Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > deg1mul3 | Structured version Visualization version GIF version |
Description: Degree of multiplication of a polynomial on the left by a nonzero-dividing scalar. (Contributed by Stefan O'Rear, 29-Mar-2015.) (Proof shortened by AV, 25-Jul-2019.) |
Ref | Expression |
---|---|
deg1mul3.d | ⊢ 𝐷 = ( deg1 ‘𝑅) |
deg1mul3.p | ⊢ 𝑃 = (Poly1‘𝑅) |
deg1mul3.e | ⊢ 𝐸 = (RLReg‘𝑅) |
deg1mul3.b | ⊢ 𝐵 = (Base‘𝑃) |
deg1mul3.t | ⊢ · = (.r‘𝑃) |
deg1mul3.a | ⊢ 𝐴 = (algSc‘𝑃) |
Ref | Expression |
---|---|
deg1mul3 | ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐸 ∧ 𝐺 ∈ 𝐵) → (𝐷‘((𝐴‘𝐹) · 𝐺)) = (𝐷‘𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | deg1mul3.e | . . . . . . . 8 ⊢ 𝐸 = (RLReg‘𝑅) | |
2 | eqid 2737 | . . . . . . . 8 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
3 | 1, 2 | rrgss 20330 | . . . . . . 7 ⊢ 𝐸 ⊆ (Base‘𝑅) |
4 | 3 | sseli 3896 | . . . . . 6 ⊢ (𝐹 ∈ 𝐸 → 𝐹 ∈ (Base‘𝑅)) |
5 | deg1mul3.p | . . . . . . 7 ⊢ 𝑃 = (Poly1‘𝑅) | |
6 | deg1mul3.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝑃) | |
7 | deg1mul3.a | . . . . . . 7 ⊢ 𝐴 = (algSc‘𝑃) | |
8 | deg1mul3.t | . . . . . . 7 ⊢ · = (.r‘𝑃) | |
9 | eqid 2737 | . . . . . . 7 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
10 | 5, 6, 2, 7, 8, 9 | coe1sclmul 21203 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ (Base‘𝑅) ∧ 𝐺 ∈ 𝐵) → (coe1‘((𝐴‘𝐹) · 𝐺)) = ((ℕ0 × {𝐹}) ∘f (.r‘𝑅)(coe1‘𝐺))) |
11 | 4, 10 | syl3an2 1166 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐸 ∧ 𝐺 ∈ 𝐵) → (coe1‘((𝐴‘𝐹) · 𝐺)) = ((ℕ0 × {𝐹}) ∘f (.r‘𝑅)(coe1‘𝐺))) |
12 | 11 | oveq1d 7228 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐸 ∧ 𝐺 ∈ 𝐵) → ((coe1‘((𝐴‘𝐹) · 𝐺)) supp (0g‘𝑅)) = (((ℕ0 × {𝐹}) ∘f (.r‘𝑅)(coe1‘𝐺)) supp (0g‘𝑅))) |
13 | eqid 2737 | . . . . 5 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
14 | nn0ex 12096 | . . . . . 6 ⊢ ℕ0 ∈ V | |
15 | 14 | a1i 11 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐸 ∧ 𝐺 ∈ 𝐵) → ℕ0 ∈ V) |
16 | simp1 1138 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐸 ∧ 𝐺 ∈ 𝐵) → 𝑅 ∈ Ring) | |
17 | simp2 1139 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐸 ∧ 𝐺 ∈ 𝐵) → 𝐹 ∈ 𝐸) | |
18 | eqid 2737 | . . . . . . 7 ⊢ (coe1‘𝐺) = (coe1‘𝐺) | |
19 | 18, 6, 5, 2 | coe1f 21132 | . . . . . 6 ⊢ (𝐺 ∈ 𝐵 → (coe1‘𝐺):ℕ0⟶(Base‘𝑅)) |
20 | 19 | 3ad2ant3 1137 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐸 ∧ 𝐺 ∈ 𝐵) → (coe1‘𝐺):ℕ0⟶(Base‘𝑅)) |
