![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > deg1mul3 | Structured version Visualization version GIF version |
Description: Degree of multiplication of a polynomial on the left by a nonzero-dividing scalar. (Contributed by Stefan O'Rear, 29-Mar-2015.) (Proof shortened by AV, 25-Jul-2019.) |
Ref | Expression |
---|---|
deg1mul3.d | ⊢ 𝐷 = ( deg1 ‘𝑅) |
deg1mul3.p | ⊢ 𝑃 = (Poly1‘𝑅) |
deg1mul3.e | ⊢ 𝐸 = (RLReg‘𝑅) |
deg1mul3.b | ⊢ 𝐵 = (Base‘𝑃) |
deg1mul3.t | ⊢ · = (.r‘𝑃) |
deg1mul3.a | ⊢ 𝐴 = (algSc‘𝑃) |
Ref | Expression |
---|---|
deg1mul3 | ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐸 ∧ 𝐺 ∈ 𝐵) → (𝐷‘((𝐴‘𝐹) · 𝐺)) = (𝐷‘𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | deg1mul3.e | . . . . . . . 8 ⊢ 𝐸 = (RLReg‘𝑅) | |
2 | eqid 2795 | . . . . . . . 8 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
3 | 1, 2 | rrgss 19754 | . . . . . . 7 ⊢ 𝐸 ⊆ (Base‘𝑅) |
4 | 3 | sseli 3885 | . . . . . 6 ⊢ (𝐹 ∈ 𝐸 → 𝐹 ∈ (Base‘𝑅)) |
5 | deg1mul3.p | . . . . . . 7 ⊢ 𝑃 = (Poly1‘𝑅) | |
6 | deg1mul3.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝑃) | |
7 | deg1mul3.a | . . . . . . 7 ⊢ 𝐴 = (algSc‘𝑃) | |
8 | deg1mul3.t | . . . . . . 7 ⊢ · = (.r‘𝑃) | |
9 | eqid 2795 | . . . . . . 7 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
10 | 5, 6, 2, 7, 8, 9 | coe1sclmul 20133 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ (Base‘𝑅) ∧ 𝐺 ∈ 𝐵) → (coe1‘((𝐴‘𝐹) · 𝐺)) = ((ℕ0 × {𝐹}) ∘𝑓 (.r‘𝑅)(coe1‘𝐺))) |
11 | 4, 10 | syl3an2 1157 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐸 ∧ 𝐺 ∈ 𝐵) → (coe1‘((𝐴‘𝐹) · 𝐺)) = ((ℕ0 × {𝐹}) ∘𝑓 (.r‘𝑅)(coe1‘𝐺))) |
12 | 11 | oveq1d 7031 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐸 ∧ 𝐺 ∈ 𝐵) → ((coe1‘((𝐴‘𝐹) · 𝐺)) supp (0g‘𝑅)) = (((ℕ0 × {𝐹}) ∘𝑓 (.r‘𝑅)(coe1‘𝐺)) supp (0g‘𝑅))) |
13 | eqid 2795 | . . . . 5 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
14 | nn0ex 11751 | . . . . . 6 ⊢ ℕ0 ∈ V | |
15 | 14 | a1i 11 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐸 ∧ 𝐺 ∈ 𝐵) → ℕ0 ∈ V) |
16 | simp1 1129 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐸 ∧ 𝐺 ∈ 𝐵) → 𝑅 ∈ Ring) | |
17 | simp2 1130 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐸 ∧ 𝐺 ∈ 𝐵) → 𝐹 ∈ 𝐸) | |
18 | eqid 2795 | . . . . . . 7 ⊢ (coe1‘𝐺) = (coe1‘𝐺) | |
19 | 18, 6, 5, 2 | coe1f 20062 | . . . . . 6 ⊢ (𝐺 ∈ 𝐵 → (coe1‘𝐺):ℕ0⟶(Base‘𝑅)) |
20 | 19 | 3ad2ant3 1128 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐸 ∧ 𝐺 ∈ 𝐵) → (coe1‘𝐺):ℕ0⟶(Base‘𝑅)) |
21 | 1, 2, 9, 13, 15, 16, 17, 20 | rrgsupp 19753 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐸 ∧ 𝐺 ∈ 𝐵) → (((ℕ0 × {𝐹}) ∘𝑓 (.r‘𝑅)(coe1‘𝐺)) supp (0g‘𝑅)) = ((coe1‘𝐺) supp (0g‘𝑅))) |
22 | 12, 21 | eqtrd 2831 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐸 ∧ 𝐺 ∈ 𝐵) → ((coe1‘((𝐴‘𝐹) · 𝐺)) supp (0g‘𝑅)) = ((coe1‘𝐺) supp (0g‘𝑅))) |
23 | 22 | supeq1d 8756 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐸 ∧ 𝐺 ∈ 𝐵) → sup(((coe1‘((𝐴‘𝐹) · 𝐺)) supp (0g‘𝑅)), ℝ*, < ) = sup(((coe1‘𝐺) supp (0g‘𝑅)), ℝ*, < )) |
24 | 5 | ply1ring 20099 | . . . . 5 ⊢ (𝑅 ∈ Ring → 𝑃 ∈ Ring) |
25 | 24 | 3ad2ant1 1126 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐸 ∧ 𝐺 ∈ 𝐵) → 𝑃 ∈ Ring) |
26 | 5, 7, 2, 6 | ply1sclf 20136 | . . . . . 6 ⊢ (𝑅 ∈ Ring → 𝐴:(Base‘𝑅)⟶𝐵) |
27 | 26 | 3ad2ant1 1126 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐸 ∧ 𝐺 ∈ 𝐵) → 𝐴:(Base‘𝑅)⟶𝐵) |
28 | 4 | 3ad2ant2 1127 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐸 ∧ 𝐺 ∈ 𝐵) → 𝐹 ∈ (Base‘𝑅)) |
29 | 27, 28 | ffvelrnd 6717 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐸 ∧ 𝐺 ∈ 𝐵) → (𝐴‘𝐹) ∈ 𝐵) |
30 | simp3 1131 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐸 ∧ 𝐺 ∈ 𝐵) → 𝐺 ∈ 𝐵) | |
31 | 6, 8 | ringcl 19001 | . . . 4 ⊢ ((𝑃 ∈ Ring ∧ (𝐴‘𝐹) ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → ((𝐴‘𝐹) · 𝐺) ∈ 𝐵) |
32 | 25, 29, 30, 31 | syl3anc 1364 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐸 ∧ 𝐺 ∈ 𝐵) → ((𝐴‘𝐹) · 𝐺) ∈ 𝐵) |
33 | deg1mul3.d | . . . 4 ⊢ 𝐷 = ( deg1 ‘𝑅) | |
34 | eqid 2795 | . . . 4 ⊢ (coe1‘((𝐴‘𝐹) · 𝐺)) = (coe1‘((𝐴‘𝐹) · 𝐺)) | |
35 | 33, 5, 6, 13, 34 | deg1val 24373 | . . 3 ⊢ (((𝐴‘𝐹) · 𝐺) ∈ 𝐵 → (𝐷‘((𝐴‘𝐹) · 𝐺)) = sup(((coe1‘((𝐴‘𝐹) · 𝐺)) supp (0g‘𝑅)), ℝ*, < )) |
36 | 32, 35 | syl 17 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐸 ∧ 𝐺 ∈ 𝐵) → (𝐷‘((𝐴‘𝐹) · 𝐺)) = sup(((coe1‘((𝐴‘𝐹) · 𝐺)) supp (0g‘𝑅)), ℝ*, < )) |
37 | 33, 5, 6, 13, 18 | deg1val 24373 | . . 3 ⊢ (𝐺 ∈ 𝐵 → (𝐷‘𝐺) = sup(((coe1‘𝐺) supp (0g‘𝑅)), ℝ*, < )) |
38 | 37 | 3ad2ant3 1128 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐸 ∧ 𝐺 ∈ 𝐵) → (𝐷‘𝐺) = sup(((coe1‘𝐺) supp (0g‘𝑅)), ℝ*, < )) |
39 | 23, 36, 38 | 3eqtr4d 2841 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐸 ∧ 𝐺 ∈ 𝐵) → (𝐷‘((𝐴‘𝐹) · 𝐺)) = (𝐷‘𝐺)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1080 = wceq 1522 ∈ wcel 2081 Vcvv 3437 {csn 4472 × cxp 5441 ⟶wf 6221 ‘cfv 6225 (class class class)co 7016 ∘𝑓 cof 7265 supp csupp 7681 supcsup 8750 ℝ*cxr 10520 < clt 10521 ℕ0cn0 11745 Basecbs 16312 .rcmulr 16395 0gc0g 16542 Ringcrg 18987 RLRegcrlreg 19741 algSccascl 19773 Poly1cpl1 20028 coe1cco1 20029 deg1 cdg1 24331 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1777 ax-4 1791 ax-5 1888 ax-6 1947 ax-7 1992 ax-8 2083 ax-9 2091 ax-10 2112 ax-11 2126 ax-12 2141 ax-13 2344 ax-ext 2769 ax-rep 5081 ax-sep 5094 ax-nul 5101 ax-pow 5157 ax-pr 5221 ax-un 7319 ax-cnex 10439 ax-resscn 10440 ax-1cn 10441 ax-icn 10442 ax-addcl 10443 ax-addrcl 