Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mdegvsca | Structured version Visualization version GIF version |
Description: The degree of a scalar multiple of a polynomial is exactly the degree of the original polynomial when the multiple is a nonzero-divisor. (Contributed by Stefan O'Rear, 28-Mar-2015.) (Proof shortened by AV, 27-Jul-2019.) |
Ref | Expression |
---|---|
mdegaddle.y | ⊢ 𝑌 = (𝐼 mPoly 𝑅) |
mdegaddle.d | ⊢ 𝐷 = (𝐼 mDeg 𝑅) |
mdegaddle.i | ⊢ (𝜑 → 𝐼 ∈ 𝑉) |
mdegaddle.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
mdegvsca.b | ⊢ 𝐵 = (Base‘𝑌) |
mdegvsca.e | ⊢ 𝐸 = (RLReg‘𝑅) |
mdegvsca.p | ⊢ · = ( ·𝑠 ‘𝑌) |
mdegvsca.f | ⊢ (𝜑 → 𝐹 ∈ 𝐸) |
mdegvsca.g | ⊢ (𝜑 → 𝐺 ∈ 𝐵) |
Ref | Expression |
---|---|
mdegvsca | ⊢ (𝜑 → (𝐷‘(𝐹 · 𝐺)) = (𝐷‘𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mdegaddle.y | . . . . . . 7 ⊢ 𝑌 = (𝐼 mPoly 𝑅) | |
2 | mdegvsca.p | . . . . . . 7 ⊢ · = ( ·𝑠 ‘𝑌) | |
3 | eqid 2758 | . . . . . . 7 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
4 | mdegvsca.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝑌) | |
5 | eqid 2758 | . . . . . . 7 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
6 | eqid 2758 | . . . . . . 7 ⊢ {𝑥 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑥 “ ℕ) ∈ Fin} = {𝑥 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑥 “ ℕ) ∈ Fin} | |
7 | mdegvsca.e | . . . . . . . . 9 ⊢ 𝐸 = (RLReg‘𝑅) | |
8 | 7, 3 | rrgss 20133 | . . . . . . . 8 ⊢ 𝐸 ⊆ (Base‘𝑅) |
9 | mdegvsca.f | . . . . . . . 8 ⊢ (𝜑 → 𝐹 ∈ 𝐸) | |
10 | 8, 9 | sseldi 3890 | . . . . . . 7 ⊢ (𝜑 → 𝐹 ∈ (Base‘𝑅)) |
11 | mdegvsca.g | . . . . . . 7 ⊢ (𝜑 → 𝐺 ∈ 𝐵) | |
12 | 1, 2, 3, 4, 5, 6, 10, 11 | mplvsca 20778 | . . . . . 6 ⊢ (𝜑 → (𝐹 · 𝐺) = (({𝑥 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑥 “ ℕ) ∈ Fin} × {𝐹}) ∘f (.r‘𝑅)𝐺)) |
13 | 12 | oveq1d 7165 | . . . . 5 ⊢ (𝜑 → ((𝐹 · 𝐺) supp (0g‘𝑅)) = ((({𝑥 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑥 “ ℕ) ∈ Fin} × {𝐹}) ∘f (.r‘𝑅)𝐺) supp (0g‘𝑅))) |
14 | eqid 2758 | . . . . . 6 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
15 | ovex 7183 | . . . . . . . 8 ⊢ (ℕ0 ↑m 𝐼) ∈ V | |
16 | 15 | rabex 5202 | . . . . . . 7 ⊢ {𝑥 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑥 “ ℕ) ∈ Fin} ∈ V |
17 | 16 | a1i 11 | . . . . . 6 ⊢ (𝜑 → {𝑥 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑥 “ ℕ) ∈ Fin} ∈ V) |
18 | mdegaddle.r | . . . . . 6 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
19 | 1, 3, 4, 6, 11 | mplelf 20763 | . . . . . 6 ⊢ (𝜑 → 𝐺:{𝑥 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑥 “ ℕ) ∈ Fin}⟶(Base‘𝑅)) |
20 | 7, 3, 5, 14, 17, 18, 9, 19 | rrgsupp 20132 | . . . . 5 ⊢ (𝜑 → ((({𝑥 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑥 “ ℕ) ∈ Fin} × {𝐹}) ∘f (.r‘𝑅)𝐺) supp (0g‘𝑅)) = (𝐺 supp (0g‘𝑅))) |
