Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  salpreimagtlt Structured version   Visualization version   GIF version

Theorem salpreimagtlt 41731
Description: If all the preimages of lef-open, unbounded above intervals, belong to a sigma-algebra, then all the preimages of right-open, unbounded below intervals, belong to the sigma-algebra. (iii) implies (i) in Proposition 121B of [Fremlin1] p. 36. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
salpreimagtlt.x 𝑥𝜑
salpreimagtlt.a 𝑎𝜑
salpreimagtlt.s (𝜑𝑆 ∈ SAlg)
salpreimagtlt.u 𝐴 = 𝑆
salpreimagtlt.b ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ*)
salpreimagtlt.p ((𝜑𝑎 ∈ ℝ) → {𝑥𝐴𝑎 < 𝐵} ∈ 𝑆)
salpreimagtlt.c (𝜑𝐶 ∈ ℝ)
Assertion
Ref Expression
salpreimagtlt (𝜑 → {𝑥𝐴𝐵 < 𝐶} ∈ 𝑆)
Distinct variable groups:   𝐴,𝑎,𝑥   𝐵,𝑎   𝐶,𝑎,𝑥   𝑆,𝑎
Allowed substitution hints:   𝜑(𝑥,𝑎)   𝐵(𝑥)   𝑆(𝑥)

Proof of Theorem salpreimagtlt
Dummy variable 𝑏 is distinct from all other variables.
StepHypRef Expression
1 salpreimagtlt.x . 2 𝑥𝜑
2 salpreimagtlt.a . 2 𝑎𝜑
3 salpreimagtlt.s . 2 (𝜑𝑆 ∈ SAlg)
4 salpreimagtlt.u . 2 𝐴 = 𝑆
5 salpreimagtlt.b . 2 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ*)
6 nfv 2013 . . . 4 𝑥 𝑎 ∈ ℝ
71, 6nfan 2002 . . 3 𝑥(𝜑𝑎 ∈ ℝ)
8 nfv 2013 . . 3 𝑏(𝜑𝑎 ∈ ℝ)
93adantr 474 . . 3 ((𝜑𝑎 ∈ ℝ) → 𝑆 ∈ SAlg)
105adantlr 706 . . 3 (((𝜑𝑎 ∈ ℝ) ∧ 𝑥𝐴) → 𝐵 ∈ ℝ*)
11 nfv 2013 . . . . . . 7 𝑎 𝑏 ∈ ℝ
122, 11nfan 2002 . . . . . 6 𝑎(𝜑𝑏 ∈ ℝ)
13 nfv 2013 . . . . . 6 𝑎{𝑥𝐴𝑏 < 𝐵} ∈ 𝑆
1412, 13nfim 1999 . . . . 5 𝑎((𝜑𝑏 ∈ ℝ) → {𝑥𝐴𝑏 < 𝐵} ∈ 𝑆)
15 eleq1w 2889 . . . . . . 7 (𝑎 = 𝑏 → (𝑎 ∈ ℝ ↔ 𝑏 ∈ ℝ))
1615anbi2d 622 . . . . . 6 (𝑎 = 𝑏 → ((𝜑𝑎 ∈ ℝ) ↔ (𝜑𝑏 ∈ ℝ)))
17 breq1 4878 . . . . . . . 8 (𝑎 = 𝑏 → (𝑎 < 𝐵𝑏 < 𝐵))
1817rabbidv 3402 . . . . . . 7 (𝑎 = 𝑏 → {𝑥𝐴𝑎 < 𝐵} = {𝑥𝐴𝑏 < 𝐵})
1918eleq1d 2891 . . . . . 6 (𝑎 = 𝑏 → ({𝑥𝐴𝑎 < 𝐵} ∈ 𝑆 ↔ {𝑥𝐴𝑏 < 𝐵} ∈ 𝑆))
2016, 19imbi12d 336 . . . . 5 (𝑎 = 𝑏 → (((𝜑𝑎 ∈ ℝ) → {𝑥𝐴𝑎 < 𝐵} ∈ 𝑆) ↔ ((𝜑𝑏 ∈ ℝ) → {𝑥𝐴𝑏 < 𝐵} ∈ 𝑆)))
21 salpreimagtlt.p . . . . 5 ((𝜑𝑎 ∈ ℝ) → {𝑥𝐴𝑎 < 𝐵} ∈ 𝑆)
2214, 20, 21chvar 2415 . . . 4 ((𝜑𝑏 ∈ ℝ) → {𝑥𝐴𝑏 < 𝐵} ∈ 𝑆)
2322adantlr 706 . . 3 (((𝜑𝑎 ∈ ℝ) ∧ 𝑏 ∈ ℝ) → {𝑥𝐴𝑏 < 𝐵} ∈ 𝑆)
24 simpr 479 . . 3 ((𝜑𝑎 ∈ ℝ) → 𝑎 ∈ ℝ)
257, 8, 9, 10, 23, 24salpreimagtge 41726 . 2 ((𝜑𝑎 ∈ ℝ) → {𝑥𝐴𝑎𝐵} ∈ 𝑆)
