MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  znrrg Structured version   Visualization version   GIF version

Theorem znrrg 21502
Description: The regular elements of ℤ/n are exactly the units. (This theorem fails for 𝑁 = 0, where all nonzero integers are regular, but only ±1 are units.) (Contributed by Mario Carneiro, 18-Apr-2016.)
Hypotheses
Ref Expression
znchr.y 𝑌 = (ℤ/nℤ‘𝑁)
znunit.u 𝑈 = (Unit‘𝑌)
znrrg.e 𝐸 = (RLReg‘𝑌)
Assertion
Ref Expression
znrrg (𝑁 ∈ ℕ → 𝐸 = 𝑈)

Proof of Theorem znrrg
Dummy variables 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnnn0 12388 . . . . . . 7 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
2 znchr.y . . . . . . . 8 𝑌 = (ℤ/nℤ‘𝑁)
3 eqid 2731 . . . . . . . 8 (Base‘𝑌) = (Base‘𝑌)
4 eqid 2731 . . . . . . . 8 (ℤRHom‘𝑌) = (ℤRHom‘𝑌)
52, 3, 4znzrhfo 21484 . . . . . . 7 (𝑁 ∈ ℕ0 → (ℤRHom‘𝑌):ℤ–onto→(Base‘𝑌))
61, 5syl 17 . . . . . 6 (𝑁 ∈ ℕ → (ℤRHom‘𝑌):ℤ–onto→(Base‘𝑌))
7 znrrg.e . . . . . . . 8 𝐸 = (RLReg‘𝑌)
87, 3rrgss 20617 . . . . . . 7 𝐸 ⊆ (Base‘𝑌)
98sseli 3925 . . . . . 6 (𝑥𝐸𝑥 ∈ (Base‘𝑌))
10 foelrn 7040 . . . . . 6 (((ℤRHom‘𝑌):ℤ–onto→(Base‘𝑌) ∧ 𝑥 ∈ (Base‘𝑌)) → ∃𝑛 ∈ ℤ 𝑥 = ((ℤRHom‘𝑌)‘𝑛))
116, 9, 10syl2an 596 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑥𝐸) → ∃𝑛 ∈ ℤ 𝑥 = ((ℤRHom‘𝑌)‘𝑛))
1211ex 412 . . . 4 (𝑁 ∈ ℕ → (𝑥𝐸 → ∃𝑛 ∈ ℤ 𝑥 = ((ℤRHom‘𝑌)‘𝑛)))
13 nncn 12133 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
1413ad2antrr 726 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → 𝑁 ∈ ℂ)
15 simplr 768 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → 𝑛 ∈ ℤ)
16 nnz 12489 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
1716ad2antrr 726 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → 𝑁 ∈ ℤ)
18 nnne0 12159 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ ℕ → 𝑁 ≠ 0)
1918ad2antrr 726 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → 𝑁 ≠ 0)
20 simpr 484 . . . . . . . . . . . . . . . . . . 19 ((𝑛 = 0 ∧ 𝑁 = 0) → 𝑁 = 0)
2120necon3ai 2953 . . . . . . . . . . . . . . . . . 18 (𝑁 ≠ 0 → ¬ (𝑛 = 0 ∧ 𝑁 = 0))
2219, 21syl 17 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → ¬ (𝑛 = 0 ∧ 𝑁 = 0))
23 gcdn0cl 16413 . . . . . . . . . . . . . . . . 17 (((𝑛 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑛 = 0 ∧ 𝑁 = 0)) → (𝑛 gcd 𝑁) ∈ ℕ)
2415, 17, 22, 23syl21anc 837 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → (𝑛 gcd 𝑁) ∈ ℕ)
2524nncnd 12141 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → (𝑛 gcd 𝑁) ∈ ℂ)
