![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > deg1mul3 | Structured version Visualization version GIF version |
Description: Degree of multiplication of a polynomial on the left by a nonzero-dividing scalar. (Contributed by Stefan O'Rear, 29-Mar-2015.) (Proof shortened by AV, 25-Jul-2019.) |
Ref | Expression |
---|---|
deg1mul3.d | β’ π· = ( deg1 βπ ) |
deg1mul3.p | β’ π = (Poly1βπ ) |
deg1mul3.e | β’ πΈ = (RLRegβπ ) |
deg1mul3.b | β’ π΅ = (Baseβπ) |
deg1mul3.t | β’ Β· = (.rβπ) |
deg1mul3.a | β’ π΄ = (algScβπ) |
Ref | Expression |
---|---|
deg1mul3 | β’ ((π β Ring β§ πΉ β πΈ β§ πΊ β π΅) β (π·β((π΄βπΉ) Β· πΊ)) = (π·βπΊ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | deg1mul3.e | . . . . . . . 8 β’ πΈ = (RLRegβπ ) | |
2 | eqid 2732 | . . . . . . . 8 β’ (Baseβπ ) = (Baseβπ ) | |
3 | 1, 2 | rrgss 21108 | . . . . . . 7 β’ πΈ β (Baseβπ ) |
4 | 3 | sseli 3978 | . . . . . 6 β’ (πΉ β πΈ β πΉ β (Baseβπ )) |
5 | deg1mul3.p | . . . . . . 7 β’ π = (Poly1βπ ) | |
6 | deg1mul3.b | . . . . . . 7 β’ π΅ = (Baseβπ) | |
7 | deg1mul3.a | . . . . . . 7 β’ π΄ = (algScβπ) | |
8 | deg1mul3.t | . . . . . . 7 β’ Β· = (.rβπ) | |
9 | eqid 2732 | . . . . . . 7 β’ (.rβπ ) = (.rβπ ) | |
10 | 5, 6, 2, 7, 8, 9 | coe1sclmul 22024 | . . . . . 6 β’ ((π β Ring β§ πΉ β (Baseβπ ) β§ πΊ β π΅) β (coe1β((π΄βπΉ) Β· πΊ)) = ((β0 Γ {πΉ}) βf (.rβπ )(coe1βπΊ))) |
11 | 4, 10 | syl3an2 1164 | . . . . 5 β’ ((π β Ring β§ πΉ β πΈ β§ πΊ β π΅) β (coe1β((π΄βπΉ) Β· πΊ)) = ((β0 Γ {πΉ}) βf (.rβπ )(coe1βπΊ))) |
12 | 11 | oveq1d 7426 | . . . 4 β’ ((π β Ring β§ πΉ β πΈ β§ πΊ β π΅) β ((coe1β((π΄βπΉ) Β· πΊ)) supp (0gβπ )) = (((β0 Γ {πΉ}) βf (.rβπ )(coe1βπΊ)) supp (0gβπ ))) |
13 | eqid 2732 | . . . . 5 β’ (0gβπ ) = (0gβπ ) | |
14 | nn0ex 12482 | . . . . . 6 β’ β0 β V | |
15 | 14 | a1i 11 | . . . . 5 β’ ((π β Ring β§ πΉ β πΈ β§ πΊ β π΅) β β0 β V) |
16 | simp1 1136 | . . . . 5 β’ ((π β Ring β§ πΉ β πΈ β§ πΊ β π΅) β π β Ring) | |
17 | simp2 1137 | . . . . 5 β’ ((π β Ring β§ πΉ β πΈ β§ πΊ β π΅) β πΉ β πΈ) | |
18 | eqid 2732 | . . . . . . 7 β’ (coe1βπΊ) = (coe1βπΊ) | |
19 | 18, 6, 5, 2 | coe1f 21954 | . . . . . 6 β’ (πΊ β π΅ β (coe1βπΊ):β0βΆ(Baseβπ )) |
20 | 19 | 3ad2ant3 1135 | . . . . 5 β’ ((π β Ring β§ πΉ β πΈ β§ πΊ β π΅) β (coe1βπΊ):β0βΆ(Baseβπ )) |
21 | 1, 2, 9, 13, 15, 16, 17, 20 | rrgsupp 21107 | . . . 4 β’ ((π β Ring β§ πΉ β πΈ β§ πΊ β π΅) β (((β0 Γ {πΉ}) βf (.rβπ )(coe1βπΊ)) supp (0gβπ )) = ((coe1βπΊ) supp (0gβπ ))) |
22 | 12, 21 | eqtrd 2772 | . . 3 β’ ((π β Ring β§ πΉ β πΈ β§ πΊ β π΅) β ((coe1β((π΄βπΉ) Β· πΊ)) supp (0gβπ )) = ((coe1βπΊ) supp (0gβπ ))) |
23 | 22 | supeq1d 9443 | . 2 β’ ((π β Ring β§ πΉ β πΈ β§ πΊ β π΅) β sup(((coe1β((π΄βπΉ) Β· πΊ)) supp (0gβπ )), β*, < ) = sup(((coe1βπΊ) supp (0gβπ )), β*, < )) |
24 | 5 | ply1ring 21990 | . . . . 5 β’ (π β Ring β π β Ring) |
25 | 24 | 3ad2ant1 1133 | . . . 4 β’ ((π β Ring β§ πΉ β πΈ β§ πΊ β π΅) β π β Ring) |
26 | 5, 7, 2, 6 | ply1sclf 22027 | . . . . . 6 β’ (π β Ring β π΄:(Baseβπ )βΆπ΅) |
27 | 26 | 3ad2ant1 1133 | . . . . 5 β’ ((π β Ring β§ πΉ β πΈ β§ πΊ β π΅) β π΄:(Baseβπ )βΆπ΅) |
28 | 4 | 3ad2ant2 1134 | . . . . 5 β’ ((π β Ring β§ πΉ β πΈ β§ πΊ β π΅) β πΉ β (Baseβπ )) |
29 | 27, 28 | ffvelcdmd 7087 | . . . 4 β’ ((π β Ring β§ πΉ β πΈ β§ πΊ β π΅) β (π΄βπΉ) β π΅) |
30 | simp3 1138 | . . . 4 β’ ((π β Ring β§ πΉ β πΈ β§ πΊ β π΅) β πΊ β π΅) | |
