![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mdegvsca | Structured version Visualization version GIF version |
Description: The degree of a scalar multiple of a polynomial is exactly the degree of the original polynomial when the multiple is a nonzero-divisor. (Contributed by Stefan O'Rear, 28-Mar-2015.) (Proof shortened by AV, 27-Jul-2019.) |
Ref | Expression |
---|---|
mdegaddle.y | ⊢ 𝑌 = (𝐼 mPoly 𝑅) |
mdegaddle.d | ⊢ 𝐷 = (𝐼 mDeg 𝑅) |
mdegaddle.i | ⊢ (𝜑 → 𝐼 ∈ 𝑉) |
mdegaddle.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
mdegvsca.b | ⊢ 𝐵 = (Base‘𝑌) |
mdegvsca.e | ⊢ 𝐸 = (RLReg‘𝑅) |
mdegvsca.p | ⊢ · = ( ·𝑠 ‘𝑌) |
mdegvsca.f | ⊢ (𝜑 → 𝐹 ∈ 𝐸) |
mdegvsca.g | ⊢ (𝜑 → 𝐺 ∈ 𝐵) |
Ref | Expression |
---|---|
mdegvsca | ⊢ (𝜑 → (𝐷‘(𝐹 · 𝐺)) = (𝐷‘𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mdegaddle.y | . . . . . . 7 ⊢ 𝑌 = (𝐼 mPoly 𝑅) | |
2 | mdegvsca.p | . . . . . . 7 ⊢ · = ( ·𝑠 ‘𝑌) | |
3 | eqid 2740 | . . . . . . 7 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
4 | mdegvsca.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝑌) | |
5 | eqid 2740 | . . . . . . 7 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
6 | eqid 2740 | . . . . . . 7 ⊢ {𝑥 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑥 “ ℕ) ∈ Fin} = {𝑥 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑥 “ ℕ) ∈ Fin} | |
7 | mdegvsca.e | . . . . . . . . 9 ⊢ 𝐸 = (RLReg‘𝑅) | |
8 | 7, 3 | rrgss 20724 | . . . . . . . 8 ⊢ 𝐸 ⊆ (Base‘𝑅) |
9 | mdegvsca.f | . . . . . . . 8 ⊢ (𝜑 → 𝐹 ∈ 𝐸) | |
10 | 8, 9 | sselid 4006 | . . . . . . 7 ⊢ (𝜑 → 𝐹 ∈ (Base‘𝑅)) |
11 | mdegvsca.g | . . . . . . 7 ⊢ (𝜑 → 𝐺 ∈ 𝐵) | |
12 | 1, 2, 3, 4, 5, 6, 10, 11 | mplvsca 22058 | . . . . . 6 ⊢ (𝜑 → (𝐹 · 𝐺) = (({𝑥 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑥 “ ℕ) ∈ Fin} × {𝐹}) ∘f (.r‘𝑅)𝐺)) |
13 | 12 | oveq1d 7463 | . . . . 5 ⊢ (𝜑 → ((𝐹 · 𝐺) supp (0g‘𝑅)) = ((({𝑥 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑥 “ ℕ) ∈ Fin} × {𝐹}) ∘f (.r‘𝑅)𝐺) supp (0g‘𝑅))) |
14 | eqid 2740 | . . . . . 6 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
15 | ovex 7481 | . . . . . . . 8 ⊢ (ℕ0 ↑m 𝐼) ∈ V | |
16 | 15 | rabex 5357 | . . . . . . 7 ⊢ {𝑥 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑥 “ ℕ) ∈ Fin} ∈ V |
17 | 16 | a1i 11 | . . . . . 6 ⊢ (𝜑 → {𝑥 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑥 “ ℕ) ∈ Fin} ∈ V) |
18 | mdegaddle.r | . . . . . 6 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
19 | 1, 3, 4, 6, 11 | mplelf 22041 | . . . . . 6 ⊢ (𝜑 → 𝐺:{𝑥 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑥 “ ℕ) ∈ Fin}⟶(Base‘𝑅)) |
20 | 7, 3, 5, 14, 17, 18, 9, 19 | rrgsupp 20723 | . . . . 5 ⊢ (𝜑 → ((({𝑥 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑥 “ ℕ) ∈ Fin} × {𝐹}) ∘f (.r‘𝑅)𝐺) supp (0g‘𝑅)) = (𝐺 supp (0g‘𝑅))) |
21 | 13, 20 | eqtrd 2780 | . . . 4 ⊢ (𝜑 → ((𝐹 · 𝐺) supp (0g‘𝑅)) = (𝐺 supp (0g‘𝑅))) |
22 | 21 | imaeq2d 6089 | . . 3 ⊢ (𝜑 → ((𝑦 ∈ {𝑥 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑥 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑦)) “ ((𝐹 · 𝐺) supp (0g‘𝑅))) = ((𝑦 ∈ {𝑥 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑥 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑦)) “ (𝐺 supp (0g‘𝑅)))) |
23 | 22 | supeq1d 9515 | . 2 ⊢ (𝜑 → sup(((𝑦 ∈ {𝑥 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑥 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑦)) “ ((𝐹 · 𝐺) supp (0g‘𝑅))), ℝ*, < ) = sup(((𝑦 ∈ {𝑥 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑥 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑦)) “ (𝐺 supp (0g‘𝑅))), ℝ*, < )) |
