MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  deg1mul3 Structured version   Visualization version   GIF version

Theorem deg1mul3 25185
Description: Degree of multiplication of a polynomial on the left by a nonzero-dividing scalar. (Contributed by Stefan O'Rear, 29-Mar-2015.) (Proof shortened by AV, 25-Jul-2019.)
Hypotheses
Ref Expression
deg1mul3.d 𝐷 = ( deg1𝑅)
deg1mul3.p 𝑃 = (Poly1𝑅)
deg1mul3.e 𝐸 = (RLReg‘𝑅)
deg1mul3.b 𝐵 = (Base‘𝑃)
deg1mul3.t · = (.r𝑃)
deg1mul3.a 𝐴 = (algSc‘𝑃)
Assertion
Ref Expression
deg1mul3 ((𝑅 ∈ Ring ∧ 𝐹𝐸𝐺𝐵) → (𝐷‘((𝐴𝐹) · 𝐺)) = (𝐷𝐺))

Proof of Theorem deg1mul3
StepHypRef Expression
1 deg1mul3.e . . . . . . . 8 𝐸 = (RLReg‘𝑅)
2 eqid 2738 . . . . . . . 8 (Base‘𝑅) = (Base‘𝑅)
31, 2rrgss 20476 . . . . . . 7 𝐸 ⊆ (Base‘𝑅)
43sseli 3913 . . . . . 6 (𝐹𝐸𝐹 ∈ (Base‘𝑅))
5 deg1mul3.p . . . . . . 7 𝑃 = (Poly1𝑅)
6 deg1mul3.b . . . . . . 7 𝐵 = (Base‘𝑃)
7 deg1mul3.a . . . . . . 7 𝐴 = (algSc‘𝑃)
8 deg1mul3.t . . . . . . 7 · = (.r𝑃)
9 eqid 2738 . . . . . . 7 (.r𝑅) = (.r𝑅)
105, 6, 2, 7, 8, 9coe1sclmul 21363 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐹 ∈ (Base‘𝑅) ∧ 𝐺𝐵) → (coe1‘((𝐴𝐹) · 𝐺)) = ((ℕ0 × {𝐹}) ∘f (.r𝑅)(coe1𝐺)))
114, 10syl3an2 1162 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐹𝐸𝐺𝐵) → (coe1‘((𝐴𝐹) · 𝐺)) = ((ℕ0 × {𝐹}) ∘f (.r𝑅)(coe1𝐺)))
1211oveq1d 7270 . . . 4 ((𝑅 ∈ Ring ∧ 𝐹𝐸𝐺𝐵) → ((coe1‘((𝐴𝐹) · 𝐺)) supp (0g𝑅)) = (((ℕ0 × {𝐹}) ∘f (.r𝑅)(coe1𝐺)) supp (0g𝑅)))
13 eqid 2738 . . . . 5 (0g𝑅) = (0g𝑅)
14 nn0ex 12169 . . . . . 6 0 ∈ V
1514a1i 11 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐹𝐸𝐺𝐵) → ℕ0 ∈ V)
16 simp1 1134 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐹𝐸𝐺𝐵) → 𝑅 ∈ Ring)
17 simp2 1135 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐹𝐸𝐺𝐵) → 𝐹𝐸)
18 eqid 2738 . . . . . . 7 (coe1𝐺) = (coe1𝐺)
1918, 6, 5, 2coe1f 21292 . . . . . 6 (𝐺𝐵 → (coe1𝐺):ℕ0⟶(Base‘𝑅))
20193ad2ant3 1133 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐹𝐸𝐺𝐵) → (coe1𝐺):ℕ0⟶(Base‘𝑅))
211, 2, 9, 13, 15, 16, 17, 20rrgsupp 20475 . . . 4 ((𝑅 ∈ Ring ∧ 𝐹𝐸𝐺𝐵) → (((ℕ0 × {𝐹}) ∘f (.r𝑅)(coe1𝐺)) supp (0g𝑅)) = ((coe1𝐺) supp (0g𝑅)))
2212, 21eqtrd 2778 . . 3 ((𝑅 ∈ Ring ∧ 𝐹𝐸𝐺𝐵) → ((coe1‘((𝐴𝐹) · 𝐺)) supp (0g𝑅)) = ((coe1𝐺) supp (0g𝑅)))
2322supeq1d 9135 . 2 ((𝑅 ∈ Ring ∧ 𝐹𝐸𝐺𝐵) → sup(((coe1‘((𝐴𝐹) · 𝐺)) supp (0g𝑅)), ℝ*, < ) = sup(((coe1𝐺) supp (0g𝑅)), ℝ*, < ))
245ply1ring 21329 . . . . 5 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
25243ad2ant1 1131 . . . 4 ((𝑅 ∈ Ring ∧ 𝐹𝐸𝐺𝐵) → 𝑃 ∈ Ring)
265, 7, 2, 6ply1sclf 21366 . . . . . 6 (𝑅 ∈ Ring → 𝐴:(Base‘𝑅)⟶𝐵)
27263ad2ant1 1131 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐹𝐸𝐺𝐵) → 𝐴:(Base‘𝑅)⟶𝐵)
