| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > salpreimagtlt | Structured version Visualization version GIF version | ||
| Description: If all the preimages of lef-open, unbounded above intervals, belong to a sigma-algebra, then all the preimages of right-open, unbounded below intervals, belong to the sigma-algebra. (iii) implies (i) in Proposition 121B of [Fremlin1] p. 36. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| Ref | Expression |
|---|---|
| salpreimagtlt.x | ⊢ Ⅎ𝑥𝜑 |
| salpreimagtlt.a | ⊢ Ⅎ𝑎𝜑 |
| salpreimagtlt.s | ⊢ (𝜑 → 𝑆 ∈ SAlg) |
| salpreimagtlt.u | ⊢ 𝐴 = ∪ 𝑆 |
| salpreimagtlt.b | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ*) |
| salpreimagtlt.p | ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → {𝑥 ∈ 𝐴 ∣ 𝑎 < 𝐵} ∈ 𝑆) |
| salpreimagtlt.c | ⊢ (𝜑 → 𝐶 ∈ ℝ) |
| Ref | Expression |
|---|---|
| salpreimagtlt | ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝐵 < 𝐶} ∈ 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | salpreimagtlt.x | . 2 ⊢ Ⅎ𝑥𝜑 | |
| 2 | salpreimagtlt.a | . 2 ⊢ Ⅎ𝑎𝜑 | |
| 3 | salpreimagtlt.s | . 2 ⊢ (𝜑 → 𝑆 ∈ SAlg) | |
| 4 | salpreimagtlt.u | . 2 ⊢ 𝐴 = ∪ 𝑆 | |
| 5 | salpreimagtlt.b | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ*) | |
| 6 | nfv 1915 | . . . 4 ⊢ Ⅎ𝑥 𝑎 ∈ ℝ | |
| 7 | 1, 6 | nfan 1900 | . . 3 ⊢ Ⅎ𝑥(𝜑 ∧ 𝑎 ∈ ℝ) |
| 8 | nfv 1915 | . . 3 ⊢ Ⅎ𝑏(𝜑 ∧ 𝑎 ∈ ℝ) | |
| 9 | 3 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → 𝑆 ∈ SAlg) |
| 10 | 5 | adantlr 715 | . . 3 ⊢ (((𝜑 ∧ 𝑎 ∈ ℝ) ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ*) |
| 11 | nfv 1915 | . . . . . . 7 ⊢ Ⅎ𝑎 𝑏 ∈ ℝ | |
| 12 | 2, 11 | nfan 1900 | . . . . . 6 ⊢ Ⅎ𝑎(𝜑 ∧ 𝑏 ∈ ℝ) |
| 13 | nfv 1915 | . . . . . 6 ⊢ Ⅎ𝑎{𝑥 ∈ 𝐴 ∣ 𝑏 < 𝐵} ∈ 𝑆 | |
| 14 | 12, 13 | nfim 1897 | . . . . 5 ⊢ Ⅎ𝑎((𝜑 ∧ 𝑏 ∈ ℝ) → {𝑥 ∈ 𝐴 ∣ 𝑏 < 𝐵} ∈ 𝑆) |
| 15 | eleq1w 2812 | . . . . . . 7 ⊢ (𝑎 = 𝑏 → (𝑎 ∈ ℝ ↔ 𝑏 ∈ ℝ)) | |
| 16 | 15 | anbi2d 630 | . . . . . 6 ⊢ (𝑎 = 𝑏 → ((𝜑 ∧ 𝑎 ∈ ℝ) ↔ (𝜑 ∧ 𝑏 ∈ ℝ))) |
| 17 | breq1 5092 | . . . . . . . 8 ⊢ (𝑎 = 𝑏 → (𝑎 < 𝐵 ↔ 𝑏 < 𝐵)) | |
| 18 | 17 | rabbidv 3400 | . . . . . . 7 ⊢ (𝑎 = 𝑏 → {𝑥 ∈ 𝐴 ∣ 𝑎 < 𝐵} = {𝑥 ∈ 𝐴 ∣ 𝑏 < 𝐵}) |
| 19 | 18 | eleq1d 2814 | . . . . . 6 ⊢ (𝑎 = 𝑏 → ({𝑥 ∈ 𝐴 ∣ 𝑎 < 𝐵} ∈ 𝑆 ↔ {𝑥 ∈ 𝐴 ∣ 𝑏 < 𝐵} ∈ 𝑆)) |
