18 · = (.r‘ℤring)
6159, 60, 48rhmmul 20486 . . . . . . . . . . . . . . . . 17 (((ℤRHom‘𝑌) ∈ (ℤring RingHom 𝑌) ∧ 𝑛 ∈ ℤ ∧ (𝑁 / (𝑛 gcd 𝑁)) ∈ ℤ) → ((ℤRHom‘𝑌)‘(𝑛 · (𝑁 / (𝑛 gcd 𝑁)))) = (((ℤRHom‘𝑌)‘𝑛)(.r𝑌)((ℤRHom‘𝑌)‘(𝑁 / (𝑛 gcd 𝑁)))))
6258, 15, 37, 61syl3anc 1373 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → ((ℤRHom‘𝑌)‘(𝑛 · (𝑁 / (𝑛 gcd 𝑁)))) = (((ℤRHom‘𝑌)‘𝑛)(.r𝑌)((ℤRHom‘𝑌)‘(𝑁 / (𝑛 gcd 𝑁)))))
6362eqeq1d 2739 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → (((ℤRHom‘𝑌)‘(𝑛 · (𝑁 / (𝑛 gcd 𝑁)))) = (0g𝑌) ↔ (((ℤRHom‘𝑌)‘𝑛)(.r𝑌)((ℤRHom‘𝑌)‘(𝑁 / (𝑛 gcd 𝑁)))) = (0g𝑌)))
6415, 37zmulcld 12728 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → (𝑛 · (𝑁 / (𝑛 gcd 𝑁))) ∈ ℤ)
652, 4, 49zndvds0 21569 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ0 ∧ (𝑛 · (𝑁 / (𝑛 gcd 𝑁))) ∈ ℤ) → (((ℤRHom‘𝑌)‘(𝑛 · (𝑁 / (𝑛 gcd 𝑁)))) = (0g𝑌) ↔ 𝑁 ∥ (𝑛 · (𝑁 / (𝑛 gcd 𝑁)))))
6643, 64, 65syl2anc 584 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → (((ℤRHom‘𝑌)‘(𝑛 · (𝑁 / (𝑛 gcd 𝑁)))) = (0g𝑌) ↔ 𝑁 ∥ (𝑛 · (𝑁 / (𝑛 gcd 𝑁)))))
6763, 66bitr3d 281 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → ((((ℤRHom‘𝑌)‘𝑛)(.r𝑌)((ℤRHom‘𝑌)‘(𝑁 / (𝑛 gcd 𝑁)))) = (0g𝑌) ↔ 𝑁 ∥ (𝑛 · (𝑁 / (𝑛 gcd 𝑁)))))
682, 4, 49zndvds0 21569 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ0 ∧ (𝑁 / (𝑛 gcd 𝑁)) ∈ ℤ) → (((ℤRHom‘𝑌)‘(𝑁 / (𝑛 gcd 𝑁))) = (0g𝑌) ↔ 𝑁 ∥ (𝑁 / (𝑛 gcd 𝑁))))
6943, 37, 68syl2anc 584 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → (((ℤRHom‘𝑌)‘(𝑁 / (𝑛 gcd 𝑁))) = (0g𝑌) ↔ 𝑁 ∥ (𝑁 / (𝑛 gcd 𝑁))))
7051, 67, 693imtr3d 293 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → (𝑁 ∥ (𝑛 · (𝑁 / (𝑛 gcd 𝑁))) → 𝑁 ∥ (𝑁 / (𝑛 gcd 𝑁))))
7141, 70mpd 15 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → 𝑁 ∥ (𝑁 / (𝑛 gcd 𝑁)))
7214, 25, 26divcan1d 12044 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → ((𝑁 / (𝑛 gcd 𝑁)) · (𝑛 gcd 𝑁)) = 𝑁)
7336nncnd 12282 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → (𝑁 / (𝑛 gcd 𝑁)) ∈ ℂ)
7473mulridd 11278 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → ((𝑁 / (𝑛 gcd 𝑁)) · 1) = (𝑁 / (𝑛 gcd 𝑁)))
7571, 72, 743brtr4d 5175 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → ((𝑁 / (𝑛 gcd 𝑁)) · (𝑛 gcd 𝑁)) ∥ ((𝑁 / (𝑛 gcd 𝑁)) · 1))
76 1zzd 12648 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → 1 ∈ ℤ)
7736nnne0d 12316 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → (𝑁 / (𝑛 gcd 𝑁)) ≠ 0)
78 dvdscmulr 16322 . . . . . . . . . . . 12 (((𝑛 gcd 𝑁) ∈ ℤ ∧ 1 ∈ ℤ ∧ ((𝑁 / (𝑛 gcd 𝑁)) ∈ ℤ ∧ (𝑁 / (𝑛 gcd 𝑁)) ≠ 0)) → (((𝑁 / (𝑛 gcd 𝑁)) · (𝑛 gcd 𝑁)) ∥ ((𝑁 / (𝑛 gcd 𝑁)) · 1) ↔ (𝑛 gcd 𝑁) ∥ 1))
7931, 76, 37, 77, 78syl112anc 1376 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → (((𝑁 / (𝑛 gcd 𝑁)) · (𝑛 gcd 𝑁)) ∥ ((𝑁 / (𝑛 gcd 𝑁)) · 1) ↔ (𝑛 gcd 𝑁) ∥ 1))
8075, 79mpbid 232 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → (𝑛 gcd 𝑁) ∥ 1)
8115, 17gcdcld 16545 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → (𝑛 gcd 𝑁) ∈ ℕ0)
82 dvds1 16356 . . . . . . . . . . 11 ((𝑛 gcd 𝑁) ∈ ℕ0 → ((𝑛 gcd 𝑁) ∥ 1 ↔ (𝑛 gcd 𝑁) = 1))
8381, 82syl 17 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → ((𝑛 gcd 𝑁) ∥ 1 ↔ (𝑛 gcd 𝑁) = 1))
8480, 83mpbid 232 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → (𝑛 gcd 𝑁) = 1)
