Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > deg1mul3 | Structured version Visualization version GIF version |
Description: Degree of multiplication of a polynomial on the left by a nonzero-dividing scalar. (Contributed by Stefan O'Rear, 29-Mar-2015.) (Proof shortened by AV, 25-Jul-2019.) |
Ref | Expression |
---|---|
deg1mul3.d | ⊢ 𝐷 = ( deg1 ‘𝑅) |
deg1mul3.p | ⊢ 𝑃 = (Poly1‘𝑅) |
deg1mul3.e | ⊢ 𝐸 = (RLReg‘𝑅) |
deg1mul3.b | ⊢ 𝐵 = (Base‘𝑃) |
deg1mul3.t | ⊢ · = (.r‘𝑃) |
deg1mul3.a | ⊢ 𝐴 = (algSc‘𝑃) |
Ref | Expression |
---|---|
deg1mul3 | ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐸 ∧ 𝐺 ∈ 𝐵) → (𝐷‘((𝐴‘𝐹) · 𝐺)) = (𝐷‘𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | deg1mul3.e | . . . . . . . 8 ⊢ 𝐸 = (RLReg‘𝑅) | |
2 | eqid 2738 | . . . . . . . 8 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
3 | 1, 2 | rrgss 20563 | . . . . . . 7 ⊢ 𝐸 ⊆ (Base‘𝑅) |
4 | 3 | sseli 3917 | . . . . . 6 ⊢ (𝐹 ∈ 𝐸 → 𝐹 ∈ (Base‘𝑅)) |
5 | deg1mul3.p | . . . . . . 7 ⊢ 𝑃 = (Poly1‘𝑅) | |
6 | deg1mul3.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝑃) | |
7 | deg1mul3.a | . . . . . . 7 ⊢ 𝐴 = (algSc‘𝑃) | |
8 | deg1mul3.t | . . . . . . 7 ⊢ · = (.r‘𝑃) | |
9 | eqid 2738 | . . . . . . 7 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
10 | 5, 6, 2, 7, 8, 9 | coe1sclmul 21453 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ (Base‘𝑅) ∧ 𝐺 ∈ 𝐵) → (coe1‘((𝐴‘𝐹) · 𝐺)) = ((ℕ0 × {𝐹}) ∘f (.r‘𝑅)(coe1‘𝐺))) |
11 | 4, 10 | syl3an2 1163 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐸 ∧ 𝐺 ∈ 𝐵) → (coe1‘((𝐴‘𝐹) · 𝐺)) = ((ℕ0 × {𝐹}) ∘f (.r‘𝑅)(coe1‘𝐺))) |
12 | 11 | oveq1d 7290 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐸 ∧ 𝐺 ∈ 𝐵) → ((coe1‘((𝐴‘𝐹) · 𝐺)) supp (0g‘𝑅)) = (((ℕ0 × {𝐹}) ∘f (.r‘𝑅)(coe1‘𝐺)) supp (0g‘𝑅))) |
13 | eqid 2738 | . . . . 5 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
14 | nn0ex 12239 | . . . . . 6 ⊢ ℕ0 ∈ V | |
15 | 14 | a1i 11 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐸 ∧ 𝐺 ∈ 𝐵) → ℕ0 ∈ V) |
16 | simp1 1135 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐸 ∧ 𝐺 ∈ 𝐵) → 𝑅 ∈ Ring) | |
17 | simp2 1136 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐸 ∧ 𝐺 ∈ 𝐵) → 𝐹 ∈ 𝐸) | |
18 | eqid 2738 | . . . . . . 7 ⊢ (coe1‘𝐺) = (coe1‘𝐺) | |
19 | 18, 6, 5, 2 | coe1f 21382 | . . . . . 6 ⊢ (𝐺 ∈ 𝐵 → (coe1‘𝐺):ℕ0⟶(Base‘𝑅)) |
20 | 19 | 3ad2ant3 1134 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐸 ∧ 𝐺 ∈ 𝐵) → (coe1‘𝐺):ℕ0⟶(Base‘𝑅)) |
21 | 1, 2, 9, 13, 15, 16, 17, 20 | rrgsupp 20562 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐸 ∧ 𝐺 ∈ 𝐵) → (((ℕ0 × {𝐹}) ∘f (.r‘𝑅)(coe1‘𝐺)) supp (0g‘𝑅)) = ((coe1‘𝐺) supp (0g‘𝑅))) |
22 | 12, 21 | eqtrd 2778 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐸 ∧ 𝐺 ∈ 𝐵) → ((coe1‘((𝐴‘𝐹) · 𝐺)) supp (0g‘𝑅)) = ((coe1‘𝐺) supp (0g‘𝑅))) |
23 | 22 | supeq1d 9205 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐸 ∧ 𝐺 ∈ 𝐵) → sup(((coe1‘((𝐴‘𝐹) · 𝐺)) supp (0g‘𝑅)), ℝ*, < ) = sup(((coe1‘𝐺) supp (0g‘𝑅)), ℝ*, < )) |
24 | 5 | ply1ring 21419 | . . . . 5 ⊢ (𝑅 ∈ Ring → 𝑃 ∈ Ring) |
25 | 24 | 3ad2ant1 1132 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐸 ∧ 𝐺 ∈ 𝐵) → 𝑃 ∈ Ring) |
26 | 5, 7, 2, 6 | ply1sclf 21456 | . . . . . 6 ⊢ (𝑅 ∈ Ring → 𝐴:(Base‘𝑅)⟶𝐵) |
27 | 26 | 3ad2ant1 1132 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐸 ∧ 𝐺 ∈ 𝐵) → 𝐴:(Base‘𝑅)⟶𝐵) |
28 | 4 | 3ad2ant2 1133 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐸 ∧ 𝐺 ∈ 𝐵) → 𝐹 ∈ (Base‘𝑅)) |