21 | 1, 2, 9, 13, 15, 16, 17, 20 | rrgsupp 20329 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐸 ∧ 𝐺 ∈ 𝐵) → (((ℕ0 × {𝐹}) ∘f (.r‘𝑅)(coe1‘𝐺)) supp (0g‘𝑅)) = ((coe1‘𝐺) supp (0g‘𝑅))) |
22 | 12, 21 | eqtrd 2777 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐸 ∧ 𝐺 ∈ 𝐵) → ((coe1‘((𝐴‘𝐹) · 𝐺)) supp (0g‘𝑅)) = ((coe1‘𝐺) supp (0g‘𝑅))) |
23 | 22 | supeq1d 9062 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐸 ∧ 𝐺 ∈ 𝐵) → sup(((coe1‘((𝐴‘𝐹) · 𝐺)) supp (0g‘𝑅)), ℝ*, < ) = sup(((coe1‘𝐺) supp (0g‘𝑅)), ℝ*, < )) |
24 | 5 | ply1ring 21169 | . . . . 5 ⊢ (𝑅 ∈ Ring → 𝑃 ∈ Ring) |
25 | 24 | 3ad2ant1 1135 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐸 ∧ 𝐺 ∈ 𝐵) → 𝑃 ∈ Ring) |
26 | 5, 7, 2, 6 | ply1sclf 21206 | . . . . . 6 ⊢ (𝑅 ∈ Ring → 𝐴:(Base‘𝑅)⟶𝐵) |
27 | 26 | 3ad2ant1 1135 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐸 ∧ 𝐺 ∈ 𝐵) → 𝐴:(Base‘𝑅)⟶𝐵) |
28 | 4 | 3ad2ant2 1136 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐸 ∧ 𝐺 ∈ 𝐵) → 𝐹 ∈ (Base‘𝑅)) |
29 | 27, 28 | ffvelrnd 6905 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐸 ∧ 𝐺 ∈ 𝐵) → (𝐴‘𝐹) ∈ 𝐵) |
30 | simp3 1140 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐸 ∧ 𝐺 ∈ 𝐵) → 𝐺 ∈ 𝐵) | |
31 | 6, 8 | ringcl 19579 | . . . 4 ⊢ ((𝑃 ∈ Ring ∧ (𝐴‘𝐹) ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → ((𝐴‘𝐹) · 𝐺) ∈ 𝐵) |
32 | 25, 29, 30, 31 | syl3anc 1373 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐸 ∧ 𝐺 ∈ 𝐵) → ((𝐴‘𝐹) · 𝐺) ∈ 𝐵) |
33 | deg1mul3.d | . . . 4 ⊢ 𝐷 = ( deg1 ‘𝑅) | |
34 | eqid 2737 | . . . 4 ⊢ (coe1‘((𝐴‘𝐹) · 𝐺)) = (coe1‘((𝐴‘𝐹) · 𝐺)) | |
35 | 33, 5, 6, 13, 34 | deg1val 24994 | . . 3 ⊢ (((𝐴‘𝐹) · 𝐺) ∈ 𝐵 → (𝐷‘((𝐴‘𝐹) · 𝐺)) = sup(((coe1‘((𝐴‘𝐹) · 𝐺)) supp (0g‘𝑅)), ℝ*, < )) |
36 | 32, 35 | syl 17 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐸 ∧ 𝐺 ∈ 𝐵) → (𝐷‘((𝐴‘𝐹) · 𝐺)) = sup(((coe1‘((𝐴‘𝐹) · 𝐺)) supp (0g‘𝑅)), ℝ*, < )) |
37 | 33, 5, 6, 13, 18 | deg1val 24994 | . . 3 ⊢ (𝐺 ∈ 𝐵 → (𝐷‘𝐺) = sup(((coe1‘𝐺) supp (0g‘𝑅)), ℝ*, < )) |
38 | 37 | 3ad2ant3 1137 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐸 ∧ 𝐺 ∈ 𝐵) → (𝐷‘𝐺) = sup(((coe1‘𝐺) supp (0g‘𝑅)), ℝ*, < )) |
39 | 23, 36, 38 | 3eqtr4d 2787 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐸 ∧ 𝐺 ∈ 𝐵) → (𝐷‘((𝐴‘𝐹) · 𝐺)) = (𝐷‘𝐺)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1089 = wceq 1543 ∈ wcel 2110 Vcvv 3408 {csn 4541 × cxp 5549 ⟶wf 6376 ‘cfv 6380 (class class class)co 7213 ∘f cof 7467 supp csupp 7903 supcsup 9056 ℝ*cxr 10866 < clt 10867 ℕ0cn0 12090 Basecbs 16760 .rcmulr 16803 0gc0g 16944 Ringcrg 19562 RLRegcrlreg 20317 algSccascl 20814 Poly1cpl1 