MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mdegvsca Structured version   Visualization version   GIF version

Theorem mdegvsca 25146
Description: The degree of a scalar multiple of a polynomial is exactly the degree of the original polynomial when the multiple is a nonzero-divisor. (Contributed by Stefan O'Rear, 28-Mar-2015.) (Proof shortened by AV, 27-Jul-2019.)
Hypotheses
Ref Expression
mdegaddle.y 𝑌 = (𝐼 mPoly 𝑅)
mdegaddle.d 𝐷 = (𝐼 mDeg 𝑅)
mdegaddle.i (𝜑𝐼𝑉)
mdegaddle.r (𝜑𝑅 ∈ Ring)
mdegvsca.b 𝐵 = (Base‘𝑌)
mdegvsca.e 𝐸 = (RLReg‘𝑅)
mdegvsca.p · = ( ·𝑠𝑌)
mdegvsca.f (𝜑𝐹𝐸)
mdegvsca.g (𝜑𝐺𝐵)
Assertion
Ref Expression
mdegvsca (𝜑 → (𝐷‘(𝐹 · 𝐺)) = (𝐷𝐺))

Proof of Theorem mdegvsca
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mdegaddle.y . . . . . . 7 𝑌 = (𝐼 mPoly 𝑅)
2 mdegvsca.p . . . . . . 7 · = ( ·𝑠𝑌)
3 eqid 2738 . . . . . . 7 (Base‘𝑅) = (Base‘𝑅)
4 mdegvsca.b . . . . . . 7 𝐵 = (Base‘𝑌)
5 eqid 2738 . . . . . . 7 (.r𝑅) = (.r𝑅)
6 eqid 2738 . . . . . . 7 {𝑥 ∈ (ℕ0m 𝐼) ∣ (𝑥 “ ℕ) ∈ Fin} = {𝑥 ∈ (ℕ0m 𝐼) ∣ (𝑥 “ ℕ) ∈ Fin}
7 mdegvsca.e . . . . . . . . 9 𝐸 = (RLReg‘𝑅)
87, 3rrgss 20476 . . . . . . . 8 𝐸 ⊆ (Base‘𝑅)
9 mdegvsca.f . . . . . . . 8 (𝜑𝐹𝐸)
108, 9sselid 3915 . . . . . . 7 (𝜑𝐹 ∈ (Base‘𝑅))
11 mdegvsca.g . . . . . . 7 (𝜑𝐺𝐵)
121, 2, 3, 4, 5, 6, 10, 11mplvsca 21129 . . . . . 6 (𝜑 → (𝐹 · 𝐺) = (({𝑥 ∈ (ℕ0m 𝐼) ∣ (𝑥 “ ℕ) ∈ Fin} × {𝐹}) ∘f (.r𝑅)𝐺))
1312oveq1d 7270 . . . . 5 (𝜑 → ((𝐹 · 𝐺) supp (0g𝑅)) = ((({𝑥 ∈ (ℕ0m 𝐼) ∣ (𝑥 “ ℕ) ∈ Fin} × {𝐹}) ∘f (.r𝑅)𝐺) supp (0g𝑅)))
14 eqid 2738 . . . . . 6 (0g𝑅) = (0g𝑅)
15 ovex 7288 . . . . . . . 8 (ℕ0m 𝐼) ∈ V
1615rabex 5251 . . . . . . 7 {𝑥 ∈ (ℕ0m 𝐼) ∣ (𝑥 “ ℕ) ∈ Fin} ∈ V
1716a1i 11 . . . . . 6 (𝜑 → {𝑥 ∈ (ℕ0m 𝐼) ∣ (𝑥 “ ℕ) ∈ Fin} ∈ V)
18 mdegaddle.r . . . . . 6 (𝜑𝑅 ∈ Ring)
191, 3, 4, 6, 11mplelf 21114 . . . . . 6 (𝜑𝐺:{𝑥 ∈ (ℕ0m 𝐼) ∣ (𝑥 “ ℕ) ∈ Fin}⟶(Base‘𝑅))
207, 3, 5, 14, 17, 18, 9, 19rrgsupp 20475 . . . . 5 (𝜑 → ((({𝑥 ∈ (ℕ0m 𝐼) ∣ (𝑥 “ ℕ) ∈ Fin} × {𝐹}) ∘f (.r𝑅)𝐺) supp (0g𝑅)) = (𝐺 supp (0g𝑅)))
2113, 20eqtrd 2778 . . . 4 (𝜑 → ((𝐹 · 𝐺) supp (0g𝑅)) = (𝐺 supp (0g𝑅)))
2221imaeq2d 5958 . . 3 (𝜑 → ((𝑦 ∈ {𝑥 ∈ (ℕ0m 𝐼) ∣ (𝑥 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑦)) “ ((𝐹 · 𝐺) supp (0g𝑅))) = ((𝑦 ∈ {𝑥 ∈ (ℕ0m 𝐼) ∣ (𝑥 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑦)) “ (𝐺 supp (0g𝑅))))
2322supeq1d 9135 . 2 (𝜑 → sup(((𝑦 ∈ {𝑥 ∈ (ℕ0m 𝐼) ∣ (𝑥 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑦)) “ ((𝐹 · 𝐺) supp (0g𝑅))), ℝ*, < ) = sup(((𝑦 ∈ {𝑥 ∈ (ℕ0m 𝐼) ∣ (𝑥 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑦)) “ (𝐺 supp (0g𝑅))), ℝ*, < ))
24 mdegaddle.i . . . . 5 (𝜑𝐼𝑉)