29 | 27, 28 | ffvelrnd 6962 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐸 ∧ 𝐺 ∈ 𝐵) → (𝐴‘𝐹) ∈ 𝐵) |
30 | simp3 1137 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐸 ∧ 𝐺 ∈ 𝐵) → 𝐺 ∈ 𝐵) | |
31 | 6, 8 | ringcl 19800 | . . . 4 ⊢ ((𝑃 ∈ Ring ∧ (𝐴‘𝐹) ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → ((𝐴‘𝐹) · 𝐺) ∈ 𝐵) |
32 | 25, 29, 30, 31 | syl3anc 1370 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐸 ∧ 𝐺 ∈ 𝐵) → ((𝐴‘𝐹) · 𝐺) ∈ 𝐵) |
33 | deg1mul3.d | . . . 4 ⊢ 𝐷 = ( deg1 ‘𝑅) | |
34 | eqid 2738 | . . . 4 ⊢ (coe1‘((𝐴‘𝐹) · 𝐺)) = (coe1‘((𝐴‘𝐹) · 𝐺)) | |
35 | 33, 5, 6, 13, 34 | deg1val 25261 | . . 3 ⊢ (((𝐴‘𝐹) · 𝐺) ∈ 𝐵 → (𝐷‘((𝐴‘𝐹) · 𝐺)) = sup(((coe1‘((𝐴‘𝐹) · 𝐺)) supp (0g‘𝑅)), ℝ*, < )) |
36 | 32, 35 | syl 17 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐸 ∧ 𝐺 ∈ 𝐵) → (𝐷‘((𝐴‘𝐹) · 𝐺)) = sup(((coe1‘((𝐴‘𝐹) · 𝐺)) supp (0g‘𝑅)), ℝ*, < )) |
37 | 33, 5, 6, 13, 18 | deg1val 25261 | . . 3 ⊢ (𝐺 ∈ 𝐵 → (𝐷‘𝐺) = sup(((coe1‘𝐺) supp (0g‘𝑅)), ℝ*, < )) |
38 | 37 | 3ad2ant3 1134 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐸 ∧ 𝐺 ∈ 𝐵) → (𝐷‘𝐺) = sup(((coe1‘𝐺) supp (0g‘𝑅)), ℝ*, < )) |
39 | 23, 36, 38 | 3eqtr4d 2788 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐸 ∧ 𝐺 ∈ 𝐵) → (𝐷‘((𝐴‘𝐹) · 𝐺)) = (𝐷‘𝐺)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 Vcvv 3432 {csn 4561 × cxp 5587 ⟶wf 6429 ‘cfv 6433 (class class class)co 7275 ∘f cof 7531 supp csupp 7977 supcsup 9199 ℝ*cxr 11008 < clt 11009 ℕ0cn0 12233 Basecbs 16912 .rcmulr 16963 0gc0g 17150 Ringcrg 19783 RLRegcrlreg 20550 algSccascl 21059 Poly1cpl1 21348 coe1cco1 21349 deg1 cdg1 25216 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 ax-addf 10950 ax-mulf 10951 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-tp 4566 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-iin 4927 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-se 5545 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-isom 6442 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-of 7533 df-ofr 7534 df-om 7713 df-1st 7831 df-2nd 7832 df-supp 7978 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-er 8498 df-map 8617 df-pm 8618 df-ixp 8686 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-fsupp 9129 df-sup 9201 df-oi 9269 df-card 9697 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-2 12036 df-3 12037 df-4 12038 df-5 12039 df-6 12040 df-7 12041 df-8 12042 df-9 12043 df-n0 12234 df-z 12320 df-dec 12438 df-uz 12583 df-fz 13240 df-fzo 13383 df-seq 13722 df-hash 14045 df-struct 16848 df-sets 16865 df-slot 16883 df-ndx 16895 df-base 16913 df-ress 16942 df-plusg 16975 df-mulr 16976 df-starv 16977 df-sca 16978 df-vsca 16979 df-tset 16981 df-ple 16982 df-ds 16984 df-unif 16985 df-0g 17152 df-gsum 17153 df-mre 17295 df-mrc 17296 df-acs 17298 df-mgm 18326 df-sgrp 18375 df-mnd 18386 df-mhm 18430 df-submnd 18431 df-grp 18580 df-minusg 18581 df-sbg 18582 df-mulg 18701 df-subg 18752 df-ghm 18832 df-cntz 18923 df-cmn 19388 df-abl 19389 df-mgp 19721 df-ur 19738 df-ring 19785 df-cring 19786 df-subrg 20022 df-lmod 20125 df-lss 20194 df-rlreg 20554 df-cnfld 20598 df-ascl 21062 df-psr 21112 df-mvr 21113 df-mpl 21114 df-opsr 21116 df-psr1 21351 df-vr1 21352 df-ply1 21353 df-coe1 21354 df-mdeg 25217 df-deg1 25218 |
This theorem is referenced by: uc1pmon1p 25316 ig1peu 25336 |
Copyright terms: Public domain | W3C validator |