Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  issmfgelem Structured version   Visualization version   GIF version

Theorem issmfgelem 46765
Description: The predicate "𝐹 is a real-valued measurable function w.r.t. to the sigma-algebra 𝑆". A function is measurable iff the preimages of all left-closed intervals unbounded above are in the subspace sigma-algebra induced by its domain. The domain of 𝐹 is required to be a subset of the underlying set of 𝑆. Definition 121C of [Fremlin1] p. 36, and Proposition 121B (iv) of [Fremlin1] p. 36 . (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
issmfgelem.x 𝑥𝜑
issmfgelem.a 𝑎𝜑
issmfgelem.s (𝜑𝑆 ∈ SAlg)
issmfgelem.d 𝐷 = dom 𝐹
issmfgelem.i (𝜑𝐷 𝑆)
issmfgelem.f (𝜑𝐹:𝐷⟶ℝ)
issmfgelem.p (𝜑 → ∀𝑎 ∈ ℝ {𝑥𝐷𝑎 ≤ (𝐹𝑥)} ∈ (𝑆t 𝐷))
Assertion
Ref Expression
issmfgelem (𝜑𝐹 ∈ (SMblFn‘𝑆))
Distinct variable groups:   𝐷,𝑎,𝑥   𝐹,𝑎,𝑥   𝑆,𝑎,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑎)

Proof of Theorem issmfgelem
Dummy variable 𝑏 is distinct from all other variables.
StepHypRef Expression
1 issmfgelem.i . . 3 (𝜑𝐷 𝑆)
2 issmfgelem.f . . 3 (𝜑𝐹:𝐷⟶ℝ)
3 issmfgelem.s . . . . . . . . 9 (𝜑𝑆 ∈ SAlg)
43, 1restuni4 45112 . . . . . . . 8 (𝜑 (𝑆t 𝐷) = 𝐷)
54eqcomd 2742 . . . . . . 7 (𝜑𝐷 = (𝑆t 𝐷))
65rabeqdv 3436 . . . . . 6 (𝜑 → {𝑥𝐷 ∣ (𝐹𝑥) < 𝑏} = {𝑥 (𝑆t 𝐷) ∣ (𝐹𝑥) < 𝑏})
76adantr 480 . . . . 5 ((𝜑𝑏 ∈ ℝ) → {𝑥𝐷 ∣ (𝐹𝑥) < 𝑏} = {𝑥 (𝑆t 𝐷) ∣ (𝐹𝑥) < 𝑏})
8 issmfgelem.x . . . . . . 7 𝑥𝜑
9 nfv 1914 . . . . . . 7 𝑥 𝑏 ∈ ℝ
108, 9nfan 1899 . . . . . 6 𝑥(𝜑𝑏 ∈ ℝ)
11 issmfgelem.a . . . . . . 7 𝑎𝜑
12 nfv 1914 . . . . . . 7 𝑎 𝑏 ∈ ℝ
1311, 12nfan 1899 . . . . . 6 𝑎(𝜑𝑏 ∈ ℝ)
143uniexd 7741 . . . . . . . . . . 11 (𝜑 𝑆 ∈ V)
1514adantr 480 . . . . . . . . . 10 ((𝜑𝐷 𝑆) → 𝑆 ∈ V)
16 simpr 484 . . . . . . . . . 10 ((𝜑𝐷 𝑆) → 𝐷 𝑆)
1715, 16ssexd 5299 . . . . . . . . 9 ((𝜑𝐷 𝑆) → 𝐷 ∈ V)
181, 17mpdan 687 . . . . . . . 8 (𝜑𝐷 ∈ V)
19 eqid 2736 . . . . . . . 8 (𝑆t 𝐷) = (𝑆t 𝐷)
203, 18, 19subsalsal 46355 . . . . . . 7 (𝜑 → (𝑆t 𝐷) ∈ SAlg)
2120adantr 480 . . . . . 6 ((𝜑𝑏 ∈ ℝ) → (𝑆t 𝐷) ∈ SAlg)
22 eqid 2736 . . . . . 6 (𝑆t 𝐷) = (𝑆t 𝐷)
232adantr 480 . . . . . . . . 9 ((𝜑𝑥 (𝑆t 𝐷)) → 𝐹:𝐷⟶ℝ)
24 simpr 484 . . . . . . . . . 10 ((𝜑𝑥 (𝑆t 𝐷)) → 𝑥 (𝑆t 𝐷))
254adantr 480 . . . . . . . . . 10 ((𝜑𝑥 (𝑆t 𝐷)) → (𝑆t 𝐷) = 𝐷)
2624, 25eleqtrd 2837 . . . . . . . . 9 ((𝜑𝑥 (𝑆t 𝐷)) → 𝑥𝐷)
2723, 26ffvelcdmd 7080 . . . . . . . 8 ((𝜑𝑥 (𝑆t 𝐷)) → (𝐹𝑥) ∈ ℝ)
2827rexrd 11290 . . . . . . 7 ((𝜑𝑥 (𝑆t 𝐷)) → (𝐹𝑥) ∈ ℝ*)
