Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  issmfgelem Structured version   Visualization version   GIF version

Theorem issmfgelem 42907
Description: The predicate "𝐹 is a real-valued measurable function w.r.t. to the sigma-algebra 𝑆". A function is measurable iff the preimages of all left-closed intervals unbounded above are in the subspace sigma-algebra induced by its domain. The domain of 𝐹 is required to be a subset of the underlying set of 𝑆. Definition 121C of [Fremlin1] p. 36, and Proposition 121B (iv) of [Fremlin1] p. 36 . (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
issmfgelem.x 𝑥𝜑
issmfgelem.a 𝑎𝜑
issmfgelem.s (𝜑𝑆 ∈ SAlg)
issmfgelem.d 𝐷 = dom 𝐹
issmfgelem.i (𝜑𝐷 𝑆)
issmfgelem.f (𝜑𝐹:𝐷⟶ℝ)
issmfgelem.p (𝜑 → ∀𝑎 ∈ ℝ {𝑥𝐷𝑎 ≤ (𝐹𝑥)} ∈ (𝑆t 𝐷))
Assertion
Ref Expression
issmfgelem (𝜑𝐹 ∈ (SMblFn‘𝑆))
Distinct variable groups:   𝐷,𝑎,𝑥   𝐹,𝑎,𝑥   𝑆,𝑎,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑎)

Proof of Theorem issmfgelem
Dummy variable 𝑏 is distinct from all other variables.
StepHypRef Expression
1 issmfgelem.i . . 3 (𝜑𝐷 𝑆)
2 issmfgelem.f . . 3 (𝜑𝐹:𝐷⟶ℝ)
3 issmfgelem.s . . . . . . . . 9 (𝜑𝑆 ∈ SAlg)
43, 1restuni4 41249 . . . . . . . 8 (𝜑 (𝑆t 𝐷) = 𝐷)
54eqcomd 2831 . . . . . . 7 (𝜑𝐷 = (𝑆t 𝐷))
65rabeqdv 3489 . . . . . 6 (𝜑 → {𝑥𝐷 ∣ (𝐹𝑥) < 𝑏} = {𝑥 (𝑆t 𝐷) ∣ (𝐹𝑥) < 𝑏})
76adantr 481 . . . . 5 ((𝜑𝑏 ∈ ℝ) → {𝑥𝐷 ∣ (𝐹𝑥) < 𝑏} = {𝑥 (𝑆t 𝐷) ∣ (𝐹𝑥) < 𝑏})
8 issmfgelem.x . . . . . . 7 𝑥𝜑
9 nfv 1908 . . . . . . 7 𝑥 𝑏 ∈ ℝ
108, 9nfan 1893 . . . . . 6 𝑥(𝜑𝑏 ∈ ℝ)
11 issmfgelem.a . . . . . . 7 𝑎𝜑
12 nfv 1908 . . . . . . 7 𝑎 𝑏 ∈ ℝ
1311, 12nfan 1893 . . . . . 6 𝑎(𝜑𝑏 ∈ ℝ)
143uniexd 41228 . . . . . . . . . . 11 (𝜑 𝑆 ∈ V)
1514adantr 481 . . . . . . . . . 10 ((𝜑𝐷 𝑆) → 𝑆 ∈ V)
16 simpr 485 . . . . . . . . . 10 ((𝜑𝐷 𝑆) → 𝐷 𝑆)