2624nnne0d 12175 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → (𝑛 gcd 𝑁) ≠ 0)
2714, 25, 26divcan2d 11899 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → ((𝑛 gcd 𝑁) · (𝑁 / (𝑛 gcd 𝑁))) = 𝑁)
28 gcddvds 16414 . . . . . . . . . . . . . . . . 17 ((𝑛 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑛 gcd 𝑁) ∥ 𝑛 ∧ (𝑛 gcd 𝑁) ∥ 𝑁))
2915, 17, 28syl2anc 584 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → ((𝑛 gcd 𝑁) ∥ 𝑛 ∧ (𝑛 gcd 𝑁) ∥ 𝑁))
3029simpld 494 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → (𝑛 gcd 𝑁) ∥ 𝑛)
3124nnzd 12495 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → (𝑛 gcd 𝑁) ∈ ℤ)
3229simprd 495 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → (𝑛 gcd 𝑁) ∥ 𝑁)
33 simpll 766 . . . . . . . . . . . . . . . . . . 19 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → 𝑁 ∈ ℕ)
34 nndivdvds 16172 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ ℕ ∧ (𝑛 gcd 𝑁) ∈ ℕ) → ((𝑛 gcd 𝑁) ∥ 𝑁 ↔ (𝑁 / (𝑛 gcd 𝑁)) ∈ ℕ))
3533, 24, 34syl2anc 584 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → ((𝑛 gcd 𝑁) ∥ 𝑁 ↔ (𝑁 / (𝑛 gcd 𝑁)) ∈ ℕ))
3632, 35mpbid 232 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → (𝑁 / (𝑛 gcd 𝑁)) ∈ ℕ)
3736nnzd 12495 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → (𝑁 / (𝑛 gcd 𝑁)) ∈ ℤ)
38 dvdsmulc 16194 . . . . . . . . . . . . . . . 16 (((𝑛 gcd 𝑁) ∈ ℤ ∧ 𝑛 ∈ ℤ ∧ (𝑁 / (𝑛 gcd 𝑁)) ∈ ℤ) → ((𝑛 gcd 𝑁) ∥ 𝑛 → ((𝑛 gcd 𝑁) · (𝑁 / (𝑛 gcd 𝑁))) ∥ (𝑛 · (𝑁 / (𝑛 gcd 𝑁)))))
3931, 15, 37, 38syl3anc 1373 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → ((𝑛 gcd 𝑁) ∥ 𝑛 → ((𝑛 gcd 𝑁) · (𝑁 / (𝑛 gcd 𝑁))) ∥ (𝑛 · (𝑁 / (𝑛 gcd 𝑁)))))
4030, 39mpd 15 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → ((𝑛 gcd 𝑁) · (𝑁 / (𝑛 gcd 𝑁))) ∥ (𝑛 · (𝑁 / (𝑛 gcd 𝑁))))
4127, 40eqbrtrrd 5113 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → 𝑁 ∥ (𝑛 · (𝑁 / (𝑛 gcd 𝑁))))
42 simpr 484 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸)
431ad2antrr 726 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → 𝑁 ∈ ℕ0)
4443, 5syl 17 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → (ℤRHom‘𝑌):ℤ–onto→(Base‘𝑌))
45 fof 6735 . . . . . . . . . . . . . . . . 17 ((ℤRHom‘𝑌):ℤ–onto→(Base‘𝑌) → (ℤRHom‘𝑌):ℤ⟶(Base‘𝑌))
4644, 45syl 17 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → (ℤRHom‘𝑌):ℤ⟶(Base‘𝑌))
4746, 37ffvelcdmd 7018 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → ((ℤRHom‘𝑌)‘(𝑁 / (𝑛 gcd 𝑁))) ∈ (Base‘𝑌))
48 eqid 2731 . . . . . . . . . . . . . . . 16 (.r𝑌) = (.r𝑌)
49 eqid 2731 . . . . . . . . . . . . . . . 16 (0g𝑌) = (0g𝑌)
