MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rrgsupp Structured version   Visualization version   GIF version

Theorem rrgsupp 20616
Description: Left multiplication by a left regular element does not change the support set of a vector. (Contributed by Stefan O'Rear, 28-Mar-2015.) (Revised by AV, 20-Jul-2019.)
Hypotheses
Ref Expression
rrgval.e 𝐸 = (RLReg‘𝑅)
rrgval.b 𝐵 = (Base‘𝑅)
rrgval.t · = (.r𝑅)
rrgval.z 0 = (0g𝑅)
rrgsupp.i (𝜑𝐼𝑉)
rrgsupp.r (𝜑𝑅 ∈ Ring)
rrgsupp.x (𝜑𝑋𝐸)
rrgsupp.y (𝜑𝑌:𝐼𝐵)
Assertion
Ref Expression
rrgsupp (𝜑 → (((𝐼 × {𝑋}) ∘f · 𝑌) supp 0 ) = (𝑌 supp 0 ))

Proof of Theorem rrgsupp
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rrgsupp.i . . . . . . . . 9 (𝜑𝐼𝑉)
2 rrgsupp.x . . . . . . . . . 10 (𝜑𝑋𝐸)
32adantr 480 . . . . . . . . 9 ((𝜑𝑦𝐼) → 𝑋𝐸)
4 fvexd 6837 . . . . . . . . 9 ((𝜑𝑦𝐼) → (𝑌𝑦) ∈ V)
5 fconstmpt 5676 . . . . . . . . . 10 (𝐼 × {𝑋}) = (𝑦𝐼𝑋)
65a1i 11 . . . . . . . . 9 (𝜑 → (𝐼 × {𝑋}) = (𝑦𝐼𝑋))
7 rrgsupp.y . . . . . . . . . 10 (𝜑𝑌:𝐼𝐵)
87feqmptd 6890 . . . . . . . . 9 (𝜑𝑌 = (𝑦𝐼 ↦ (𝑌𝑦)))
91, 3, 4, 6, 8offval2 7630 . . . . . . . 8 (𝜑 → ((𝐼 × {𝑋}) ∘f · 𝑌) = (𝑦𝐼 ↦ (𝑋 · (𝑌𝑦))))
109adantr 480 . . . . . . 7 ((𝜑𝑥𝐼) → ((𝐼 × {𝑋}) ∘f · 𝑌) = (𝑦𝐼 ↦ (𝑋 · (𝑌𝑦))))
1110fveq1d 6824 . . . . . 6 ((𝜑𝑥𝐼) → (((𝐼 × {𝑋}) ∘f · 𝑌)‘𝑥) = ((𝑦𝐼 ↦ (𝑋 · (𝑌𝑦)))‘𝑥))
12 simpr 484 . . . . . . 7 ((𝜑𝑥𝐼) → 𝑥𝐼)
13 ovex 7379 . . . . . . 7 (𝑋 · (𝑌𝑥)) ∈ V
14 fveq2 6822 . . . . . . . . 9 (𝑦 = 𝑥 → (𝑌𝑦) = (𝑌𝑥))
1514oveq2d 7362 . . . . . . . 8 (𝑦 = 𝑥 → (𝑋 · (𝑌𝑦)) = (𝑋 · (𝑌𝑥)))
16 eqid 2731 . . . . . . . 8 (𝑦𝐼 ↦ (𝑋 · (𝑌𝑦))) = (𝑦𝐼 ↦ (𝑋 · (𝑌𝑦)))
1715, 16fvmptg 6927 . . . . . . 7 ((𝑥𝐼 ∧ (𝑋 · (𝑌𝑥)) ∈ V) → ((𝑦𝐼 ↦ (𝑋 · (𝑌𝑦)))‘𝑥) = (𝑋 · (𝑌𝑥)))
1812, 13, 17sylancl 586 . . . . . 6 ((𝜑𝑥𝐼) → ((𝑦𝐼 ↦ (𝑋 · (𝑌𝑦)))‘𝑥) = (𝑋 · (𝑌𝑥)))
1911, 18eqtrd 2766 . . . . 5 ((𝜑𝑥𝐼) → (((𝐼 × {𝑋}) ∘f · 𝑌)‘𝑥) = (𝑋 · (𝑌𝑥)))
2019neeq1d 2987 . . . 4 ((𝜑𝑥𝐼) → ((((𝐼 × {𝑋}) ∘f · 𝑌)‘𝑥) ≠ 0 ↔ (𝑋 · (𝑌𝑥)) ≠ 0 ))
2120rabbidva 3401 . . 3 (𝜑 → {𝑥𝐼 ∣ (((𝐼 × {𝑋}) ∘f · 𝑌)‘𝑥) ≠ 0 } = {𝑥𝐼 ∣ (𝑋 · (𝑌𝑥)) ≠ 0 })
22 rrgsupp.r . . . . . . 7 (𝜑𝑅 ∈ Ring)
2322adantr 480 . . . . . 6 ((𝜑𝑥𝐼) → 𝑅 ∈ Ring)
242adantr 480 . . . . . 6 ((𝜑𝑥𝐼) → 𝑋𝐸)
257ffvelcdmda 7017 . . . . . 6 ((𝜑𝑥𝐼) → (𝑌𝑥) ∈ 𝐵)
26 rrgval.e . . . . . . 7 𝐸 = (RLReg‘𝑅)
