![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > salpreimagtlt | Structured version Visualization version GIF version |
Description: If all the preimages of lef-open, unbounded above intervals, belong to a sigma-algebra, then all the preimages of right-open, unbounded below intervals, belong to the sigma-algebra. (iii) implies (i) in Proposition 121B of [Fremlin1] p. 36. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
salpreimagtlt.x | ⊢ Ⅎ𝑥𝜑 |
salpreimagtlt.a | ⊢ Ⅎ𝑎𝜑 |
salpreimagtlt.s | ⊢ (𝜑 → 𝑆 ∈ SAlg) |
salpreimagtlt.u | ⊢ 𝐴 = ∪ 𝑆 |
salpreimagtlt.b | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ*) |
salpreimagtlt.p | ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → {𝑥 ∈ 𝐴 ∣ 𝑎 < 𝐵} ∈ 𝑆) |
salpreimagtlt.c | ⊢ (𝜑 → 𝐶 ∈ ℝ) |
Ref | Expression |
---|---|
salpreimagtlt | ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝐵 < 𝐶} ∈ 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | salpreimagtlt.x | . 2 ⊢ Ⅎ𝑥𝜑 | |
2 | salpreimagtlt.a | . 2 ⊢ Ⅎ𝑎𝜑 | |
3 | salpreimagtlt.s | . 2 ⊢ (𝜑 → 𝑆 ∈ SAlg) | |
4 | salpreimagtlt.u | . 2 ⊢ 𝐴 = ∪ 𝑆 | |
5 | salpreimagtlt.b | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ*) | |
6 | nfv 1918 | . . . 4 ⊢ Ⅎ𝑥 𝑎 ∈ ℝ | |
7 | 1, 6 | nfan 1903 | . . 3 ⊢ Ⅎ𝑥(𝜑 ∧ 𝑎 ∈ ℝ) |
8 | nfv 1918 | . . 3 ⊢ Ⅎ𝑏(𝜑 ∧ 𝑎 ∈ ℝ) | |
9 | 3 | adantr 482 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → 𝑆 ∈ SAlg) |
10 | 5 | adantlr 714 | . . 3 ⊢ (((𝜑 ∧ 𝑎 ∈ ℝ) ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ*) |
11 | nfv 1918 | . . . . . . 7 ⊢ Ⅎ𝑎 𝑏 ∈ ℝ | |
12 | 2, 11 | nfan 1903 | . . . . . 6 ⊢ Ⅎ𝑎(𝜑 ∧ 𝑏 ∈ ℝ) |
13 | nfv 1918 | . . . . . 6 ⊢ Ⅎ𝑎{𝑥 ∈ 𝐴 ∣ 𝑏 < 𝐵} ∈ 𝑆 | |
14 | 12, 13 | nfim 1900 | . . . . 5 ⊢ Ⅎ𝑎((𝜑 ∧ 𝑏 ∈ ℝ) → {𝑥 ∈ 𝐴 ∣ 𝑏 < 𝐵} ∈ 𝑆) |
15 | eleq1w 2821 | . . . . . . 7 ⊢ (𝑎 = 𝑏 → (𝑎 ∈ ℝ ↔ 𝑏 ∈ ℝ)) | |
16 | 15 | anbi2d 630 | . . . . . 6 ⊢ (𝑎 = 𝑏 → ((𝜑 ∧ 𝑎 ∈ ℝ) ↔ (𝜑 ∧ 𝑏 ∈ ℝ))) |
17 | breq1 5113 | . . . . . . . 8 ⊢ (𝑎 = 𝑏 → (𝑎 < 𝐵 ↔ 𝑏 < 𝐵)) | |
18 | 17 | rabbidv 3418 | . . . . . . 7 ⊢ (𝑎 = 𝑏 → {𝑥 ∈ 𝐴 ∣ 𝑎 < 𝐵} = {𝑥 ∈ 𝐴 ∣ 𝑏 < 𝐵}) |
19 | 18 | eleq1d 2823 | . . . . . 6 ⊢ (𝑎 = 𝑏 → ({𝑥 ∈ 𝐴 ∣ 𝑎 < 𝐵} ∈ 𝑆 ↔ {𝑥 ∈ 𝐴 ∣ 𝑏 < 𝐵} ∈ 𝑆)) |
20 | 16, 19 | imbi12d 345 | . . . . 5 ⊢ (𝑎 = 𝑏 → (((𝜑 ∧ 𝑎 ∈ ℝ) → {𝑥 ∈ 𝐴 ∣ 𝑎 < 𝐵} ∈ 𝑆) ↔ ((𝜑 ∧ 𝑏 ∈ ℝ) → {𝑥 ∈ 𝐴 ∣ 𝑏 < 𝐵} ∈ 𝑆))) |
21 | salpreimagtlt.p | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → {𝑥 ∈ 𝐴 ∣ 𝑎 < 𝐵} ∈ 𝑆) | |
22 | 14, 20, 21 | chvarfv 2234 | . . . 4 ⊢ ((𝜑 ∧ 𝑏 ∈ ℝ) → {𝑥 ∈ 𝐴 ∣ 𝑏 < 𝐵} ∈ 𝑆) |