24 | mdegaddle.i | . . . . 5 ⊢ (𝜑 → 𝐼 ∈ 𝑉) | |
25 | 1, 24, 18 | mpllmodd 22067 | . . . 4 ⊢ (𝜑 → 𝑌 ∈ LMod) |
26 | 1, 24, 18 | mplsca 22056 | . . . . . 6 ⊢ (𝜑 → 𝑅 = (Scalar‘𝑌)) |
27 | 26 | fveq2d 6924 | . . . . 5 ⊢ (𝜑 → (Base‘𝑅) = (Base‘(Scalar‘𝑌))) |
28 | 10, 27 | eleqtrd 2846 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (Base‘(Scalar‘𝑌))) |
29 | eqid 2740 | . . . . 5 ⊢ (Scalar‘𝑌) = (Scalar‘𝑌) | |
30 | eqid 2740 | . . . . 5 ⊢ (Base‘(Scalar‘𝑌)) = (Base‘(Scalar‘𝑌)) | |
31 | 4, 29, 2, 30 | lmodvscl 20898 | . . . 4 ⊢ ((𝑌 ∈ LMod ∧ 𝐹 ∈ (Base‘(Scalar‘𝑌)) ∧ 𝐺 ∈ 𝐵) → (𝐹 · 𝐺) ∈ 𝐵) |
32 | 25, 28, 11, 31 | syl3anc 1371 | . . 3 ⊢ (𝜑 → (𝐹 · 𝐺) ∈ 𝐵) |
33 | mdegaddle.d | . . . 4 ⊢ 𝐷 = (𝐼 mDeg 𝑅) | |
34 | eqid 2740 | . . . 4 ⊢ (𝑦 ∈ {𝑥 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑥 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑦)) = (𝑦 ∈ {𝑥 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑥 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑦)) | |
35 | 33, 1, 4, 14, 6, 34 | mdegval 26122 | . . 3 ⊢ ((𝐹 · 𝐺) ∈ 𝐵 → (𝐷‘(𝐹 · 𝐺)) = sup(((𝑦 ∈ {𝑥 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑥 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑦)) “ ((𝐹 · 𝐺) supp (0g‘𝑅))), ℝ*, < )) |
36 | 32, 35 | syl 17 | . 2 ⊢ (𝜑 → (𝐷‘(𝐹 · 𝐺)) = sup(((𝑦 ∈ {𝑥 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑥 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑦)) “ ((𝐹 · 𝐺) supp (0g‘𝑅))), ℝ*, < )) |
37 | 33, 1, 4, 14, 6, 34 | mdegval 26122 | . . 3 ⊢ (𝐺 ∈ 𝐵 → (𝐷‘𝐺) = sup(((𝑦 ∈ {𝑥 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑥 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑦)) “ (𝐺 supp (0g‘𝑅))), ℝ*, < )) |
38 | 11, 37 | syl 17 | . 2 ⊢ (𝜑 → (𝐷‘𝐺) = sup(((𝑦 ∈ {𝑥 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑥 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑦)) “ (𝐺 supp (0g‘𝑅))), ℝ*, < )) |
39 | 23, 36, 38 | 3eqtr4d 2790 | 1 ⊢ (𝜑 → (𝐷‘(𝐹 · 𝐺)) = (𝐷‘𝐺)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 {crab 3443 Vcvv 3488 {csn 4648 ↦ cmpt 5249 × cxp 5698 ◡ccnv 5699 “ cima 5703 ‘cfv 6573 (class class class)co 7448 ∘f cof 7712 supp csupp 8201 ↑m cmap 8884 Fincfn 9003 supcsup 9509 ℝ*cxr 11323 < clt 11324 ℕcn 12293 ℕ0cn0 12553 Basecbs 17258 .rcmulr 17312 Scalarcsca 17314 ·𝑠 cvsca 17315 0gc0g 17499 Σg cgsu 17500 Ringcrg 20260 RLRegcrlreg 20713 LModclmod 20880 ℂfldccnfld 21387 mPoly cmpl 21949 mDeg cmdg 26112 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-of 7714 df-om 7904 df-1st 8030 df-2nd 8031 df-supp 8202 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-er 8763 df-map 8886 df-ixp 8956 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-fsupp 9432 df-sup 9511 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-7 12361 df-8 12362 df-9 12363 df-n0 12554 df-z 12640 df-dec 12759 df-uz 12904 df-fz 13568 df-struct 17194 df-sets 17211 df-slot 17229 df-ndx 17241 df-base 17259 df-ress 17288 df-plusg 17324 df-mulr 17325 df-sca 17327 df-vsca 17328 df-ip 17329 df-tset 17330 df-ple 17331 df-ds 17333 df-hom 17335 df-cco 17336 df-0g 17501 df-prds 17507 df-pws 17509 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-grp 18976 df-minusg 18977 df-sbg 18978 df-subg 19163 df-cmn 19824 df-abl 19825 df-mgp 20162 df-rng 20180 df-ur 20209 df-ring 20262 df-rlreg 20716 df-lmod 20882 df-lss 20953 df-psr 21952 df-mpl 21954 df-mdeg 26114 |
This theorem is referenced by: deg1vsca 26164 |
Copyright terms: Public domain | W3C validator |