2928adantlr 715 . . . . . 6 (((𝜑𝑏 ∈ ℝ) ∧ 𝑥 (𝑆t 𝐷)) → (𝐹𝑥) ∈ ℝ*)
30 issmfgelem.p . . . . . . . . . 10 (𝜑 → ∀𝑎 ∈ ℝ {𝑥𝐷𝑎 ≤ (𝐹𝑥)} ∈ (𝑆t 𝐷))
315rabeqdv 3436 . . . . . . . . . . . 12 (𝜑 → {𝑥𝐷𝑎 ≤ (𝐹𝑥)} = {𝑥 (𝑆t 𝐷) ∣ 𝑎 ≤ (𝐹𝑥)})
3231eleq1d 2820 . . . . . . . . . . 11 (𝜑 → ({𝑥𝐷𝑎 ≤ (𝐹𝑥)} ∈ (𝑆t 𝐷) ↔ {𝑥 (𝑆t 𝐷) ∣ 𝑎 ≤ (𝐹𝑥)} ∈ (𝑆t 𝐷)))
3311, 32ralbid 3259 . . . . . . . . . 10 (𝜑 → (∀𝑎 ∈ ℝ {𝑥𝐷𝑎 ≤ (𝐹𝑥)} ∈ (𝑆t 𝐷) ↔ ∀𝑎 ∈ ℝ {𝑥 (𝑆t 𝐷) ∣ 𝑎 ≤ (𝐹𝑥)} ∈ (𝑆t 𝐷)))
3430, 33mpbid 232 . . . . . . . . 9 (𝜑 → ∀𝑎 ∈ ℝ {𝑥 (𝑆t 𝐷) ∣ 𝑎 ≤ (𝐹𝑥)} ∈ (𝑆t 𝐷))
3534adantr 480 . . . . . . . 8 ((𝜑𝑎 ∈ ℝ) → ∀𝑎 ∈ ℝ {𝑥 (𝑆t 𝐷) ∣ 𝑎 ≤ (𝐹𝑥)} ∈ (𝑆t 𝐷))
36 simpr 484 . . . . . . . 8 ((𝜑𝑎 ∈ ℝ) → 𝑎 ∈ ℝ)
37 rspa 3235 . . . . . . . 8 ((∀𝑎 ∈ ℝ {𝑥 (𝑆t 𝐷) ∣ 𝑎 ≤ (𝐹𝑥)} ∈ (𝑆t 𝐷) ∧ 𝑎 ∈ ℝ) → {𝑥 (𝑆t 𝐷) ∣ 𝑎 ≤ (𝐹𝑥)} ∈ (𝑆t 𝐷))
3835, 36, 37syl2anc 584 . . . . . . 7 ((𝜑𝑎 ∈ ℝ) → {𝑥 (𝑆t 𝐷) ∣ 𝑎 ≤ (𝐹𝑥)} ∈ (𝑆t 𝐷))
3938adantlr 715 . . . . . 6 (((𝜑𝑏 ∈ ℝ) ∧ 𝑎 ∈ ℝ) → {𝑥 (𝑆t 𝐷) ∣ 𝑎 ≤ (𝐹𝑥)} ∈ (𝑆t 𝐷))
40 simpr 484 . . . . . 6 ((𝜑𝑏 ∈ ℝ) → 𝑏 ∈ ℝ)
4110, 13, 21, 22, 29, 39, 40salpreimagelt 46703 . . . . 5 ((𝜑𝑏 ∈ ℝ) → {𝑥 (𝑆t 𝐷) ∣ (𝐹𝑥) < 𝑏} ∈ (𝑆t 𝐷))
427, 41eqeltrd 2835 . . . 4 ((𝜑𝑏 ∈ ℝ) → {𝑥𝐷 ∣ (𝐹𝑥) < 𝑏} ∈ (𝑆t 𝐷))
4342ralrimiva 3133 . . 3 (𝜑 → ∀𝑏 ∈ ℝ {𝑥𝐷 ∣ (𝐹𝑥) < 𝑏} ∈ (𝑆t 𝐷))
441, 2, 433jca 1128 . 2 (𝜑 → (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑏 ∈ ℝ {𝑥𝐷 ∣ (𝐹𝑥) < 𝑏} ∈ (𝑆t 𝐷)))
45 issmfgelem.d . . 3 𝐷 = dom 𝐹
463, 45issmf 46724 . 2 (𝜑 → (𝐹 ∈ (SMblFn‘𝑆) ↔ (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑏 ∈ ℝ {𝑥𝐷 ∣ (𝐹𝑥) < 𝑏} ∈ (𝑆t 𝐷))))
4744, 46mpbird 257 1 (𝜑𝐹 ∈ (SMblFn‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wnf 1783  wcel 2109  wral 3052  {crab 3420  Vcvv 3464  wss 3931   cuni 4888   class class class wbr 5124  dom cdm 5659  wf 6532  cfv 6536  (class class class)co 7410  cr 11133  *cxr 11273   < clt 11274  cle 11275  t crest 17439  SAlgcsalg 46304  SMblFncsmblfn 46691
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-inf2 9660  ax-cc 10454  ax-ac2 10482  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-er 8724  df-map 8847  df-pm 8848  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-card 9958  df-acn 9961  df-ac 10135  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-n0 12507  df-z 12594  df-uz 12858  df-ioo 13371  df-ico 13373  df-rest 17441  df-salg 46305  df-smblfn 46692
This theorem is referenced by:  issmfge  46766
  Copyright terms: Public domain W3C validator