507, 3, 48, 49rrgeq0i 20614 . . . . . . . . . . . . . . 15 ((((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸 ∧ ((ℤRHom‘𝑌)‘(𝑁 / (𝑛 gcd 𝑁))) ∈ (Base‘𝑌)) → ((((ℤRHom‘𝑌)‘𝑛)(.r𝑌)((ℤRHom‘𝑌)‘(𝑁 / (𝑛 gcd 𝑁)))) = (0g𝑌) → ((ℤRHom‘𝑌)‘(𝑁 / (𝑛 gcd 𝑁))) = (0g𝑌)))
5142, 47, 50syl2anc 584 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → ((((ℤRHom‘𝑌)‘𝑛)(.r𝑌)((ℤRHom‘𝑌)‘(𝑁 / (𝑛 gcd 𝑁)))) = (0g𝑌) → ((ℤRHom‘𝑌)‘(𝑁 / (𝑛 gcd 𝑁))) = (0g𝑌)))
522zncrng 21481 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ ℕ0𝑌 ∈ CRing)
531, 52syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ ℕ → 𝑌 ∈ CRing)
54 crngring 20163 . . . . . . . . . . . . . . . . . . . 20 (𝑌 ∈ CRing → 𝑌 ∈ Ring)
5553, 54syl 17 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ ℕ → 𝑌 ∈ Ring)
5655ad2antrr 726 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → 𝑌 ∈ Ring)
574zrhrhm 21448 . . . . . . . . . . . . . . . . . 18 (𝑌 ∈ Ring → (ℤRHom‘𝑌) ∈ (ℤring RingHom 𝑌))
5856, 57syl 17 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → (ℤRHom‘𝑌) ∈ (ℤring RingHom 𝑌))
59 zringbas 21390 . . . . . . . . . . . . . . . . . 18 ℤ = (Base‘ℤring)
60 zringmulr 21394 . . . . . . . . . . . . . . . . . 18 · = (.r‘ℤring)
6159, 60, 48rhmmul 20403 . . . . . . . . . . . . . . . . 17 (((ℤRHom‘𝑌) ∈ (ℤring RingHom 𝑌) ∧ 𝑛 ∈ ℤ ∧ (𝑁 / (𝑛 gcd 𝑁)) ∈ ℤ) → ((ℤRHom‘𝑌)‘(𝑛 · (𝑁 / (𝑛 gcd 𝑁)))) = (((ℤRHom‘𝑌)‘𝑛)(.r𝑌)((ℤRHom‘𝑌)‘(𝑁 / (𝑛 gcd 𝑁)))))
6258, 15, 37, 61syl3anc 1373 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → ((ℤRHom‘𝑌)‘(𝑛 · (𝑁 / (𝑛 gcd 𝑁)))) = (((ℤRHom‘𝑌)‘𝑛)(.r𝑌)((ℤRHom‘𝑌)‘(𝑁 / (𝑛 gcd 𝑁)))))
6362eqeq1d 2733 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → (((ℤRHom‘𝑌)‘(𝑛 · (𝑁 / (𝑛 gcd 𝑁)))) = (0g𝑌) ↔ (((ℤRHom‘𝑌)‘𝑛)(.r𝑌)((ℤRHom‘𝑌)‘(𝑁 / (𝑛 gcd 𝑁)))) = (0g𝑌)))
6415, 37zmulcld 12583 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → (𝑛 · (𝑁 / (𝑛 gcd 𝑁))) ∈ ℤ)
652, 4, 49zndvds0 21487 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ0 ∧ (𝑛 · (𝑁 / (𝑛 gcd 𝑁))) ∈ ℤ) → (((ℤRHom‘𝑌)‘(𝑛 · (𝑁 / (𝑛 gcd 𝑁)))) = (0g𝑌) ↔ 𝑁 ∥ (𝑛 · (𝑁 / (𝑛 gcd 𝑁)))))
6643, 64, 65syl2anc 584 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → (((ℤRHom‘𝑌)‘(𝑛 · (𝑁 / (𝑛 gcd 𝑁)))) = (0g𝑌) ↔ 𝑁 ∥ (𝑛 · (𝑁 / (𝑛 gcd 𝑁)))))
6763, 66bitr3d 281 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → ((((ℤRHom‘𝑌)‘𝑛)(.r𝑌)((ℤRHom‘𝑌)‘(𝑁 / (𝑛 gcd 𝑁)))) = (0g𝑌) ↔ 𝑁 ∥ (𝑛 · (𝑁 / (𝑛 gcd 𝑁)))))
682, 4, 49zndvds0 21487 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ0 ∧ (𝑁 / (𝑛 gcd 𝑁)) ∈ ℤ) → (((ℤRHom‘𝑌)‘(𝑁 / (𝑛 gcd 𝑁))) = (0g𝑌) ↔ 𝑁 ∥ (𝑁 / (𝑛 gcd 𝑁))))
