MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rrgsupp Structured version   Visualization version   GIF version

Theorem rrgsupp 20761
Description: Left multiplication by a left regular element does not change the support set of a vector. (Contributed by Stefan O'Rear, 28-Mar-2015.) (Revised by AV, 20-Jul-2019.)
Hypotheses
Ref Expression
rrgval.e 𝐸 = (RLReg‘𝑅)
rrgval.b 𝐵 = (Base‘𝑅)
rrgval.t · = (.r𝑅)
rrgval.z 0 = (0g𝑅)
rrgsupp.i (𝜑𝐼𝑉)
rrgsupp.r (𝜑𝑅 ∈ Ring)
rrgsupp.x (𝜑𝑋𝐸)
rrgsupp.y (𝜑𝑌:𝐼𝐵)
Assertion
Ref Expression
rrgsupp (𝜑 → (((𝐼 × {𝑋}) ∘f · 𝑌) supp 0 ) = (𝑌 supp 0 ))

Proof of Theorem rrgsupp
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rrgsupp.i . . . . . . . . 9 (𝜑𝐼𝑉)
2 rrgsupp.x . . . . . . . . . 10 (𝜑𝑋𝐸)
32adantr 481 . . . . . . . . 9 ((𝜑𝑦𝐼) → 𝑋𝐸)
4 fvexd 6857 . . . . . . . . 9 ((𝜑𝑦𝐼) → (𝑌𝑦) ∈ V)
5 fconstmpt 5694 . . . . . . . . . 10 (𝐼 × {𝑋}) = (𝑦𝐼𝑋)
65a1i 11 . . . . . . . . 9 (𝜑 → (𝐼 × {𝑋}) = (𝑦𝐼𝑋))
7 rrgsupp.y . . . . . . . . . 10 (𝜑𝑌:𝐼𝐵)
87feqmptd 6910 . . . . . . . . 9 (𝜑𝑌 = (𝑦𝐼 ↦ (𝑌𝑦)))
91, 3, 4, 6, 8offval2 7637 . . . . . . . 8 (𝜑 → ((𝐼 × {𝑋}) ∘f · 𝑌) = (𝑦𝐼 ↦ (𝑋 · (𝑌𝑦))))
109adantr 481 . . . . . . 7 ((𝜑𝑥𝐼) → ((𝐼 × {𝑋}) ∘f · 𝑌) = (𝑦𝐼 ↦ (𝑋 · (𝑌𝑦))))
1110fveq1d 6844 . . . . . 6 ((𝜑𝑥𝐼) → (((𝐼 × {𝑋}) ∘f · 𝑌)‘𝑥) = ((𝑦𝐼 ↦ (𝑋 · (𝑌𝑦)))‘𝑥))
12 simpr 485 . . . . . . 7 ((𝜑𝑥𝐼) → 𝑥𝐼)
13 ovex 7390 . . . . . . 7 (𝑋 · (𝑌𝑥)) ∈ V
14 fveq2 6842 . . . . . . . . 9 (𝑦 = 𝑥 → (𝑌𝑦) = (𝑌𝑥))
1514oveq2d 7373 . . . . . . . 8 (𝑦 = 𝑥 → (𝑋 · (𝑌𝑦)) = (𝑋 · (𝑌𝑥)))
16 eqid 2736 . . . . . . . 8 (𝑦𝐼 ↦ (𝑋 · (𝑌𝑦))) = (𝑦𝐼 ↦ (𝑋 · (𝑌𝑦)))
1715, 16fvmptg 6946 . . . . . . 7 ((𝑥𝐼 ∧ (𝑋 · (𝑌𝑥)) ∈ V) → ((𝑦𝐼 ↦ (𝑋 · (𝑌𝑦)))‘𝑥) = (𝑋 · (𝑌𝑥)))
1812, 13, 17sylancl 586 . . . . . 6 ((𝜑𝑥𝐼) → ((𝑦𝐼 ↦ (𝑋 · (𝑌𝑦)))‘𝑥) = (𝑋 · (𝑌𝑥)))
1911, 18eqtrd 2776 . . . . 5 ((𝜑𝑥𝐼) → (((𝐼 × {𝑋}) ∘f · 𝑌)‘𝑥) = (𝑋 · (𝑌𝑥)))
2019neeq1d 3003 . . . 4 ((𝜑𝑥𝐼) → ((((𝐼 × {𝑋}) ∘f · 𝑌)‘𝑥) ≠ 0 ↔ (𝑋 · (𝑌𝑥)) ≠ 0 ))
2120rabbidva 3414 . . 3 (𝜑 → {𝑥𝐼 ∣ (((𝐼 × {𝑋}) ∘f · 𝑌)‘𝑥) ≠ 0 } = {𝑥𝐼 ∣ (𝑋 · (𝑌𝑥)) ≠ 0 })
22 rrgsupp.r . . . . . . 7 (𝜑𝑅 ∈ Ring)
2322adantr 481 . . . . . 6 ((𝜑𝑥𝐼) → 𝑅 ∈ Ring)
242adantr 481 . . . . . 6 ((𝜑𝑥𝐼) → 𝑋𝐸)
257ffvelcdmda 7035 . . . . . 6 ((𝜑𝑥𝐼) → (𝑌𝑥) ∈ 𝐵)
26 rrgval.e . . . . . . 7 𝐸 = (RLReg‘𝑅)
