Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  salpreimagtlt Structured version   Visualization version   GIF version

Theorem salpreimagtlt 46041
Description: If all the preimages of lef-open, unbounded above intervals, belong to a sigma-algebra, then all the preimages of right-open, unbounded below intervals, belong to the sigma-algebra. (iii) implies (i) in Proposition 121B of [Fremlin1] p. 36. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
salpreimagtlt.x 𝑥𝜑
salpreimagtlt.a 𝑎𝜑
salpreimagtlt.s (𝜑𝑆 ∈ SAlg)
salpreimagtlt.u 𝐴 = 𝑆
salpreimagtlt.b ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ*)
salpreimagtlt.p ((𝜑𝑎 ∈ ℝ) → {𝑥𝐴𝑎 < 𝐵} ∈ 𝑆)
salpreimagtlt.c (𝜑𝐶 ∈ ℝ)
Assertion
Ref Expression
salpreimagtlt (𝜑 → {𝑥𝐴𝐵 < 𝐶} ∈ 𝑆)
Distinct variable groups:   𝐴,𝑎,𝑥   𝐵,𝑎   𝐶,𝑎,𝑥   𝑆,𝑎
Allowed substitution hints:   𝜑(𝑥,𝑎)   𝐵(𝑥)   𝑆(𝑥)

Proof of Theorem salpreimagtlt
Dummy variable 𝑏 is distinct from all other variables.
StepHypRef Expression
1 salpreimagtlt.x . 2 𝑥𝜑
2 salpreimagtlt.a . 2 𝑎𝜑
3 salpreimagtlt.s . 2 (𝜑𝑆 ∈ SAlg)
4 salpreimagtlt.u . 2 𝐴 = 𝑆
5 salpreimagtlt.b . 2 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ*)
6 nfv 1910 . . . 4 𝑥 𝑎 ∈ ℝ
71, 6nfan 1895 . . 3 𝑥(𝜑𝑎 ∈ ℝ)
8 nfv 1910 . . 3 𝑏(𝜑𝑎 ∈ ℝ)
93adantr 480 . . 3 ((𝜑𝑎 ∈ ℝ) → 𝑆 ∈ SAlg)
105adantlr 714 . . 3 (((𝜑𝑎 ∈ ℝ) ∧ 𝑥𝐴) → 𝐵 ∈ ℝ*)
11 nfv 1910 . . . . . . 7 𝑎 𝑏 ∈ ℝ
122, 11nfan 1895 . . . . . 6 𝑎(𝜑𝑏 ∈ ℝ)
13 nfv 1910 . . . . . 6 𝑎{𝑥𝐴𝑏 < 𝐵} ∈ 𝑆
1412, 13nfim 1892 . . . . 5 𝑎((𝜑𝑏 ∈ ℝ) → {𝑥𝐴𝑏 < 𝐵} ∈ 𝑆)
15 eleq1w 2811 . . . . . . 7 (𝑎 = 𝑏 → (𝑎 ∈ ℝ ↔ 𝑏 ∈ ℝ))
1615anbi2d 628 . . . . . 6 (𝑎 = 𝑏 → ((𝜑𝑎 ∈ ℝ) ↔ (𝜑𝑏 ∈ ℝ)))
17 breq1 5145 . . . . . . . 8 (𝑎 = 𝑏 → (𝑎 < 𝐵𝑏 < 𝐵))
1817rabbidv 3435 . . . . . . 7 (𝑎 = 𝑏 → {𝑥𝐴𝑎 < 𝐵} = {𝑥𝐴𝑏 < 𝐵})
1918eleq1d 2813 . . . . . 6 (𝑎 = 𝑏 → ({𝑥𝐴𝑎 < 𝐵} ∈ 𝑆 ↔ {𝑥𝐴𝑏 < 𝐵} ∈ 𝑆))
2016, 19imbi12d 344 . . . . 5 (𝑎 = 𝑏 → (((𝜑𝑎 ∈ ℝ) → {𝑥𝐴𝑎 < 𝐵} ∈ 𝑆) ↔ ((𝜑𝑏 ∈ ℝ) → {𝑥𝐴𝑏 < 𝐵} ∈ 𝑆)))
21 salpreimagtlt.p . . . . 5 ((𝜑𝑎 ∈ ℝ) → {𝑥𝐴𝑎 < 𝐵} ∈ 𝑆)
2214, 20, 21chvarfv 2226 . . . 4 ((𝜑𝑏 ∈ ℝ) → {𝑥𝐴𝑏 < 𝐵} ∈ 𝑆)
2322adantlr 714 . . 3 (((𝜑𝑎 ∈ ℝ) ∧ 𝑏 ∈ ℝ) → {𝑥𝐴𝑏 < 𝐵} ∈ 𝑆)
24 simpr 484 . . 3 ((𝜑𝑎 ∈ ℝ) → 𝑎 ∈ ℝ)
257, 8, 9, 10, 23, 24salpreimagtge 46036 . 2 ((𝜑𝑎 ∈ ℝ) → {𝑥𝐴𝑎𝐵} ∈ 𝑆)
26 salpreimagtlt.c . 2 (𝜑𝐶 ∈ ℝ)
271, 2, 3, 4, 5, 25, 26salpreimagelt 46018 1 (𝜑 → {𝑥𝐴𝐵 < 𝐶} ∈ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1534  wnf 1778  wcel 2099  {crab 3427   cuni 4903   class class class wbr 5142  cr 11129  *cxr 11269   < clt 11270  SAlgcsalg 45619
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-inf2 9656  ax-cnex 11186  ax-resscn 11187  ax-1cn 11188  ax-icn 11189  ax-addcl 11190  ax-addrcl 11191  ax-mulcl 11192  ax-mulrcl 11193  ax-mulcom 11194  ax-addass 11195  ax-mulass 11196  ax-distr 11197  ax-i2m1 11198  ax-1ne0 11199  ax-1rid 11200  ax-rnegex 11201  ax-rrecex 11202  ax-cnre 11203  ax-pre-lttri 11204  ax-pre-lttrn 11205  ax-pre-ltadd 11206  ax-pre-mulgt0 11207  ax-pre-sup 11208
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-nel 3042  df-ral 3057  df-rex 3066  df-rmo 3371  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-int 4945  df-iun 4993  df-iin 4994  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-se 5628  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-isom 6551  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7865  df-1st 7987  df-2nd 7988  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-er 8718  df-map 8838  df-en 8956  df-dom 8957  df-sdom 8958  df-sup 9457  df-inf 9458  df-card 9954  df-acn 9957  df-pnf 11272  df-mnf 11273  df-xr 11274  df-ltxr 11275  df-le 11276  df-sub 11468  df-neg 11469  df-div 11894  df-nn 12235  df-n0 12495  df-z 12581  df-uz 12845  df-q 12955  df-rp 12999  df-fl 13781  df-salg 45620
This theorem is referenced by:  issmfgtlem  46066
  Copyright terms: Public domain W3C validator