6943, 37, 68syl2anc 584 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → (((ℤRHom‘𝑌)‘(𝑁 / (𝑛 gcd 𝑁))) = (0g𝑌) ↔ 𝑁 ∥ (𝑁 / (𝑛 gcd 𝑁))))
7051, 67, 693imtr3d 293 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → (𝑁 ∥ (𝑛 · (𝑁 / (𝑛 gcd 𝑁))) → 𝑁 ∥ (𝑁 / (𝑛 gcd 𝑁))))
7141, 70mpd 15 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → 𝑁 ∥ (𝑁 / (𝑛 gcd 𝑁)))
7214, 25, 26divcan1d 11898 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → ((𝑁 / (𝑛 gcd 𝑁)) · (𝑛 gcd 𝑁)) = 𝑁)
7336nncnd 12141 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → (𝑁 / (𝑛 gcd 𝑁)) ∈ ℂ)
7473mulridd 11129 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → ((𝑁 / (𝑛 gcd 𝑁)) · 1) = (𝑁 / (𝑛 gcd 𝑁)))
7571, 72, 743brtr4d 5121 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → ((𝑁 / (𝑛 gcd 𝑁)) · (𝑛 gcd 𝑁)) ∥ ((𝑁 / (𝑛 gcd 𝑁)) · 1))
76 1zzd 12503 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → 1 ∈ ℤ)
7736nnne0d 12175 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → (𝑁 / (𝑛 gcd 𝑁)) ≠ 0)
78 dvdscmulr 16195 . . . . . . . . . . . 12 (((𝑛 gcd 𝑁) ∈ ℤ ∧ 1 ∈ ℤ ∧ ((𝑁 / (𝑛 gcd 𝑁)) ∈ ℤ ∧ (𝑁 / (𝑛 gcd 𝑁)) ≠ 0)) → (((𝑁 / (𝑛 gcd 𝑁)) · (𝑛 gcd 𝑁)) ∥ ((𝑁 / (𝑛 gcd 𝑁)) · 1) ↔ (𝑛 gcd 𝑁) ∥ 1))
7931, 76, 37, 77, 78syl112anc 1376 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → (((𝑁 / (𝑛 gcd 𝑁)) · (𝑛 gcd 𝑁)) ∥ ((𝑁 / (𝑛 gcd 𝑁)) · 1) ↔ (𝑛 gcd 𝑁) ∥ 1))
8075, 79mpbid 232 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → (𝑛 gcd 𝑁) ∥ 1)
8115, 17gcdcld 16419 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → (𝑛 gcd 𝑁) ∈ ℕ0)
82 dvds1 16230 . . . . . . . . . . 11 ((𝑛 gcd 𝑁) ∈ ℕ0 → ((𝑛 gcd 𝑁) ∥ 1 ↔ (𝑛 gcd 𝑁) = 1))
8381, 82syl 17 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → ((𝑛 gcd 𝑁) ∥ 1 ↔ (𝑛 gcd 𝑁) = 1))
8480, 83mpbid 232 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → (𝑛 gcd 𝑁) = 1)
85 znunit.u . . . . . . . . . . 11 𝑈 = (Unit‘𝑌)
862, 85, 4znunit 21500 . . . . . . . . . 10 ((𝑁 ∈ ℕ0𝑛 ∈ ℤ) → (((ℤRHom‘𝑌)‘𝑛) ∈ 𝑈 ↔ (𝑛 gcd 𝑁) = 1))
8743, 15, 86syl2anc 584 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → (((ℤRHom‘𝑌)‘𝑛) ∈ 𝑈 ↔ (𝑛 gcd 𝑁) = 1))
8884, 87mpbird 257 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → ((ℤRHom‘𝑌)‘𝑛) ∈ 𝑈)
8988ex 412 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) → (((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸 → ((ℤRHom‘𝑌)‘𝑛) ∈ 𝑈))
90 eleq1 2819 . . . . . . . 8 (𝑥 = ((ℤRHom‘𝑌)‘𝑛) → (𝑥𝐸 ↔ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸))