2843ad2ant2 1132 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐹𝐸𝐺𝐵) → 𝐹 ∈ (Base‘𝑅))
2927, 28ffvelrnd 6944 . . . 4 ((𝑅 ∈ Ring ∧ 𝐹𝐸𝐺𝐵) → (𝐴𝐹) ∈ 𝐵)
30 simp3 1136 . . . 4 ((𝑅 ∈ Ring ∧ 𝐹𝐸𝐺𝐵) → 𝐺𝐵)
316, 8ringcl 19715 . . . 4 ((𝑃 ∈ Ring ∧ (𝐴𝐹) ∈ 𝐵𝐺𝐵) → ((𝐴𝐹) · 𝐺) ∈ 𝐵)
3225, 29, 30, 31syl3anc 1369 . . 3 ((𝑅 ∈ Ring ∧ 𝐹𝐸𝐺𝐵) → ((𝐴𝐹) · 𝐺) ∈ 𝐵)
33 deg1mul3.d . . . 4 𝐷 = ( deg1𝑅)
34 eqid 2738 . . . 4 (coe1‘((𝐴𝐹) · 𝐺)) = (coe1‘((𝐴𝐹) · 𝐺))
3533, 5, 6, 13, 34deg1val 25166 . . 3 (((𝐴𝐹) · 𝐺) ∈ 𝐵 → (𝐷‘((𝐴𝐹) · 𝐺)) = sup(((coe1‘((𝐴𝐹) · 𝐺)) supp (0g𝑅)), ℝ*, < ))
3632, 35syl 17 . 2 ((𝑅 ∈ Ring ∧ 𝐹𝐸𝐺𝐵) → (𝐷‘((𝐴𝐹) · 𝐺)) = sup(((coe1‘((𝐴𝐹) · 𝐺)) supp (0g𝑅)), ℝ*, < ))
3733, 5, 6, 13, 18deg1val 25166 . . 3 (𝐺𝐵 → (𝐷𝐺) = sup(((coe1𝐺) supp (0g𝑅)), ℝ*, < ))
38373ad2ant3 1133 . 2 ((𝑅 ∈ Ring ∧ 𝐹𝐸𝐺𝐵) → (𝐷𝐺) = sup(((coe1𝐺) supp (0g𝑅)), ℝ*, < ))
3923, 36, 383eqtr4d 2788 1 ((𝑅 ∈ Ring ∧ 𝐹𝐸𝐺𝐵) → (𝐷‘((𝐴𝐹) · 𝐺)) = (𝐷𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1085   = wceq 1539  wcel 2108  Vcvv 3422  {csn 4558   × cxp 5578  wf 6414  cfv 6418  (class class class)co 7255  f cof 7509   supp csupp 7948  supcsup 9129  *cxr 10939   < clt 10940  0cn0 12163  Basecbs 16840  .rcmulr 16889  0gc0g 17067  Ringcrg 19698  RLRegcrlreg 20463  algSccascl 20969  Poly1cpl1 21258  coe1cco1 21259   deg1 cdg1 25121
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-addf 10881  ax-mulf 10882
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-ofr 7512  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-pm 8576  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-sup 9131  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-fz 13169  df-fzo 13312  df-seq 13650  df-hash 13973  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-starv 16903  df-sca 16904  df-vsca 16905  df-tset 16907  df-ple 16908  df-ds 16910  df-unif 16911  df-0g 17069  df-gsum 17070  df-mre 17212  df-mrc 17213  df-acs 17215  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-mhm 18345  df-submnd 18346  df-grp 18495  df-minusg 18496  df-sbg 18497  df-mulg 18616  df-subg 18667  df-ghm 18747  df-cntz 18838  df-cmn 19303  df-abl 19304  df-mgp 19636  df-ur 19653  df-ring 19700  df-cring 19701  df-subrg 19937  df-lmod 20040  df-lss 20109  df-rlreg 20467  df-cnfld 20511  df-ascl 20972  df-psr 21022  df-mvr 21023  df-mpl 21024  df-opsr 21026  df-psr1 21261  df-vr1 21262  df-ply1 21263  df-coe1 21264  df-mdeg 25122  df-deg1 25123
This theorem is referenced by:  uc1pmon1p  25221  ig1peu  25241
  Copyright terms: Public domain W3C validator