27 rrgval.b . . . . . . 7 𝐵 = (Base‘𝑅)
28 rrgval.t . . . . . . 7 · = (.r𝑅)
29 rrgval.z . . . . . . 7 0 = (0g𝑅)
3026, 27, 28, 29rrgeq0 20760 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑋𝐸 ∧ (𝑌𝑥) ∈ 𝐵) → ((𝑋 · (𝑌𝑥)) = 0 ↔ (𝑌𝑥) = 0 ))
3123, 24, 25, 30syl3anc 1371 . . . . 5 ((𝜑𝑥𝐼) → ((𝑋 · (𝑌𝑥)) = 0 ↔ (𝑌𝑥) = 0 ))
3231necon3bid 2988 . . . 4 ((𝜑𝑥𝐼) → ((𝑋 · (𝑌𝑥)) ≠ 0 ↔ (𝑌𝑥) ≠ 0 ))
3332rabbidva 3414 . . 3 (𝜑 → {𝑥𝐼 ∣ (𝑋 · (𝑌𝑥)) ≠ 0 } = {𝑥𝐼 ∣ (𝑌𝑥) ≠ 0 })
3421, 33eqtrd 2776 . 2 (𝜑 → {𝑥𝐼 ∣ (((𝐼 × {𝑋}) ∘f · 𝑌)‘𝑥) ≠ 0 } = {𝑥𝐼 ∣ (𝑌𝑥) ≠ 0 })
35 ovex 7390 . . . . . 6 (𝑋 · (𝑌𝑦)) ∈ V
3635, 16fnmpti 6644 . . . . 5 (𝑦𝐼 ↦ (𝑋 · (𝑌𝑦))) Fn 𝐼
37 fneq1 6593 . . . . 5 (((𝐼 × {𝑋}) ∘f · 𝑌) = (𝑦𝐼 ↦ (𝑋 · (𝑌𝑦))) → (((𝐼 × {𝑋}) ∘f · 𝑌) Fn 𝐼 ↔ (𝑦𝐼 ↦ (𝑋 · (𝑌𝑦))) Fn 𝐼))
3836, 37mpbiri 257 . . . 4 (((𝐼 × {𝑋}) ∘f · 𝑌) = (𝑦𝐼 ↦ (𝑋 · (𝑌𝑦))) → ((𝐼 × {𝑋}) ∘f · 𝑌) Fn 𝐼)
399, 38syl 17 . . 3 (𝜑 → ((𝐼 × {𝑋}) ∘f · 𝑌) Fn 𝐼)
4029fvexi 6856 . . . 4 0 ∈ V
4140a1i 11 . . 3 (𝜑0 ∈ V)
42 suppvalfn 8100 . . 3 ((((𝐼 × {𝑋}) ∘f · 𝑌) Fn 𝐼𝐼𝑉0 ∈ V) → (((𝐼 × {𝑋}) ∘f · 𝑌) supp 0 ) = {𝑥𝐼 ∣ (((𝐼 × {𝑋}) ∘f · 𝑌)‘𝑥) ≠ 0 })
4339, 1, 41, 42syl3anc 1371 . 2 (𝜑 → (((𝐼 × {𝑋}) ∘f · 𝑌) supp 0 ) = {𝑥𝐼 ∣ (((𝐼 × {𝑋}) ∘f · 𝑌)‘𝑥) ≠ 0 })
447ffnd 6669 . . 3 (𝜑𝑌 Fn 𝐼)
45 suppvalfn 8100 . . 3 ((𝑌 Fn 𝐼𝐼𝑉0 ∈ V) → (𝑌 supp 0 ) = {𝑥𝐼 ∣ (𝑌𝑥) ≠ 0 })
4644, 1, 41, 45syl3anc 1371 . 2 (𝜑 → (𝑌 supp 0 ) = {𝑥𝐼 ∣ (𝑌𝑥) ≠ 0 })
4734, 43, 463eqtr4d 2786 1 (𝜑 → (((𝐼 × {𝑋}) ∘f · 𝑌) supp 0 ) = (𝑌 supp 0 ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wne 2943  {crab 3407  Vcvv 3445  {csn 4586  cmpt 5188   × cxp 5631   Fn wfn 6491  wf 6492  cfv 6496  (class class class)co 7357  f cof 7615   supp csupp 8092  Basecbs 17083  .rcmulr 17134  0gc0g 17321  Ringcrg 19964  RLRegcrlreg 20749
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-of 7617  df-om 7803  df-2nd 7922  df-supp 8093  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-2 12216  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-plusg 17146  df-0g 17323  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-grp 18751  df-mgp 19897  df-ring 19966  df-rlreg 20753
This theorem is referenced by:  mdegvsca  25441  deg1mul3  25480
  Copyright terms: Public domain W3C validator