91 eleq1 2819 . . . . . . . 8 (𝑥 = ((ℤRHom‘𝑌)‘𝑛) → (𝑥𝑈 ↔ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝑈))
9290, 91imbi12d 344 . . . . . . 7 (𝑥 = ((ℤRHom‘𝑌)‘𝑛) → ((𝑥𝐸𝑥𝑈) ↔ (((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸 → ((ℤRHom‘𝑌)‘𝑛) ∈ 𝑈)))
9389, 92syl5ibrcom 247 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) → (𝑥 = ((ℤRHom‘𝑌)‘𝑛) → (𝑥𝐸𝑥𝑈)))
9493rexlimdva 3133 . . . . 5 (𝑁 ∈ ℕ → (∃𝑛 ∈ ℤ 𝑥 = ((ℤRHom‘𝑌)‘𝑛) → (𝑥𝐸𝑥𝑈)))
9594com23 86 . . . 4 (𝑁 ∈ ℕ → (𝑥𝐸 → (∃𝑛 ∈ ℤ 𝑥 = ((ℤRHom‘𝑌)‘𝑛) → 𝑥𝑈)))
9612, 95mpdd 43 . . 3 (𝑁 ∈ ℕ → (𝑥𝐸𝑥𝑈))
9796ssrdv 3935 . 2 (𝑁 ∈ ℕ → 𝐸𝑈)
987, 85unitrrg 20618 . . 3 (𝑌 ∈ Ring → 𝑈𝐸)
9955, 98syl 17 . 2 (𝑁 ∈ ℕ → 𝑈𝐸)
10097, 99eqssd 3947 1 (𝑁 ∈ ℕ → 𝐸 = 𝑈)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wne 2928  wrex 3056  wss 3897   class class class wbr 5089  wf 6477  ontowfo 6479  cfv 6481  (class class class)co 7346  cc 11004  0cc0 11006  1c1 11007   · cmul 11011   / cdiv 11774  cn 12125  0cn0 12381  cz 12468  cdvds 16163   gcd cgcd 16405  Basecbs 17120  .rcmulr 17162  0gc0g 17343  Ringcrg 20151  CRingccrg 20152  Unitcui 20273   RingHom crh 20387  RLRegcrlreg 20606  ringczring 21383  ℤRHomczrh 21436  ℤ/nczn 21439
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084  ax-addf 11085  ax-mulf 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-tpos 8156  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-ec 8624  df-qs 8628  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-sup 9326  df-inf 9327  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-z 12469  df-dec 12589  df-uz 12733  df-rp 12891  df-fz 13408  df-fl 13696  df-mod 13774  df-seq 13909  df-exp 13969  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-dvds 16164  df-gcd 16406  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-0g 17345  df-imas 17412  df-qus 17413  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-mhm 18691  df-grp 18849  df-minusg 18850  df-sbg 18851  df-mulg 18981  df-subg 19036  df-nsg 19037  df-eqg 19038  df-ghm 19125  df-cmn 19694  df-abl 19695  df-mgp 20059  df-rng 20071  df-ur 20100  df-ring 20153  df-cring 20154  df-oppr 20255  df-dvdsr 20275  df-unit 20276  df-invr 20306  df-rhm 20390  df-subrng 20461  df-subrg 20485  df-rlreg 20609  df-lmod 20795  df-lss 20865  df-lsp 20905  df-sra 21107  df-rgmod 21108  df-lidl 21145  df-rsp 21146  df-2idl 21187  df-cnfld 21292  df-zring 21384  df-zrh 21440  df-zn 21443
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator