MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rrgsupp Structured version   Visualization version   GIF version

Theorem rrgsupp 20562
Description: Left multiplication by a left regular element does not change the support set of a vector. (Contributed by Stefan O'Rear, 28-Mar-2015.) (Revised by AV, 20-Jul-2019.)
Hypotheses
Ref Expression
rrgval.e 𝐸 = (RLReg‘𝑅)
rrgval.b 𝐵 = (Base‘𝑅)
rrgval.t · = (.r𝑅)
rrgval.z 0 = (0g𝑅)
rrgsupp.i (𝜑𝐼𝑉)
rrgsupp.r (𝜑𝑅 ∈ Ring)
rrgsupp.x (𝜑𝑋𝐸)
rrgsupp.y (𝜑𝑌:𝐼𝐵)
Assertion
Ref Expression
rrgsupp (𝜑 → (((𝐼 × {𝑋}) ∘f · 𝑌) supp 0 ) = (𝑌 supp 0 ))

Proof of Theorem rrgsupp
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rrgsupp.i . . . . . . . . 9 (𝜑𝐼𝑉)
2 rrgsupp.x . . . . . . . . . 10 (𝜑𝑋𝐸)
32adantr 481 . . . . . . . . 9 ((𝜑𝑦𝐼) → 𝑋𝐸)
4 fvexd 6789 . . . . . . . . 9 ((𝜑𝑦𝐼) → (𝑌𝑦) ∈ V)
5 fconstmpt 5649 . . . . . . . . . 10 (𝐼 × {𝑋}) = (𝑦𝐼𝑋)
65a1i 11 . . . . . . . . 9 (𝜑 → (𝐼 × {𝑋}) = (𝑦𝐼𝑋))
7 rrgsupp.y . . . . . . . . . 10 (𝜑𝑌:𝐼𝐵)
87feqmptd 6837 . . . . . . . . 9 (𝜑𝑌 = (𝑦𝐼 ↦ (𝑌𝑦)))
91, 3, 4, 6, 8offval2 7553 . . . . . . . 8 (𝜑 → ((𝐼 × {𝑋}) ∘f · 𝑌) = (𝑦𝐼 ↦ (𝑋 · (𝑌𝑦))))
109adantr 481 . . . . . . 7 ((𝜑𝑥𝐼) → ((𝐼 × {𝑋}) ∘f · 𝑌) = (𝑦𝐼 ↦ (𝑋 · (𝑌𝑦))))
1110fveq1d 6776 . . . . . 6 ((𝜑𝑥𝐼) → (((𝐼 × {𝑋}) ∘f · 𝑌)‘𝑥) = ((𝑦𝐼 ↦ (𝑋 · (𝑌𝑦)))‘𝑥))
12 simpr 485 . . . . . . 7 ((𝜑𝑥𝐼) → 𝑥𝐼)
13 ovex 7308 . . . . . . 7 (𝑋 · (𝑌𝑥)) ∈ V
14 fveq2 6774 . . . . . . . . 9 (𝑦 = 𝑥 → (𝑌𝑦) = (𝑌𝑥))
1514oveq2d 7291 . . . . . . . 8 (𝑦 = 𝑥 → (𝑋 · (𝑌𝑦)) = (𝑋 · (𝑌𝑥)))
16 eqid 2738 . . . . . . . 8 (𝑦𝐼 ↦ (𝑋 · (𝑌𝑦))) = (𝑦𝐼 ↦ (𝑋 · (𝑌𝑦)))
1715, 16fvmptg 6873 . . . . . . 7 ((𝑥𝐼 ∧ (𝑋 · (𝑌𝑥)) ∈ V) → ((𝑦𝐼 ↦ (𝑋 · (𝑌𝑦)))‘𝑥) = (𝑋 · (𝑌𝑥)))
1812, 13, 17sylancl 586 . . . . . 6 ((𝜑𝑥𝐼) → ((𝑦𝐼 ↦ (𝑋 · (𝑌𝑦)))‘𝑥) = (𝑋 · (𝑌𝑥)))
1911, 18eqtrd 2778 . . . . 5 ((𝜑𝑥𝐼) → (((𝐼 × {𝑋}) ∘f · 𝑌)‘𝑥) = (𝑋 · (𝑌𝑥)))
2019neeq1d 3003 . . . 4 ((𝜑𝑥𝐼) → ((((𝐼 × {𝑋}) ∘f · 𝑌)‘𝑥) ≠ 0 ↔ (𝑋 · (𝑌𝑥)) ≠ 0 ))
2120rabbidva 3413 . . 3 (𝜑 → {𝑥𝐼 ∣ (((𝐼 × {𝑋}) ∘f · 𝑌)‘𝑥) ≠ 0 } = {𝑥𝐼 ∣ (𝑋 · (𝑌𝑥)) ≠ 0 })
22 rrgsupp.r . . . . . . 7 (𝜑𝑅 ∈ Ring)
2322adantr 481 . . . . . 6 ((𝜑𝑥𝐼) → 𝑅 ∈ Ring)
242adantr 481 . . . . . 6 ((𝜑𝑥𝐼) → 𝑋𝐸)
257ffvelrnda 6961 . . . . . 6 ((𝜑𝑥𝐼) → (𝑌𝑥) ∈ 𝐵)