251mpllmod 21133 . . . . 5 ((𝐼𝑉𝑅 ∈ Ring) → 𝑌 ∈ LMod)
2624, 18, 25syl2anc 583 . . . 4 (𝜑𝑌 ∈ LMod)
271, 24, 18mplsca 21127 . . . . . 6 (𝜑𝑅 = (Scalar‘𝑌))
2827fveq2d 6760 . . . . 5 (𝜑 → (Base‘𝑅) = (Base‘(Scalar‘𝑌)))
2910, 28eleqtrd 2841 . . . 4 (𝜑𝐹 ∈ (Base‘(Scalar‘𝑌)))
30 eqid 2738 . . . . 5 (Scalar‘𝑌) = (Scalar‘𝑌)
31 eqid 2738 . . . . 5 (Base‘(Scalar‘𝑌)) = (Base‘(Scalar‘𝑌))
324, 30, 2, 31lmodvscl 20055 . . . 4 ((𝑌 ∈ LMod ∧ 𝐹 ∈ (Base‘(Scalar‘𝑌)) ∧ 𝐺𝐵) → (𝐹 · 𝐺) ∈ 𝐵)
3326, 29, 11, 32syl3anc 1369 . . 3 (𝜑 → (𝐹 · 𝐺) ∈ 𝐵)
34 mdegaddle.d . . . 4 𝐷 = (𝐼 mDeg 𝑅)
35 eqid 2738 . . . 4 (𝑦 ∈ {𝑥 ∈ (ℕ0m 𝐼) ∣ (𝑥 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑦)) = (𝑦 ∈ {𝑥 ∈ (ℕ0m 𝐼) ∣ (𝑥 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑦))
3634, 1, 4, 14, 6, 35mdegval 25133 . . 3 ((𝐹 · 𝐺) ∈ 𝐵 → (𝐷‘(𝐹 · 𝐺)) = sup(((𝑦 ∈ {𝑥 ∈ (ℕ0m 𝐼) ∣ (𝑥 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑦)) “ ((𝐹 · 𝐺) supp (0g𝑅))), ℝ*, < ))
3733, 36syl 17 . 2 (𝜑 → (𝐷‘(𝐹 · 𝐺)) = sup(((𝑦 ∈ {𝑥 ∈ (ℕ0m 𝐼) ∣ (𝑥 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑦)) “ ((𝐹 · 𝐺) supp (0g𝑅))), ℝ*, < ))
3834, 1, 4, 14, 6, 35mdegval 25133 . . 3 (𝐺𝐵 → (𝐷𝐺) = sup(((𝑦 ∈ {𝑥 ∈ (ℕ0m 𝐼) ∣ (𝑥 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑦)) “ (𝐺 supp (0g𝑅))), ℝ*, < ))
3911, 38syl 17 . 2 (𝜑 → (𝐷𝐺) = sup(((𝑦 ∈ {𝑥 ∈ (ℕ0m 𝐼) ∣ (𝑥 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑦)) “ (𝐺 supp (0g𝑅))), ℝ*, < ))
4023, 37, 393eqtr4d 2788 1 (𝜑 → (𝐷‘(𝐹 · 𝐺)) = (𝐷𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2108  {crab 3067  Vcvv 3422  {csn 4558  cmpt 5153   × cxp 5578  ccnv 5579  cima 5583  cfv 6418  (class class class)co 7255  f cof 7509   supp csupp 7948  m cmap 8573  Fincfn 8691  supcsup 9129  *cxr 10939   < clt 10940  cn 11903  0cn0 12163  Basecbs 16840  .rcmulr 16889  Scalarcsca 16891   ·𝑠 cvsca 16892  0gc0g 17067   Σg cgsu 17068  Ringcrg 19698  LModclmod 20038  RLRegcrlreg 20463  fldccnfld 20510   mPoly cmpl 21019   mDeg cmdg 25120
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-sup 9131  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-uz 12512  df-fz 13169  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-sca 16904  df-vsca 16905  df-tset 16907  df-0g 17069  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-grp 18495  df-minusg 18496  df-sbg 18497  df-subg 18667  df-mgp 19636  df-ur 19653  df-ring 19700  df-lmod 20040  df-lss 20109  df-rlreg 20467  df-psr 21022  df-mpl 21024  df-mdeg 25122
This theorem is referenced by:  deg1vsca  25175
  Copyright terms: Public domain W3C validator