23 | 22 | adantlr 714 | . . 3 ⊢ (((𝜑 ∧ 𝑎 ∈ ℝ) ∧ 𝑏 ∈ ℝ) → {𝑥 ∈ 𝐴 ∣ 𝑏 < 𝐵} ∈ 𝑆) |
24 | simpr 486 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → 𝑎 ∈ ℝ) | |
25 | 7, 8, 9, 10, 23, 24 | salpreimagtge 45040 | . 2 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → {𝑥 ∈ 𝐴 ∣ 𝑎 ≤ 𝐵} ∈ 𝑆) |
26 | salpreimagtlt.c | . 2 ⊢ (𝜑 → 𝐶 ∈ ℝ) | |
27 | 1, 2, 3, 4, 5, 25, 26 | salpreimagelt 45022 | 1 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝐵 < 𝐶} ∈ 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1542 Ⅎwnf 1786 ∈ wcel 2107 {crab 3410 ∪ cuni 4870 class class class wbr 5110 ℝcr 11057 ℝ*cxr 11195 < clt 11196 SAlgcsalg 44623 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2708 ax-rep 5247 ax-sep 5261 ax-nul 5268 ax-pow 5325 ax-pr 5389 ax-un 7677 ax-inf2 9584 ax-cnex 11114 ax-resscn 11115 ax-1cn 11116 ax-icn 11117 ax-addcl 11118 ax-addrcl 11119 ax-mulcl 11120 ax-mulrcl 11121 ax-mulcom 11122 ax-addass 11123 ax-mulass 11124 ax-distr 11125 ax-i2m1 11126 ax-1ne0 11127 ax-1rid 11128 ax-rnegex 11129 ax-rrecex 11130 ax-cnre 11131 ax-pre-lttri 11132 ax-pre-lttrn 11133 ax-pre-ltadd 11134 ax-pre-mulgt0 11135 ax-pre-sup 11136 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3066 df-rex 3075 df-rmo 3356 df-reu 3357 df-rab 3411 df-v 3450 df-sbc 3745 df-csb 3861 df-dif 3918 df-un 3920 df-in 3922 df-ss 3932 df-pss 3934 df-nul 4288 df-if 4492 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4871 df-int 4913 df-iun 4961 df-iin 4962 df-br 5111 df-opab 5173 df-mpt 5194 df-tr 5228 df-id 5536 df-eprel 5542 df-po 5550 df-so 5551 df-fr 5593 df-se 5594 df-we 5595 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6258 df-ord 6325 df-on 6326 df-lim 6327 df-suc 6328 df-iota 6453 df-fun 6503 df-fn 6504 df-f 6505 df-f1 6506 df-fo 6507 df-f1o 6508 df-fv 6509 df-isom 6510 df-riota 7318 df-ov 7365 df-oprab 7366 df-mpo 7367 df-om 7808 df-1st 7926 df-2nd 7927 df-frecs 8217 df-wrecs 8248 df-recs 8322 df-rdg 8361 df-er 8655 df-map 8774 df-en 8891 df-dom 8892 df-sdom 8893 df-sup 9385 df-inf 9386 df-card 9882 df-acn 9885 df-pnf 11198 df-mnf 11199 df-xr 11200 df-ltxr 11201 df-le 11202 df-sub 11394 df-neg 11395 df-div 11820 df-nn 12161 df-n0 12421 df-z 12507 df-uz 12771 df-q 12881 df-rp 12923 df-fl 13704 df-salg 44624 |
This theorem is referenced by: issmfgtlem 45070 |
Copyright terms: Public domain | W3C validator |