31 | 6, 8 | ringcl 20144 | . . . 4 β’ ((π β Ring β§ (π΄βπΉ) β π΅ β§ πΊ β π΅) β ((π΄βπΉ) Β· πΊ) β π΅) |
32 | 25, 29, 30, 31 | syl3anc 1371 | . . 3 β’ ((π β Ring β§ πΉ β πΈ β§ πΊ β π΅) β ((π΄βπΉ) Β· πΊ) β π΅) |
33 | deg1mul3.d | . . . 4 β’ π· = ( deg1 βπ ) | |
34 | eqid 2732 | . . . 4 β’ (coe1β((π΄βπΉ) Β· πΊ)) = (coe1β((π΄βπΉ) Β· πΊ)) | |
35 | 33, 5, 6, 13, 34 | deg1val 25838 | . . 3 β’ (((π΄βπΉ) Β· πΊ) β π΅ β (π·β((π΄βπΉ) Β· πΊ)) = sup(((coe1β((π΄βπΉ) Β· πΊ)) supp (0gβπ )), β*, < )) |
36 | 32, 35 | syl 17 | . 2 β’ ((π β Ring β§ πΉ β πΈ β§ πΊ β π΅) β (π·β((π΄βπΉ) Β· πΊ)) = sup(((coe1β((π΄βπΉ) Β· πΊ)) supp (0gβπ )), β*, < )) |
37 | 33, 5, 6, 13, 18 | deg1val 25838 | . . 3 β’ (πΊ β π΅ β (π·βπΊ) = sup(((coe1βπΊ) supp (0gβπ )), β*, < )) |
38 | 37 | 3ad2ant3 1135 | . 2 β’ ((π β Ring β§ πΉ β πΈ β§ πΊ β π΅) β (π·βπΊ) = sup(((coe1βπΊ) supp (0gβπ )), β*, < )) |
39 | 23, 36, 38 | 3eqtr4d 2782 | 1 β’ ((π β Ring β§ πΉ β πΈ β§ πΊ β π΅) β (π·β((π΄βπΉ) Β· πΊ)) = (π·βπΊ)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ w3a 1087 = wceq 1541 β wcel 2106 Vcvv 3474 {csn 4628 Γ cxp 5674 βΆwf 6539 βcfv 6543 (class class class)co 7411 βf cof 7670 supp csupp 8148 supcsup 9437 β*cxr 11251 < clt 11252 β0cn0 12476 Basecbs 17148 .rcmulr 17202 0gc0g 17389 Ringcrg 20127 RLRegcrlreg 21095 algSccascl 21626 Poly1cpl1 21920 coe1cco1 21921 deg1 cdg1 25793 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7727 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 ax-addf 11191 ax-mulf 11192 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-tp 4633 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-iin 5000 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-se 5632 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-isom 6552 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-of 7672 df-ofr 7673 df-om 7858 df-1st 7977 df-2nd 7978 df-supp 8149 df-frecs 8268 df-wrecs 8299 df-recs 8373 df-rdg 8412 df-1o 8468 df-er 8705 df-map 8824 df-pm 8825 df-ixp 8894 df-en 8942 df-dom 8943 df-sdom 8944 df-fin 8945 df-fsupp 9364 df-sup 9439 df-oi 9507 df-card 9936 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-nn 12217 df-2 12279 df-3 12280 df-4 12281 df-5 12282 df-6 12283 df-7 12284 df-8 12285 df-9 12286 df-n0 12477 df-z 12563 df-dec 12682 df-uz 12827 df-fz 13489 df-fzo 13632 df-seq 13971 df-hash 14295 df-struct 17084 df-sets 17101 df-slot 17119 df-ndx 17131 df-base 17149 df-ress 17178 df-plusg 17214 df-mulr 17215 df-starv 17216 df-sca 17217 df-vsca 17218 df-ip 17219 df-tset 17220 df-ple 17221 df-ds 17223 df-unif 17224 df-hom 17225 df-cco 17226 df-0g 17391 df-gsum 17392 df-prds 17397 df-pws 17399 df-mre 17534 df-mrc 17535 df-acs 17537 df-mgm 18565 df-sgrp 18644 df-mnd 18660 df-mhm 18705 df-submnd 18706 df-grp 18858 df-minusg 18859 df-sbg 18860 df-mulg 18987 df-subg 19039 df-ghm 19128 df-cntz 19222 df-cmn 19691 df-abl 19692 df-mgp 20029 df-rng 20047 df-ur 20076 df-ring 20129 df-cring 20130 df-subrng 20434 df-subrg 20459 df-lmod 20616 df-lss 20687 df-rlreg 21099 df-cnfld 21145 df-ascl 21629 df-psr 21681 df-mvr 21682 df-mpl 21683 df-opsr 21685 df-psr1 21923 df-vr1 21924 df-ply1 21925 df-coe1 21926 df-mdeg 25794 df-deg1 25795 |
This theorem is referenced by: uc1pmon1p 25893 ig1peu 25913 |
Copyright terms: Public domain | W3C validator |