![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > salpreimagtlt | Structured version Visualization version GIF version |
Description: If all the preimages of lef-open, unbounded above intervals, belong to a sigma-algebra, then all the preimages of right-open, unbounded below intervals, belong to the sigma-algebra. (iii) implies (i) in Proposition 121B of [Fremlin1] p. 36. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
salpreimagtlt.x | ⊢ Ⅎ𝑥𝜑 |
salpreimagtlt.a | ⊢ Ⅎ𝑎𝜑 |
salpreimagtlt.s | ⊢ (𝜑 → 𝑆 ∈ SAlg) |
salpreimagtlt.u | ⊢ 𝐴 = ∪ 𝑆 |
salpreimagtlt.b | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ*) |
salpreimagtlt.p | ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → {𝑥 ∈ 𝐴 ∣ 𝑎 < 𝐵} ∈ 𝑆) |
salpreimagtlt.c | ⊢ (𝜑 → 𝐶 ∈ ℝ) |
Ref | Expression |
---|---|
salpreimagtlt | ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝐵 < 𝐶} ∈ 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | salpreimagtlt.x | . 2 ⊢ Ⅎ𝑥𝜑 | |
2 | salpreimagtlt.a | . 2 ⊢ Ⅎ𝑎𝜑 | |
3 | salpreimagtlt.s | . 2 ⊢ (𝜑 → 𝑆 ∈ SAlg) | |
4 | salpreimagtlt.u | . 2 ⊢ 𝐴 = ∪ 𝑆 | |
5 | salpreimagtlt.b | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ*) | |
6 | nfv 1917 | . . . 4 ⊢ Ⅎ𝑥 𝑎 ∈ ℝ | |
7 | 1, 6 | nfan 1902 | . . 3 ⊢ Ⅎ𝑥(𝜑 ∧ 𝑎 ∈ ℝ) |
8 | nfv 1917 | . . 3 ⊢ Ⅎ𝑏(𝜑 ∧ 𝑎 ∈ ℝ) | |
9 | 3 | adantr 481 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → 𝑆 ∈ SAlg) |
10 | 5 | adantlr 713 | . . 3 ⊢ (((𝜑 ∧ 𝑎 ∈ ℝ) ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ*) |
11 | nfv 1917 | . . . . . . 7 ⊢ Ⅎ𝑎 𝑏 ∈ ℝ | |
12 | 2, 11 | nfan 1902 | . . . . . 6 ⊢ Ⅎ𝑎(𝜑 ∧ 𝑏 ∈ ℝ) |
13 | nfv 1917 | . . . . . 6 ⊢ Ⅎ𝑎{𝑥 ∈ 𝐴 ∣ 𝑏 < 𝐵} ∈ 𝑆 | |
14 | 12, 13 | nfim 1899 | . . . . 5 ⊢ Ⅎ𝑎((𝜑 ∧ 𝑏 ∈ ℝ) → {𝑥 ∈ 𝐴 ∣ 𝑏 < 𝐵} ∈ 𝑆) |
15 | eleq1w 2816 | . . . . . . 7 ⊢ (𝑎 = 𝑏 → (𝑎 ∈ ℝ ↔ 𝑏 ∈ ℝ)) | |
16 | 15 | anbi2d 629 | . . . . . 6 ⊢ (𝑎 = 𝑏 → ((𝜑 ∧ 𝑎 ∈ ℝ) ↔ (𝜑 ∧ 𝑏 ∈ ℝ))) |
17 | breq1 5151 | . . . . . . . 8 ⊢ (𝑎 = 𝑏 → (𝑎 < 𝐵 ↔ 𝑏 < 𝐵)) | |
18 | 17 | rabbidv 3440 | . . . . . . 7 ⊢ (𝑎 = 𝑏 → {𝑥 ∈ 𝐴 ∣ 𝑎 < 𝐵} = {𝑥 ∈ 𝐴 ∣ 𝑏 < 𝐵}) |
19 | 18 | eleq1d 2818 | . . . . . 6 ⊢ (𝑎 = 𝑏 → ({𝑥 ∈ 𝐴 ∣ 𝑎 < 𝐵} ∈ 𝑆 ↔ {𝑥 ∈ 𝐴 ∣ 𝑏 < 𝐵} ∈ 𝑆)) |
20 | 16, 19 | imbi12d 344 | . . . . 5 ⊢ (𝑎 = 𝑏 → (((𝜑 ∧ 𝑎 ∈ ℝ) → {𝑥 ∈ 𝐴 ∣ 𝑎 < 𝐵} ∈ 𝑆) ↔ ((𝜑 ∧ 𝑏 ∈ ℝ) → {𝑥 ∈ 𝐴 ∣ 𝑏 < 𝐵} ∈ 𝑆))) |
21 | salpreimagtlt.p | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → {𝑥 ∈ 𝐴 ∣ 𝑎 < 𝐵} ∈ 𝑆) | |
22 | 14, 20, 21 | chvarfv 2233 | . . . 4 ⊢ ((𝜑 ∧ 𝑏 ∈ ℝ) → {𝑥 ∈ 𝐴 ∣ 𝑏 < 𝐵} ∈ 𝑆) |
23 | 22 | adantlr 713 | . . 3 ⊢ (((𝜑 ∧ 𝑎 ∈ ℝ) ∧ 𝑏 ∈ ℝ) → {𝑥 ∈ 𝐴 ∣ 𝑏 < 𝐵} ∈ 𝑆) |
24 | simpr 485 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → 𝑎 ∈ ℝ) | |
25 | 7, 8, 9, 10, 23, 24 | salpreimagtge 45431 | . 2 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → {𝑥 ∈ 𝐴 ∣ 𝑎 ≤ 𝐵} ∈ 𝑆) |
26 | salpreimagtlt.c | . 2 ⊢ (𝜑 → 𝐶 ∈ ℝ) | |
27 | 1, 2, 3, 4, 5, 25, 26 | salpreimagelt 45413 | 1 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝐵 < 𝐶} ∈ 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1541 Ⅎwnf 1785 ∈ wcel 2106 {crab 3432 ∪ cuni 4908 class class class wbr 5148 ℝcr 11108 ℝ*cxr 11246 < clt 11247 SAlgcsalg 45014 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-inf2 9635 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 ax-pre-sup 11187 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-iin 5000 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-se 5632 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-isom 6552 df-riota 7364 df-ov 7411 df-oprab 7412 df-mpo 7413 df-om 7855 df-1st 7974 df-2nd 7975 df-frecs 8265 df-wrecs 8296 df-recs 8370 df-rdg 8409 df-er 8702 df-map 8821 df-en 8939 df-dom 8940 df-sdom 8941 df-sup 9436 df-inf 9437 df-card 9933 df-acn 9936 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-sub 11445 df-neg 11446 df-div 11871 df-nn 12212 df-n0 12472 df-z 12558 df-uz 12822 df-q 12932 df-rp 12974 df-fl 13756 df-salg 45015 |
This theorem is referenced by: issmfgtlem 45461 |
Copyright terms: Public domain | W3C validator |