| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > deg1mul3 | Structured version Visualization version GIF version | ||
| Description: Degree of multiplication of a polynomial on the left by a nonzero-dividing scalar. (Contributed by Stefan O'Rear, 29-Mar-2015.) (Proof shortened by AV, 25-Jul-2019.) |
| Ref | Expression |
|---|---|
| deg1mul3.d | ⊢ 𝐷 = (deg1‘𝑅) |
| deg1mul3.p | ⊢ 𝑃 = (Poly1‘𝑅) |
| deg1mul3.e | ⊢ 𝐸 = (RLReg‘𝑅) |
| deg1mul3.b | ⊢ 𝐵 = (Base‘𝑃) |
| deg1mul3.t | ⊢ · = (.r‘𝑃) |
| deg1mul3.a | ⊢ 𝐴 = (algSc‘𝑃) |
| Ref | Expression |
|---|---|
| deg1mul3 | ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐸 ∧ 𝐺 ∈ 𝐵) → (𝐷‘((𝐴‘𝐹) · 𝐺)) = (𝐷‘𝐺)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | deg1mul3.e | . . . . . . . 8 ⊢ 𝐸 = (RLReg‘𝑅) | |
| 2 | eqid 2729 | . . . . . . . 8 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 3 | 1, 2 | rrgss 20587 | . . . . . . 7 ⊢ 𝐸 ⊆ (Base‘𝑅) |
| 4 | 3 | sseli 3939 | . . . . . 6 ⊢ (𝐹 ∈ 𝐸 → 𝐹 ∈ (Base‘𝑅)) |
| 5 | deg1mul3.p | . . . . . . 7 ⊢ 𝑃 = (Poly1‘𝑅) | |
| 6 | deg1mul3.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝑃) | |
| 7 | deg1mul3.a | . . . . . . 7 ⊢ 𝐴 = (algSc‘𝑃) | |
| 8 | deg1mul3.t | . . . . . . 7 ⊢ · = (.r‘𝑃) | |
| 9 | eqid 2729 | . . . . . . 7 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
| 10 | 5, 6, 2, 7, 8, 9 | coe1sclmul 22144 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ (Base‘𝑅) ∧ 𝐺 ∈ 𝐵) → (coe1‘((𝐴‘𝐹) · 𝐺)) = ((ℕ0 × {𝐹}) ∘f (.r‘𝑅)(coe1‘𝐺))) |
| 11 | 4, 10 | syl3an2 1164 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐸 ∧ 𝐺 ∈ 𝐵) → (coe1‘((𝐴‘𝐹) · 𝐺)) = ((ℕ0 × {𝐹}) ∘f (.r‘𝑅)(coe1‘𝐺))) |
| 12 | 11 | oveq1d 7384 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐸 ∧ 𝐺 ∈ 𝐵) → ((coe1‘((𝐴‘𝐹) · 𝐺)) supp (0g‘𝑅)) = (((ℕ0 × {𝐹}) ∘f (.r‘𝑅)(coe1‘𝐺)) supp (0g‘𝑅))) |
| 13 | eqid 2729 | . . . . 5 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
| 14 | nn0ex 12424 | . . . . . 6 ⊢ ℕ0 ∈ V | |
| 15 | 14 | a1i 11 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐸 ∧ 𝐺 ∈ 𝐵) → ℕ0 ∈ V) |
| 16 | simp1 1136 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐸 ∧ 𝐺 ∈ 𝐵) → 𝑅 ∈ Ring) | |
| 17 | simp2 1137 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐸 ∧ 𝐺 ∈ 𝐵) → 𝐹 ∈ 𝐸) | |
| 18 | eqid 2729 | . . . . . . 7 ⊢ (coe1‘𝐺) = (coe1‘𝐺) | |
| 19 | 18, 6, 5, 2 | coe1f 22072 | . . . . . 6 ⊢ (𝐺 ∈ 𝐵 → (coe1‘𝐺):ℕ0⟶(Base‘𝑅)) |
| 20 | 19 | 3ad2ant3 1135 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐸 ∧ 𝐺 ∈ 𝐵) → (coe1‘𝐺):ℕ0⟶(Base‘𝑅)) |
| 21 | 1, 2, 9, 13, 15, 16, 17, 20 | rrgsupp 20586 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐸 ∧ 𝐺 ∈ 𝐵) → (((ℕ0 × {𝐹}) ∘f (.r‘𝑅)(coe1‘𝐺)) supp (0g‘𝑅)) = ((coe1‘𝐺) supp (0g‘𝑅))) |
| 22 | 12, 21 | eqtrd 2764 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐸 ∧ 𝐺 ∈ 𝐵) → ((coe1‘((𝐴‘𝐹) · 𝐺)) supp (0g‘𝑅)) = ((coe1‘𝐺) supp (0g‘𝑅))) |
| 23 | 22 | supeq1d 9373 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐸 ∧ 𝐺 ∈ 𝐵) → sup(((coe1‘((𝐴‘𝐹) · 𝐺)) supp (0g‘𝑅)), ℝ*, < ) = sup(((coe1‘𝐺) supp (0g‘𝑅)), ℝ*, < )) |
| 24 | 5 | ply1ring 22108 | . . . . 5 ⊢ (𝑅 ∈ Ring → 𝑃 ∈ Ring) |
| 25 | 24 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐸 ∧ 𝐺 ∈ 𝐵) → 𝑃 ∈ Ring) |
| 26 | 5, 7, 2, 6 | ply1sclf 22147 | . . . . . 6 ⊢ (𝑅 ∈ Ring → 𝐴:(Base‘𝑅)⟶𝐵) |
| 27 | 26 | 3ad2ant1 1133 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐸 ∧ 𝐺 ∈ 𝐵) → 𝐴:(Base‘𝑅)⟶𝐵) |