21098 coe1cco1 21099 deg1 cdg1 24949 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-rep 5179 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 ax-cnex 10785 ax-resscn 10786 ax-1cn 10787 ax-icn 10788 ax-addcl 10789 ax-addrcl 10790 ax-mulcl 10791 ax-mulrcl 10792 ax-mulcom 10793 ax-addass 10794 ax-mulass 10795 ax-distr 10796 ax-i2m1 10797 ax-1ne0 10798 ax-1rid 10799 ax-rnegex 10800 ax-rrecex 10801 ax-cnre 10802 ax-pre-lttri 10803 ax-pre-lttrn 10804 ax-pre-ltadd 10805 ax-pre-mulgt0 10806 ax-addf 10808 ax-mulf 10809 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-pss 3885 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-tp 4546 df-op 4548 df-uni 4820 df-int 4860 df-iun 4906 df-iin 4907 df-br 5054 df-opab 5116 df-mpt 5136 df-tr 5162 df-id 5455 df-eprel 5460 df-po 5468 df-so 5469 df-fr 5509 df-se 5510 df-we 5511 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-pred 6160 df-ord 6216 df-on 6217 df-lim 6218 df-suc 6219 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-isom 6389 df-riota 7170 df-ov 7216 df-oprab 7217 df-mpo 7218 df-of 7469 df-ofr 7470 df-om 7645 df-1st 7761 df-2nd 7762 df-supp 7904 df-wrecs 8047 df-recs 8108 df-rdg 8146 df-1o 8202 df-er 8391 df-map 8510 df-pm 8511 df-ixp 8579 df-en 8627 df-dom 8628 df-sdom 8629 df-fin 8630 df-fsupp 8986 df-sup 9058 df-oi 9126 df-card 9555 df-pnf 10869 df-mnf 10870 df-xr 10871 df-ltxr 10872 df-le 10873 df-sub 11064 df-neg 11065 df-nn 11831 df-2 11893 df-3 11894 df-4 11895 df-5 11896 df-6 11897 df-7 11898 df-8 11899 df-9 11900 df-n0 12091 df-z 12177 df-dec 12294 df-uz 12439 df-fz 13096 df-fzo 13239 df-seq 13575 df-hash 13897 df-struct 16700 df-sets 16717 df-slot 16735 df-ndx 16745 df-base 16761 df-ress 16785 df-plusg 16815 df-mulr 16816 df-starv 16817 df-sca 16818 df-vsca 16819 df-tset 16821 df-ple 16822 df-ds 16824 df-unif 16825 df-0g 16946 df-gsum 16947 df-mre 17089 df-mrc 17090 df-acs 17092 df-mgm 18114 df-sgrp 18163 df-mnd 18174 df-mhm 18218 df-submnd 18219 df-grp 18368 df-minusg 18369 df-sbg 18370 df-mulg 18489 df-subg 18540 df-ghm 18620 df-cntz 18711 df-cmn 19172 df-abl 19173 df-mgp 19505 df-ur 19517 df-ring 19564 df-cring 19565 df-subrg 19798 df-lmod 19901 df-lss 19969 df-rlreg 20321 df-cnfld 20364 df-ascl 20817 df-psr 20868 df-mvr 20869 df-mpl 20870 df-opsr 20872 df-psr1 21101 df-vr1 21102 df-ply1 21103 df-coe1 21104 df-mdeg 24950 df-deg1 24951 |
This theorem is referenced by: uc1pmon1p 25049 ig1peu 25069 |
Copyright terms: Public domain | W3C validator |