| 20 | 16, 19 | imbi12d 344 | . . . . 5 ⊢ (𝑎 = 𝑏 → (((𝜑 ∧ 𝑎 ∈ ℝ) → {𝑥 ∈ 𝐴 ∣ 𝑎 < 𝐵} ∈ 𝑆) ↔ ((𝜑 ∧ 𝑏 ∈ ℝ) → {𝑥 ∈ 𝐴 ∣ 𝑏 < 𝐵} ∈ 𝑆))) |
| 21 | salpreimagtlt.p | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → {𝑥 ∈ 𝐴 ∣ 𝑎 < 𝐵} ∈ 𝑆) | |
| 22 | 14, 20, 21 | chvarfv 2242 | . . . 4 ⊢ ((𝜑 ∧ 𝑏 ∈ ℝ) → {𝑥 ∈ 𝐴 ∣ 𝑏 < 𝐵} ∈ 𝑆) |
| 23 | 22 | adantlr 715 | . . 3 ⊢ (((𝜑 ∧ 𝑎 ∈ ℝ) ∧ 𝑏 ∈ ℝ) → {𝑥 ∈ 𝐴 ∣ 𝑏 < 𝐵} ∈ 𝑆) |
| 24 | simpr 484 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → 𝑎 ∈ ℝ) | |
| 25 | 7, 8, 9, 10, 23, 24 | salpreimagtge 46742 | . 2 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → {𝑥 ∈ 𝐴 ∣ 𝑎 ≤ 𝐵} ∈ 𝑆) |
| 26 | salpreimagtlt.c | . 2 ⊢ (𝜑 → 𝐶 ∈ ℝ) | |
| 27 | 1, 2, 3, 4, 5, 25, 26 | salpreimagelt 46724 | 1 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝐵 < 𝐶} ∈ 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 Ⅎwnf 1784 ∈ wcel 2110 {crab 3393 ∪ cuni 4857 class class class wbr 5089 ℝcr 10997 ℝ*cxr 11137 < clt 11138 SAlgcsalg 46325 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 ax-inf2 9526 ax-cnex 11054 ax-resscn 11055 ax-1cn 11056 ax-icn 11057 ax-addcl 11058 ax-addrcl 11059 ax-mulcl 11060 ax-mulrcl 11061 ax-mulcom 11062 ax-addass 11063 ax-mulass 11064 ax-distr 11065 ax-i2m1 11066 ax-1ne0 11067 ax-1rid 11068 ax-rnegex 11069 ax-rrecex 11070 ax-cnre 11071 ax-pre-lttri 11072 ax-pre-lttrn 11073 ax-pre-ltadd 11074 ax-pre-mulgt0 11075 ax-pre-sup 11076 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3344 df-reu 3345 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-pss 3920 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-int 4896 df-iun 4941 df-iin 4942 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-se 5568 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6244 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-isom 6486 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-er 8617 df-map 8747 df-en 8865 df-dom 8866 df-sdom 8867 df-sup 9321 df-inf 9322 df-card 9824 df-acn 9827 df-pnf 11140 df-mnf 11141 df-xr 11142 df-ltxr 11143 df-le 11144 df-sub 11338 df-neg 11339 df-div 11767 df-nn 12118 df-n0 12374 df-z 12461 df-uz 12725 df-q 12839 df-rp 12883 df-fl 13688 df-salg 46326 |
| This theorem is referenced by: issmfgtlem 46772 |
| Copyright terms: Public domain | W3C validator |