| 28 | 4 | 3ad2ant2 1134 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐸 ∧ 𝐺 ∈ 𝐵) → 𝐹 ∈ (Base‘𝑅)) |
| 29 | 27, 28 | ffvelcdmd 7039 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐸 ∧ 𝐺 ∈ 𝐵) → (𝐴‘𝐹) ∈ 𝐵) |
| 30 | simp3 1138 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐸 ∧ 𝐺 ∈ 𝐵) → 𝐺 ∈ 𝐵) | |
| 31 | 6, 8 | ringcl 20135 | . . . 4 ⊢ ((𝑃 ∈ Ring ∧ (𝐴‘𝐹) ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → ((𝐴‘𝐹) · 𝐺) ∈ 𝐵) |
| 32 | 25, 29, 30, 31 | syl3anc 1373 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐸 ∧ 𝐺 ∈ 𝐵) → ((𝐴‘𝐹) · 𝐺) ∈ 𝐵) |
| 33 | deg1mul3.d | . . . 4 ⊢ 𝐷 = (deg1‘𝑅) | |
| 34 | eqid 2729 | . . . 4 ⊢ (coe1‘((𝐴‘𝐹) · 𝐺)) = (coe1‘((𝐴‘𝐹) · 𝐺)) | |
| 35 | 33, 5, 6, 13, 34 | deg1val 25977 | . . 3 ⊢ (((𝐴‘𝐹) · 𝐺) ∈ 𝐵 → (𝐷‘((𝐴‘𝐹) · 𝐺)) = sup(((coe1‘((𝐴‘𝐹) · 𝐺)) supp (0g‘𝑅)), ℝ*, < )) |
| 36 | 32, 35 | syl 17 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐸 ∧ 𝐺 ∈ 𝐵) → (𝐷‘((𝐴‘𝐹) · 𝐺)) = sup(((coe1‘((𝐴‘𝐹) · 𝐺)) supp (0g‘𝑅)), ℝ*, < )) |
| 37 | 33, 5, 6, 13, 18 | deg1val 25977 | . . 3 ⊢ (𝐺 ∈ 𝐵 → (𝐷‘𝐺) = sup(((coe1‘𝐺) supp (0g‘𝑅)), ℝ*, < )) |
| 38 | 37 | 3ad2ant3 1135 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐸 ∧ 𝐺 ∈ 𝐵) → (𝐷‘𝐺) = sup(((coe1‘𝐺) supp (0g‘𝑅)), ℝ*, < )) |
| 39 | 23, 36, 38 | 3eqtr4d 2774 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐸 ∧ 𝐺 ∈ 𝐵) → (𝐷‘((𝐴‘𝐹) · 𝐺)) = (𝐷‘𝐺)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 Vcvv 3444 {csn 4585 × cxp 5629 ⟶wf 6495 ‘cfv 6499 (class class class)co 7369 ∘f cof 7631 supp csupp 8116 supcsup 9367 ℝ*cxr 11183 < clt 11184 ℕ0cn0 12418 Basecbs 17155 .rcmulr 17197 0gc0g 17378 Ringcrg 20118 RLRegcrlreg 20576 algSccascl 21737 Poly1cpl1 22037 coe1cco1 22038 deg1cdg1 25935 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 ax-addf 11123 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-iin 4954 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-se 5585 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-isom 6508 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-of 7633 df-ofr 7634 df-om 7823 df-1st 7947 df-2nd 7948 df-supp 8117 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-2o 8412 df-er 8648 df-map 8778 df-pm 8779 df-ixp 8848 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-fsupp 9289 df-sup 9369 df-oi 9439 df-card 9868 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 df-7 12230 df-8 12231 df-9 12232 df-n0 12419 df-z 12506 df-dec 12626 df-uz 12770 df-fz 13445 df-fzo 13592 df-seq 13943 df-hash 14272 df-struct 17093 df-sets 17110 df-slot 17128 df-ndx 17140 df-base 17156 df-ress 17177 df-plusg 17209 df-mulr 17210 df-starv 17211 df-sca 17212 df-vsca 17213 df-ip 17214 df-tset 17215 df-ple 17216 df-ds 17218 df-unif 17219 df-hom 17220 df-cco 17221 df-0g 17380 df-gsum 17381 df-prds 17386 df-pws 17388 df-mre 17523 df-mrc 17524 df-acs 17526 df-mgm 18543 df-sgrp 18622 df-mnd 18638 df-mhm 18686 df-submnd 18687 df-grp 18844 df-minusg 18845 df-sbg 18846 df-mulg 18976 df-subg 19031 df-ghm 19121 df-cntz 19225 df-cmn 19688 df-abl 19689 df-mgp 20026 df-rng 20038 df-ur 20067 df-ring 20120 df-cring 20121 df-subrng 20431 df-subrg 20455 df-rlreg 20579 df-lmod 20744 df-lss 20814 df-cnfld 21241 df-ascl 21740 df-psr 21794 df-mvr 21795 df-mpl 21796 df-opsr 21798 df-psr1 22040 df-vr1 22041 df-ply1 22042 df-coe1 22043 df-mdeg 25936 df-deg1 25937 |
| This theorem is referenced by: uc1pmon1p 26033 ig1peu 26056 |
| Copyright terms: Public domain | W3C validator |