10444 ax-mulcl 10445 ax-mulrcl 10446 ax-mulcom 10447 ax-addass 10448 ax-mulass 10449 ax-distr 10450 ax-i2m1 10451 ax-1ne0 10452 ax-1rid 10453 ax-rnegex 10454 ax-rrecex 10455 ax-cnre 10456 ax-pre-lttri 10457 ax-pre-lttrn 10458 ax-pre-ltadd 10459 ax-pre-mulgt0 10460 ax-addf 10462 ax-mulf 10463 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3or 1081 df-3an 1082 df-tru 1525 df-ex 1762 df-nf 1766 df-sb 2043 df-mo 2576 df-eu 2612 df-clab 2776 df-cleq 2788 df-clel 2863 df-nfc 2935 df-ne 2985 df-nel 3091 df-ral 3110 df-rex 3111 df-reu 3112 df-rmo 3113 df-rab 3114 df-v 3439 df-sbc 3707 df-csb 3812 df-dif 3862 df-un 3864 df-in 3866 df-ss 3874 df-pss 3876 df-nul 4212 df-if 4382 df-pw 4455 df-sn 4473 df-pr 4475 df-tp 4477 df-op 4479 df-uni 4746 df-int 4783 df-iun 4827 df-iin 4828 df-br 4963 df-opab 5025 df-mpt 5042 df-tr 5064 df-id 5348 df-eprel 5353 df-po 5362 df-so 5363 df-fr 5402 df-se 5403 df-we 5404 df-xp 5449 df-rel 5450 df-cnv 5451 df-co 5452 df-dm 5453 df-rn 5454 df-res 5455 df-ima 5456 df-pred 6023 df-ord 6069 df-on 6070 df-lim 6071 df-suc 6072 df-iota 6189 df-fun 6227 df-fn 6228 df-f 6229 df-f1 6230 df-fo 6231 df-f1o 6232 df-fv 6233 df-isom 6234 df-riota 6977 df-ov 7019 df-oprab 7020 df-mpo 7021 df-of 7267 df-ofr 7268 df-om 7437 df-1st 7545 df-2nd 7546 df-supp 7682 df-wrecs 7798 df-recs 7860 df-rdg 7898 df-1o 7953 df-2o 7954 df-oadd 7957 df-er 8139 df-map 8258 df-pm 8259 df-ixp 8311 df-en 8358 df-dom 8359 df-sdom 8360 df-fin 8361 df-fsupp 8680 df-sup 8752 df-oi 8820 df-card 9214 df-pnf 10523 df-mnf 10524 df-xr 10525 df-ltxr 10526 df-le 10527 df-sub 10719 df-neg 10720 df-nn 11487 df-2 11548 df-3 11549 df-4 11550 df-5 11551 df-6 11552 df-7 11553 df-8 11554 df-9 11555 df-n0 11746 df-z 11830 df-dec 11948 df-uz 12094 df-fz 12743 df-fzo 12884 df-seq 13220 df-hash 13541 df-struct 16314 df-ndx 16315 df-slot 16316 df-base 16318 df-sets 16319 df-ress 16320 df-plusg 16407 df-mulr 16408 df-starv 16409 df-sca 16410 df-vsca 16411 df-tset 16413 df-ple 16414 df-ds 16416 df-unif 16417 df-0g 16544 df-gsum 16545 df-mre 16686 df-mrc 16687 df-acs 16689 df-mgm 17681 df-sgrp 17723 df-mnd 17734 df-mhm 17774 df-submnd 17775 df-grp 17864 df-minusg 17865 df-sbg 17866 df-mulg 17982 df-subg 18030 df-ghm 18097 df-cntz 18188 df-cmn 18635 df-abl 18636 df-mgp 18930 df-ur 18942 df-ring 18989 df-cring 18990 df-subrg 19223 df-lmod 19326 df-lss 19394 df-rlreg 19745 df-ascl 19776 df-psr 19824 df-mvr 19825 df-mpl 19826 df-opsr 19828 df-psr1 20031 df-vr1 20032 df-ply1 20033 df-coe1 20034 df-cnfld 20228 df-mdeg 24332 df-deg1 24333 |
This theorem is referenced by: uc1pmon1p 24428 ig1peu 24448 |
Copyright terms: Public domain | W3C validator |