26 rrgval.e . . . . . . 7 𝐸 = (RLReg‘𝑅)
27 rrgval.b . . . . . . 7 𝐵 = (Base‘𝑅)
28 rrgval.t . . . . . . 7 · = (.r𝑅)
29 rrgval.z . . . . . . 7 0 = (0g𝑅)
3026, 27, 28, 29rrgeq0 20561 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑋𝐸 ∧ (𝑌𝑥) ∈ 𝐵) → ((𝑋 · (𝑌𝑥)) = 0 ↔ (𝑌𝑥) = 0 ))
3123, 24, 25, 30syl3anc 1370 . . . . 5 ((𝜑𝑥𝐼) → ((𝑋 · (𝑌𝑥)) = 0 ↔ (𝑌𝑥) = 0 ))
3231necon3bid 2988 . . . 4 ((𝜑𝑥𝐼) → ((𝑋 · (𝑌𝑥)) ≠ 0 ↔ (𝑌𝑥) ≠ 0 ))
3332rabbidva 3413 . . 3 (𝜑 → {𝑥𝐼 ∣ (𝑋 · (𝑌𝑥)) ≠ 0 } = {𝑥𝐼 ∣ (𝑌𝑥) ≠ 0 })
3421, 33eqtrd 2778 . 2 (𝜑 → {𝑥𝐼 ∣ (((𝐼 × {𝑋}) ∘f · 𝑌)‘𝑥) ≠ 0 } = {𝑥𝐼 ∣ (𝑌𝑥) ≠ 0 })
35 ovex 7308 . . . . . 6 (𝑋 · (𝑌𝑦)) ∈ V
3635, 16fnmpti 6576 . . . . 5 (𝑦𝐼 ↦ (𝑋 · (𝑌𝑦))) Fn 𝐼
37 fneq1 6524 . . . . 5 (((𝐼 × {𝑋}) ∘f · 𝑌) = (𝑦𝐼 ↦ (𝑋 · (𝑌𝑦))) → (((𝐼 × {𝑋}) ∘f · 𝑌) Fn 𝐼 ↔ (𝑦𝐼 ↦ (𝑋 · (𝑌𝑦))) Fn 𝐼))
3836, 37mpbiri 257 . . . 4 (((𝐼 × {𝑋}) ∘f · 𝑌) = (𝑦𝐼 ↦ (𝑋 · (𝑌𝑦))) → ((𝐼 × {𝑋}) ∘f · 𝑌) Fn 𝐼)
399, 38syl 17 . . 3 (𝜑 → ((𝐼 × {𝑋}) ∘f · 𝑌) Fn 𝐼)
4029fvexi 6788 . . . 4 0 ∈ V
4140a1i 11 . . 3 (𝜑0 ∈ V)
42 suppvalfn 7985 . . 3 ((((𝐼 × {𝑋}) ∘f · 𝑌) Fn 𝐼𝐼𝑉0 ∈ V) → (((𝐼 × {𝑋}) ∘f · 𝑌) supp 0 ) = {𝑥𝐼 ∣ (((𝐼 × {𝑋}) ∘f · 𝑌)‘𝑥) ≠ 0 })
4339, 1, 41, 42syl3anc 1370 . 2 (𝜑 → (((𝐼 × {𝑋}) ∘f · 𝑌) supp 0 ) = {𝑥𝐼 ∣ (((𝐼 × {𝑋}) ∘f · 𝑌)‘𝑥) ≠ 0 })
447ffnd 6601 . . 3 (𝜑𝑌 Fn 𝐼)
45 suppvalfn 7985 . . 3 ((𝑌 Fn 𝐼𝐼𝑉0 ∈ V) → (𝑌 supp 0 ) = {𝑥𝐼 ∣ (𝑌𝑥) ≠ 0 })
4644, 1, 41, 45syl3anc 1370 . 2 (𝜑 → (𝑌 supp 0 ) = {𝑥𝐼 ∣ (𝑌𝑥) ≠ 0 })
4734, 43, 463eqtr4d 2788 1 (𝜑 → (((𝐼 × {𝑋}) ∘f · 𝑌) supp 0 ) = (𝑌 supp 0 ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wne 2943  {crab 3068  Vcvv 3432  {csn 4561  cmpt 5157   × cxp 5587   Fn wfn 6428  wf 6429  cfv 6433  (class class class)co 7275  f cof 7531   supp csupp 7977  Basecbs 16912  .rcmulr 16963  0gc0g 17150  Ringcrg 19783  RLRegcrlreg 20550
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-om 7713  df-2nd 7832  df-supp 7978  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-plusg 16975  df-0g 17152  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-grp 18580  df-mgp 19721  df-ring 19785  df-rlreg 20554
This theorem is referenced by:  mdegvsca  25241  deg1mul3  25280
  Copyright terms: Public domain W3C validator