21 | 13, 20 | eqtrd 2793 | . . . 4 ⊢ (𝜑 → ((𝐹 · 𝐺) supp (0g‘𝑅)) = (𝐺 supp (0g‘𝑅))) |
22 | 21 | imaeq2d 5901 | . . 3 ⊢ (𝜑 → ((𝑦 ∈ {𝑥 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑥 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑦)) “ ((𝐹 · 𝐺) supp (0g‘𝑅))) = ((𝑦 ∈ {𝑥 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑥 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑦)) “ (𝐺 supp (0g‘𝑅)))) |
23 | 22 | supeq1d 8943 | . 2 ⊢ (𝜑 → sup(((𝑦 ∈ {𝑥 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑥 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑦)) “ ((𝐹 · 𝐺) supp (0g‘𝑅))), ℝ*, < ) = sup(((𝑦 ∈ {𝑥 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑥 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑦)) “ (𝐺 supp (0g‘𝑅))), ℝ*, < )) |
24 | mdegaddle.i | . . . . 5 ⊢ (𝜑 → 𝐼 ∈ 𝑉) | |
25 | 1 | mpllmod 20782 | . . . . 5 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring) → 𝑌 ∈ LMod) |
26 | 24, 18, 25 | syl2anc 587 | . . . 4 ⊢ (𝜑 → 𝑌 ∈ LMod) |
27 | 1, 24, 18 | mplsca 20776 | . . . . . 6 ⊢ (𝜑 → 𝑅 = (Scalar‘𝑌)) |
28 | 27 | fveq2d 6662 | . . . . 5 ⊢ (𝜑 → (Base‘𝑅) = (Base‘(Scalar‘𝑌))) |
29 | 10, 28 | eleqtrd 2854 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (Base‘(Scalar‘𝑌))) |
30 | eqid 2758 | . . . . 5 ⊢ (Scalar‘𝑌) = (Scalar‘𝑌) | |
31 | eqid 2758 | . . . . 5 ⊢ (Base‘(Scalar‘𝑌)) = (Base‘(Scalar‘𝑌)) | |
32 | 4, 30, 2, 31 | lmodvscl 19719 | . . . 4 ⊢ ((𝑌 ∈ LMod ∧ 𝐹 ∈ (Base‘(Scalar‘𝑌)) ∧ 𝐺 ∈ 𝐵) → (𝐹 · 𝐺) ∈ 𝐵) |
33 | 26, 29, 11, 32 | syl3anc 1368 | . . 3 ⊢ (𝜑 → (𝐹 · 𝐺) ∈ 𝐵) |
34 | mdegaddle.d | . . . 4 ⊢ 𝐷 = (𝐼 mDeg 𝑅) | |
35 | eqid 2758 | . . . 4 ⊢ (𝑦 ∈ {𝑥 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑥 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑦)) = (𝑦 ∈ {𝑥 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑥 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑦)) | |
36 | 34, 1, 4, 14, 6, 35 | mdegval 24763 | . . 3 ⊢ ((𝐹 · 𝐺) ∈ 𝐵 → (𝐷‘(𝐹 · 𝐺)) = sup(((𝑦 ∈ {𝑥 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑥 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑦)) “ ((𝐹 · 𝐺) supp (0g‘𝑅))), ℝ*, < )) |
37 | 33, 36 | syl 17 | . 2 ⊢ (𝜑 → (𝐷‘(𝐹 · 𝐺)) = sup(((𝑦 ∈ {𝑥 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑥 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑦)) “ ((𝐹 · 𝐺) supp (0g‘𝑅))), ℝ*, < )) |
38 | 34, 1, 4, 14, 6, 35 | mdegval 24763 | . . 3 ⊢ (𝐺 ∈ 𝐵 → (𝐷‘𝐺) = sup(((𝑦 ∈ {𝑥 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑥 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑦)) “ (𝐺 supp (0g‘𝑅))), ℝ*, < )) |
39 | 11, 38 | syl 17 | . 2 ⊢ (𝜑 → (𝐷‘𝐺) = sup(((𝑦 ∈ {𝑥 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑥 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑦)) “ (𝐺 supp (0g‘𝑅))), ℝ*, < )) |
40 | 23, 37, 39 | 3eqtr4d 2803 | 1 ⊢ (𝜑 → (𝐷‘(𝐹 · 𝐺)) = (𝐷‘𝐺)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1538 ∈ wcel 2111 {crab 3074 Vcvv 3409 {csn 4522 ↦ cmpt 5112 × cxp 5522 ◡ccnv 5523 “ cima 5527 ‘cfv 6335 (class class class)co 7150 ∘f cof 7403 supp csupp 7835 ↑m cmap 8416 Fincfn 8527 supcsup 8937 ℝ*cxr 10712 < clt 10713 ℕcn 11674 ℕ0cn0 11934 Basecbs 16541 .rcmulr 16624 Scalarcsca 16626 ·𝑠 cvsca 16627 0gc0g 16771 Σg cgsu 16772 Ringcrg 19365 LModclmod 19702 RLRegcrlreg 20120 ℂfldccnfld 20166 mPoly cmpl 20668 mDeg cmdg 24750 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5156 ax-sep 5169 ax-nul 5176 ax-pow 5234 ax-pr 5298 ax-un 7459 ax-cnex 10631 ax-resscn 10632 ax-1cn 10633 ax-icn 10634 ax-addcl 10635 ax-addrcl 10636 ax-mulcl 10637 ax-mulrcl 10638 ax-mulcom 10639 ax-addass 10640 ax-mulass 10641 ax-distr 10642 ax-i2m1 10643 ax-1ne0 10644 ax-1rid 10645 ax-rnegex 10646 ax-rrecex 10647 ax-cnre 10648 ax-pre-lttri 10649 ax-pre-lttrn 10650 ax-pre-ltadd 10651 ax-pre-mulgt0 10652 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rmo 3078 df-rab 3079 df-v 3411 df-sbc 3697 df-csb 3806 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-pss 3877 df-nul 4226 df-if 4421 df-pw 4496 df-sn 4523 df-pr 4525 df-tp 4527 df-op 4529 df-uni 4799 df-iun 4885 df-br 5033 df-opab 5095 df-mpt 5113 df-tr 5139 df-id 5430 df-eprel 5435 df-po 5443 df-so 5444 df-fr 5483 df-we 5485 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-res 5536 df-ima 5537 df-pred 6126 df-ord 6172 df-on 6173 df-lim 6174 df-suc 6175 df-iota 6294 df-fun 6337 df-fn 6338 df-f 6339 df-f1 6340 df-fo 6341 df-f1o 6342 df-fv 6343 df-riota 7108 df-ov 7153 df-oprab 7154 df-mpo 7155 df-of 7405 df-om 7580 df-1st 7693 df-2nd 7694 df-supp 7836 df-wrecs 7957 df-recs 8018 df-rdg 8056 df-1o 8112 df-er 8299 df-map 8418 df-en 8528 df-dom 8529 df-sdom 8530 df-fin 8531 df-fsupp 8867 df-sup 8939 df-pnf 10715 df-mnf 10716 df-xr 10717 df-ltxr 10718 df-le 10719 df-sub 10910 df-neg 10911 df-nn 11675 df-2 11737 df-3 11738 df-4 11739 df-5 11740 df-6 11741 df-7 11742 df-8 11743 df-9 11744 df-n0 11935 df-z 12021 df-uz 12283 df-fz 12940 df-struct 16543 df-ndx 16544 df-slot 16545 df-base 16547 df-sets 16548 df-ress 16549 df-plusg 16636 df-mulr 16637 df-sca 16639 df-vsca 16640 df-tset 16642 df-0g 16773 df-mgm 17918 df-sgrp 17967 df-mnd 17978 df-grp 18172 df-minusg 18173 df-sbg 18174 df-subg 18343 df-mgp 19308 df-ur 19320 df-ring 19367 df-lmod 19704 df-lss 19772 df-rlreg 20124 df-psr 20671 df-mpl 20673 df-mdeg 24752 |
This theorem is referenced by: deg1vsca 24805 |
Copyright terms: Public domain | W3C validator |