85 znunit.u . . . . . . . . . . 11 𝑈 = (Unit‘𝑌)
862, 85, 4znunit 21582 . . . . . . . . . 10 ((𝑁 ∈ ℕ0𝑛 ∈ ℤ) → (((ℤRHom‘𝑌)‘𝑛) ∈ 𝑈 ↔ (𝑛 gcd 𝑁) = 1))
8743, 15, 86syl2anc 584 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → (((ℤRHom‘𝑌)‘𝑛) ∈ 𝑈 ↔ (𝑛 gcd 𝑁) = 1))
8884, 87mpbird 257 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → ((ℤRHom‘𝑌)‘𝑛) ∈ 𝑈)
8988ex 412 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) → (((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸 → ((ℤRHom‘𝑌)‘𝑛) ∈ 𝑈))
90 eleq1 2829 . . . . . . . 8 (𝑥 = ((ℤRHom‘𝑌)‘𝑛) → (𝑥𝐸 ↔ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸))
91 eleq1 2829 . . . . . . . 8 (𝑥 = ((ℤRHom‘𝑌)‘𝑛) → (𝑥𝑈 ↔ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝑈))
9290, 91imbi12d 344 . . . . . . 7 (𝑥 = ((ℤRHom‘𝑌)‘𝑛) → ((𝑥𝐸𝑥𝑈) ↔ (((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸 → ((ℤRHom‘𝑌)‘𝑛) ∈ 𝑈)))
9389, 92syl5ibrcom 247 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) → (𝑥 = ((ℤRHom‘𝑌)‘𝑛) → (𝑥𝐸𝑥𝑈)))
9493rexlimdva 3155 . . . . 5 (𝑁 ∈ ℕ → (∃𝑛 ∈ ℤ 𝑥 = ((ℤRHom‘𝑌)‘𝑛) → (𝑥𝐸𝑥𝑈)))
9594com23 86 . . . 4 (𝑁 ∈ ℕ → (𝑥𝐸 → (∃𝑛 ∈ ℤ 𝑥 = ((ℤRHom‘𝑌)‘𝑛) → 𝑥𝑈)))
9612, 95mpdd 43 . . 3 (𝑁 ∈ ℕ → (𝑥𝐸𝑥𝑈))
9796ssrdv 3989 . 2 (𝑁 ∈ ℕ → 𝐸𝑈)
987, 85unitrrg 20703 . . 3 (𝑌 ∈ Ring → 𝑈𝐸)
9955, 98syl 17 . 2 (𝑁 ∈ ℕ → 𝑈𝐸)
10097, 99eqssd 4001 1 (𝑁 ∈ ℕ → 𝐸 = 𝑈)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wne 2940  wrex 3070  wss 3951   class class class wbr 5143  wf 6557  ontowfo 6559  cfv 6561  (class class class)co 7431  cc 11153  0cc0 11155  1c1 11156   · cmul 11160   / cdiv 11920  cn 12266  0cn0 12526  cz 12613  cdvds 16290   gcd cgcd 16531  Basecbs 17247  .rcmulr 17298  0gc0g 17484  Ringcrg 20230  CRingccrg 20231  Unitcui 20355   RingHom crh 20469  RLRegcrlreg 20691  ringczring 21457  ℤRHomczrh 21510  ℤ/nczn 21513
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233  ax-addf 11234  ax-mulf 11235
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-tpos 8251  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-er 8745  df-ec 8747  df-qs 8751  df-map 8868  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-sup 9482  df-inf 9483  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12614  df-dec 12734  df-uz 12879  df-rp 13035  df-fz 13548  df-fl 13832  df-mod 13910  df-seq 14043  df-exp 14103  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-dvds 16291  df-gcd 16532  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-starv 17312  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-0g 17486  df-imas 17553  df-qus 17554  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-mhm 18796  df-grp 18954  df-minusg 18955  df-sbg 18956  df-mulg 19086  df-subg 19141  df-nsg 19142  df-eqg 19143  df-ghm 19231  df-cmn 19800  df-abl 19801  df-mgp 20138  df-rng 20150  df-ur 20179  df-ring 20232  df-cring 20233  df-oppr 20334  df-dvdsr 20357  df-unit 20358  df-invr 20388  df-rhm 20472  df-subrng 20546  df-subrg 20570  df-rlreg 20694  df-lmod 20860  df-lss 20930  df-lsp 20970  df-sra 21172  df-rgmod 21173  df-lidl 21218  df-rsp 21219  df-2idl 21260  df-cnfld 21365  df-zring 21458  df-zrh 21514  df-zn 21517
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator