MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rrgsupp Structured version   Visualization version   GIF version

Theorem rrgsupp 20661
Description: Left multiplication by a left regular element does not change the support set of a vector. (Contributed by Stefan O'Rear, 28-Mar-2015.) (Revised by AV, 20-Jul-2019.)
Hypotheses
Ref Expression
rrgval.e 𝐸 = (RLReg‘𝑅)
rrgval.b 𝐵 = (Base‘𝑅)
rrgval.t · = (.r𝑅)
rrgval.z 0 = (0g𝑅)
rrgsupp.i (𝜑𝐼𝑉)
rrgsupp.r (𝜑𝑅 ∈ Ring)
rrgsupp.x (𝜑𝑋𝐸)
rrgsupp.y (𝜑𝑌:𝐼𝐵)
Assertion
Ref Expression
rrgsupp (𝜑 → (((𝐼 × {𝑋}) ∘f · 𝑌) supp 0 ) = (𝑌 supp 0 ))

Proof of Theorem rrgsupp
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rrgsupp.i . . . . . . . . 9 (𝜑𝐼𝑉)
2 rrgsupp.x . . . . . . . . . 10 (𝜑𝑋𝐸)
32adantr 480 . . . . . . . . 9 ((𝜑𝑦𝐼) → 𝑋𝐸)
4 fvexd 6891 . . . . . . . . 9 ((𝜑𝑦𝐼) → (𝑌𝑦) ∈ V)
5 fconstmpt 5716 . . . . . . . . . 10 (𝐼 × {𝑋}) = (𝑦𝐼𝑋)
65a1i 11 . . . . . . . . 9 (𝜑 → (𝐼 × {𝑋}) = (𝑦𝐼𝑋))
7 rrgsupp.y . . . . . . . . . 10 (𝜑𝑌:𝐼𝐵)
87feqmptd 6947 . . . . . . . . 9 (𝜑𝑌 = (𝑦𝐼 ↦ (𝑌𝑦)))
91, 3, 4, 6, 8offval2 7691 . . . . . . . 8 (𝜑 → ((𝐼 × {𝑋}) ∘f · 𝑌) = (𝑦𝐼 ↦ (𝑋 · (𝑌𝑦))))
109adantr 480 . . . . . . 7 ((𝜑𝑥𝐼) → ((𝐼 × {𝑋}) ∘f · 𝑌) = (𝑦𝐼 ↦ (𝑋 · (𝑌𝑦))))
1110fveq1d 6878 . . . . . 6 ((𝜑𝑥𝐼) → (((𝐼 × {𝑋}) ∘f · 𝑌)‘𝑥) = ((𝑦𝐼 ↦ (𝑋 · (𝑌𝑦)))‘𝑥))
12 simpr 484 . . . . . . 7 ((𝜑𝑥𝐼) → 𝑥𝐼)
13 ovex 7438 . . . . . . 7 (𝑋 · (𝑌𝑥)) ∈ V
14 fveq2 6876 . . . . . . . . 9 (𝑦 = 𝑥 → (𝑌𝑦) = (𝑌𝑥))
1514oveq2d 7421 . . . . . . . 8 (𝑦 = 𝑥 → (𝑋 · (𝑌𝑦)) = (𝑋 · (𝑌𝑥)))
16 eqid 2735 . . . . . . . 8 (𝑦𝐼 ↦ (𝑋 · (𝑌𝑦))) = (𝑦𝐼 ↦ (𝑋 · (𝑌𝑦)))
1715, 16fvmptg 6984 . . . . . . 7 ((𝑥𝐼 ∧ (𝑋 · (𝑌𝑥)) ∈ V) → ((𝑦𝐼 ↦ (𝑋 · (𝑌𝑦)))‘𝑥) = (𝑋 · (𝑌𝑥)))
1812, 13, 17sylancl 586 . . . . . 6 ((𝜑𝑥𝐼) → ((𝑦𝐼 ↦ (𝑋 · (𝑌𝑦)))‘𝑥) = (𝑋 · (𝑌𝑥)))
1911, 18eqtrd 2770 . . . . 5 ((𝜑𝑥𝐼) → (((𝐼 × {𝑋}) ∘f · 𝑌)‘𝑥) = (𝑋 · (𝑌𝑥)))
2019neeq1d 2991 . . . 4 ((𝜑𝑥𝐼) → ((((𝐼 × {𝑋}) ∘f · 𝑌)‘𝑥) ≠ 0 ↔ (𝑋 · (𝑌𝑥)) ≠ 0 ))
2120rabbidva 3422 . . 3 (𝜑 → {𝑥𝐼 ∣ (((𝐼 × {𝑋}) ∘f · 𝑌)‘𝑥) ≠ 0 } = {𝑥𝐼 ∣ (𝑋 · (𝑌𝑥)) ≠ 0 })
22 rrgsupp.r . . . . . . 7 (𝜑𝑅 ∈ Ring)
2322adantr 480 . . . . . 6 ((𝜑𝑥𝐼) → 𝑅 ∈ Ring)
242adantr 480 . . . . . 6 ((𝜑𝑥𝐼) → 𝑋𝐸)
257ffvelcdmda 7074 . . . . . 6 ((𝜑𝑥𝐼) → (𝑌𝑥) ∈ 𝐵)
26 rrgval.e . . . . . . 7 𝐸 = (RLReg‘𝑅)
27 rrgval.b . . . . . . 7 𝐵 = (Base‘𝑅)
28 rrgval.t . . . . . . 7 · = (.r𝑅)
29 rrgval.z . . . . . . 7 0 = (0g𝑅)
3026, 27, 28, 29rrgeq0 20660 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑋𝐸 ∧ (𝑌𝑥) ∈ 𝐵) → ((𝑋 · (𝑌𝑥)) = 0 ↔ (𝑌𝑥) = 0 ))
3123, 24, 25, 30syl3anc 1373 . . . . 5 ((𝜑𝑥𝐼) → ((𝑋 · (𝑌𝑥)) = 0 ↔ (𝑌𝑥) = 0 ))
3231necon3bid 2976 . . . 4 ((𝜑𝑥𝐼) → ((𝑋 · (𝑌𝑥)) ≠ 0 ↔ (𝑌𝑥) ≠ 0 ))
3332rabbidva 3422 . . 3 (𝜑 → {𝑥𝐼 ∣ (𝑋 · (𝑌𝑥)) ≠ 0 } = {𝑥𝐼 ∣ (𝑌𝑥) ≠ 0 })
3421, 33eqtrd 2770 . 2 (𝜑 → {𝑥𝐼 ∣ (((𝐼 × {𝑋}) ∘f · 𝑌)‘𝑥) ≠ 0 } = {𝑥𝐼 ∣ (𝑌𝑥) ≠ 0 })
35 ovex 7438 . . . . . 6 (𝑋 · (𝑌𝑦)) ∈ V
3635, 16fnmpti 6681 . . . . 5 (𝑦𝐼 ↦ (𝑋 · (𝑌𝑦))) Fn 𝐼
37 fneq1 6629 . . . . 5 (((𝐼 × {𝑋}) ∘f · 𝑌) = (𝑦𝐼 ↦ (𝑋 · (𝑌𝑦))) → (((𝐼 × {𝑋}) ∘f · 𝑌) Fn 𝐼 ↔ (𝑦𝐼 ↦ (𝑋 · (𝑌𝑦))) Fn 𝐼))
3836, 37mpbiri 258 . . . 4 (((𝐼 × {𝑋}) ∘f · 𝑌) = (𝑦𝐼 ↦ (𝑋 · (𝑌𝑦))) → ((𝐼 × {𝑋}) ∘f · 𝑌) Fn 𝐼)
399, 38syl 17 . . 3 (𝜑 → ((𝐼 × {𝑋}) ∘f · 𝑌) Fn 𝐼)
4029fvexi 6890 . . . 4 0 ∈ V
4140a1i 11 . . 3 (𝜑0 ∈ V)
42 suppvalfn 8167 . . 3 ((((𝐼 × {𝑋}) ∘f · 𝑌) Fn 𝐼𝐼𝑉0 ∈ V) → (((𝐼 × {𝑋}) ∘f · 𝑌) supp 0 ) = {𝑥𝐼 ∣ (((𝐼 × {𝑋}) ∘f · 𝑌)‘𝑥) ≠ 0 })
4339, 1, 41, 42syl3anc 1373 . 2 (𝜑 → (((𝐼 × {𝑋}) ∘f · 𝑌) supp 0 ) = {𝑥𝐼 ∣ (((𝐼 × {𝑋}) ∘f · 𝑌)‘𝑥) ≠ 0 })
447ffnd 6707 . . 3 (𝜑𝑌 Fn 𝐼)
45 suppvalfn 8167 . . 3 ((𝑌 Fn 𝐼𝐼𝑉0 ∈ V) → (𝑌 supp 0 ) = {𝑥𝐼 ∣ (𝑌𝑥) ≠ 0 })
4644, 1, 41, 45syl3anc 1373 . 2 (𝜑 → (𝑌 supp 0 ) = {𝑥𝐼 ∣ (𝑌𝑥) ≠ 0 })
4734, 43, 463eqtr4d 2780 1 (𝜑 → (((𝐼 × {𝑋}) ∘f · 𝑌) supp 0 ) = (𝑌 supp 0 ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wne 2932  {crab 3415  Vcvv 3459  {csn 4601  cmpt 5201   × cxp 5652   Fn wfn 6526  wf 6527  cfv 6531  (class class class)co 7405  f cof 7669   supp csupp 8159  Basecbs 17228  .rcmulr 17272  0gc0g 17453  Ringcrg 20193  RLRegcrlreg 20651
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-of 7671  df-om 7862  df-2nd 7989  df-supp 8160  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-2 12303  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17229  df-plusg 17284  df-0g 17455  df-mgm 18618  df-sgrp 18697  df-mnd 18713  df-grp 18919  df-minusg 18920  df-cmn 19763  df-abl 19764  df-mgp 20101  df-rng 20113  df-ur 20142  df-ring 20195  df-rlreg 20654
This theorem is referenced by:  mdegvsca  26033  deg1mul3  26073
  Copyright terms: Public domain W3C validator