26 salpreimagtlt.c . 2 (𝜑𝐶 ∈ ℝ)
271, 2, 3, 4, 5, 25, 26salpreimagelt 41710 1 (𝜑 → {𝑥𝐴𝐵 < 𝐶} ∈ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386   = wceq 1656  wnf 1882  wcel 2164  {crab 3121   cuni 4660   class class class wbr 4875  cr 10258  *cxr 10397   < clt 10398  SAlgcsalg 41317
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-rep 4996  ax-sep 5007  ax-nul 5015  ax-pow 5067  ax-pr 5129  ax-un 7214  ax-inf2 8822  ax-cnex 10315  ax-resscn 10316  ax-1cn 10317  ax-icn 10318  ax-addcl 10319  ax-addrcl 10320  ax-mulcl 10321  ax-mulrcl 10322  ax-mulcom 10323  ax-addass 10324  ax-mulass 10325  ax-distr 10326  ax-i2m1 10327  ax-1ne0 10328  ax-1rid 10329  ax-rnegex 10330  ax-rrecex 10331  ax-cnre 10332  ax-pre-lttri 10333  ax-pre-lttrn 10334  ax-pre-ltadd 10335  ax-pre-mulgt0 10336  ax-pre-sup 10337
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3or 1112  df-3an 1113  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rmo 3125  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4147  df-if 4309  df-pw 4382  df-sn 4400  df-pr 4402  df-tp 4404  df-op 4406  df-uni 4661  df-int 4700  df-iun 4744  df-iin 4745  df-br 4876  df-opab 4938  df-mpt 4955  df-tr 4978  df-id 5252  df-eprel 5257  df-po 5265  df-so 5266  df-fr 5305  df-se 5306  df-we 5307  df-xp 5352  df-rel 5353  df-cnv 5354  df-co 5355  df-dm 5356  df-rn 5357  df-res 5358  df-ima 5359  df-pred 5924  df-ord 5970  df-on 5971  df-lim 5972  df-suc 5973  df-iota 6090  df-fun 6129  df-fn 6130  df-f 6131  df-f1 6132  df-fo 6133  df-f1o 6134  df-fv 6135  df-isom 6136  df-riota 6871  df-ov 6913  df-oprab 6914  df-mpt2 6915  df-om 7332  df-1st 7433  df-2nd 7434  df-wrecs 7677  df-recs 7739  df-rdg 7777  df-er 8014  df-map 8129  df-en 8229  df-dom 8230  df-sdom 8231  df-sup 8623  df-inf 8624  df-card 9085  df-acn 9088  df-pnf 10400  df-mnf 10401  df-xr 10402  df-ltxr 10403  df-le 10404  df-sub 10594  df-neg 10595  df-div 11017  df-nn 11358  df-n0 11626  df-z 11712  df-uz 11976  df-q 12079  df-rp 12120  df-fl 12895  df-salg 41318
This theorem is referenced by:  issmfgtlem  41756
  Copyright terms: Public domain W3C validator