27 rrgval.b . . . . . . 7 𝐵 = (Base‘𝑅)
28 rrgval.t . . . . . . 7 · = (.r𝑅)
29 rrgval.z . . . . . . 7 0 = (0g𝑅)
3026, 27, 28, 29rrgeq0 20615 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑋𝐸 ∧ (𝑌𝑥) ∈ 𝐵) → ((𝑋 · (𝑌𝑥)) = 0 ↔ (𝑌𝑥) = 0 ))
3123, 24, 25, 30syl3anc 1373 . . . . 5 ((𝜑𝑥𝐼) → ((𝑋 · (𝑌𝑥)) = 0 ↔ (𝑌𝑥) = 0 ))
3231necon3bid 2972 . . . 4 ((𝜑𝑥𝐼) → ((𝑋 · (𝑌𝑥)) ≠ 0 ↔ (𝑌𝑥) ≠ 0 ))
3332rabbidva 3401 . . 3 (𝜑 → {𝑥𝐼 ∣ (𝑋 · (𝑌𝑥)) ≠ 0 } = {𝑥𝐼 ∣ (𝑌𝑥) ≠ 0 })
3421, 33eqtrd 2766 . 2 (𝜑 → {𝑥𝐼 ∣ (((𝐼 × {𝑋}) ∘f · 𝑌)‘𝑥) ≠ 0 } = {𝑥𝐼 ∣ (𝑌𝑥) ≠ 0 })
35 ovex 7379 . . . . . 6 (𝑋 · (𝑌𝑦)) ∈ V
3635, 16fnmpti 6624 . . . . 5 (𝑦𝐼 ↦ (𝑋 · (𝑌𝑦))) Fn 𝐼
37 fneq1 6572 . . . . 5 (((𝐼 × {𝑋}) ∘f · 𝑌) = (𝑦𝐼 ↦ (𝑋 · (𝑌𝑦))) → (((𝐼 × {𝑋}) ∘f · 𝑌) Fn 𝐼 ↔ (𝑦𝐼 ↦ (𝑋 · (𝑌𝑦))) Fn 𝐼))
3836, 37mpbiri 258 . . . 4 (((𝐼 × {𝑋}) ∘f · 𝑌) = (𝑦𝐼 ↦ (𝑋 · (𝑌𝑦))) → ((𝐼 × {𝑋}) ∘f · 𝑌) Fn 𝐼)
399, 38syl 17 . . 3 (𝜑 → ((𝐼 × {𝑋}) ∘f · 𝑌) Fn 𝐼)
4029fvexi 6836 . . . 4 0 ∈ V
4140a1i 11 . . 3 (𝜑0 ∈ V)
42 suppvalfn 8098 . . 3 ((((𝐼 × {𝑋}) ∘f · 𝑌) Fn 𝐼𝐼𝑉0 ∈ V) → (((𝐼 × {𝑋}) ∘f · 𝑌) supp 0 ) = {𝑥𝐼 ∣ (((𝐼 × {𝑋}) ∘f · 𝑌)‘𝑥) ≠ 0 })
4339, 1, 41, 42syl3anc 1373 . 2 (𝜑 → (((𝐼 × {𝑋}) ∘f · 𝑌) supp 0 ) = {𝑥𝐼 ∣ (((𝐼 × {𝑋}) ∘f · 𝑌)‘𝑥) ≠ 0 })
447ffnd 6652 . . 3 (𝜑𝑌 Fn 𝐼)
45 suppvalfn 8098 . . 3 ((𝑌 Fn 𝐼𝐼𝑉0 ∈ V) → (𝑌 supp 0 ) = {𝑥𝐼 ∣ (𝑌𝑥) ≠ 0 })
4644, 1, 41, 45syl3anc 1373 . 2 (𝜑 → (𝑌 supp 0 ) = {𝑥𝐼 ∣ (𝑌𝑥) ≠ 0 })
4734, 43, 463eqtr4d 2776 1 (𝜑 → (((𝐼 × {𝑋}) ∘f · 𝑌) supp 0 ) = (𝑌 supp 0 ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wne 2928  {crab 3395  Vcvv 3436  {csn 4573  cmpt 5170   × cxp 5612   Fn wfn 6476  wf 6477  cfv 6481  (class class class)co 7346  f cof 7608   supp csupp 8090  Basecbs 17120  .rcmulr 17162  0gc0g 17343  Ringcrg 20151  RLRegcrlreg 20606
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-om 7797  df-2nd 7922  df-supp 8091  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-plusg 17174  df-0g 17345  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-grp 18849  df-minusg 18850  df-cmn 19694  df-abl 19695  df-mgp 20059  df-rng 20071  df-ur 20100  df-ring 20153  df-rlreg 20609
This theorem is referenced by:  mdegvsca  26008  deg1mul3  26048
  Copyright terms: Public domain W3C validator