1715, 16ssexd 5224 . . . . . . . . 9 ((𝜑𝐷 𝑆) → 𝐷 ∈ V)
181, 17mpdan 683 . . . . . . . 8 (𝜑𝐷 ∈ V)
19 eqid 2825 . . . . . . . 8 (𝑆t 𝐷) = (𝑆t 𝐷)
203, 18, 19subsalsal 42504 . . . . . . 7 (𝜑 → (𝑆t 𝐷) ∈ SAlg)
2120adantr 481 . . . . . 6 ((𝜑𝑏 ∈ ℝ) → (𝑆t 𝐷) ∈ SAlg)
22 eqid 2825 . . . . . 6 (𝑆t 𝐷) = (𝑆t 𝐷)
232adantr 481 . . . . . . . . 9 ((𝜑𝑥 (𝑆t 𝐷)) → 𝐹:𝐷⟶ℝ)
24 simpr 485 . . . . . . . . . 10 ((𝜑𝑥 (𝑆t 𝐷)) → 𝑥 (𝑆t 𝐷))
254adantr 481 . . . . . . . . . 10 ((𝜑𝑥 (𝑆t 𝐷)) → (𝑆t 𝐷) = 𝐷)
2624, 25eleqtrd 2919 . . . . . . . . 9 ((𝜑𝑥 (𝑆t 𝐷)) → 𝑥𝐷)
2723, 26ffvelrnd 6847 . . . . . . . 8 ((𝜑𝑥 (𝑆t 𝐷)) → (𝐹𝑥) ∈ ℝ)
2827rexrd 10683 . . . . . . 7 ((𝜑𝑥 (𝑆t 𝐷)) → (𝐹𝑥) ∈ ℝ*)
2928adantlr 711 . . . . . 6 (((𝜑𝑏 ∈ ℝ) ∧ 𝑥 (𝑆t 𝐷)) → (𝐹𝑥) ∈ ℝ*)
30 issmfgelem.p . . . . . . . . . 10 (𝜑 → ∀𝑎 ∈ ℝ {𝑥𝐷𝑎 ≤ (𝐹𝑥)} ∈ (𝑆t 𝐷))
315rabeqdv 3489 . . . . . . . . . . . 12 (𝜑 → {𝑥𝐷𝑎 ≤ (𝐹𝑥)} = {𝑥 (𝑆t 𝐷) ∣ 𝑎 ≤ (𝐹𝑥)})
3231eleq1d 2901 . . . . . . . . . . 11 (𝜑 → ({𝑥𝐷𝑎 ≤ (𝐹𝑥)} ∈ (𝑆t 𝐷) ↔ {𝑥 (𝑆t 𝐷) ∣ 𝑎 ≤ (𝐹𝑥)} ∈ (𝑆t 𝐷)))
3311, 32ralbid 3235 . . . . . . . . . 10 (𝜑 → (∀𝑎 ∈ ℝ {𝑥𝐷𝑎 ≤ (𝐹𝑥)} ∈ (𝑆t 𝐷) ↔ ∀𝑎 ∈ ℝ {𝑥 (𝑆t 𝐷) ∣ 𝑎 ≤ (𝐹𝑥)} ∈ (𝑆t 𝐷)))
3430, 33mpbid 233 . . . . . . . . 9 (𝜑 → ∀𝑎 ∈ ℝ {𝑥 (𝑆t 𝐷) ∣ 𝑎 ≤ (𝐹𝑥)} ∈ (𝑆t 𝐷))
3534adantr 481 . . . . . . . 8 ((𝜑𝑎 ∈ ℝ) → ∀𝑎 ∈ ℝ {𝑥 (𝑆t 𝐷) ∣ 𝑎 ≤ (𝐹𝑥)} ∈ (𝑆t 𝐷))
36 simpr 485 . . . . . . . 8 ((𝜑𝑎 ∈ ℝ) → 𝑎 ∈ ℝ)
37 rspa 3210 . . . . . . . 8 ((∀𝑎 ∈ ℝ {𝑥 (𝑆t 𝐷) ∣ 𝑎 ≤ (𝐹𝑥)} ∈ (𝑆t 𝐷) ∧ 𝑎 ∈ ℝ) → {𝑥 (𝑆t 𝐷) ∣ 𝑎 ≤ (𝐹𝑥)} ∈ (𝑆t 𝐷))
3835, 36, 37syl2anc 584 . . . . . . 7 ((𝜑𝑎 ∈ ℝ) → {𝑥 (𝑆t 𝐷) ∣ 𝑎 ≤ (𝐹𝑥)} ∈ (𝑆t 𝐷))
3938adantlr 711 . . . . . 6 (((𝜑𝑏 ∈ ℝ) ∧ 𝑎 ∈ ℝ) → {𝑥 (𝑆t 𝐷) ∣ 𝑎 ≤ (𝐹𝑥)} ∈ (𝑆t 𝐷))
40 simpr 485 . . . . . 6 ((𝜑𝑏 ∈ ℝ) → 𝑏 ∈ ℝ)
4110, 13, 21, 22, 29, 39, 40salpreimagelt 42848 . . . . 5 ((𝜑𝑏 ∈ ℝ) → {𝑥 (𝑆t 𝐷) ∣ (𝐹𝑥) < 𝑏} ∈ (𝑆t 𝐷))
427, 41eqeltrd 2917 . . . 4 ((𝜑𝑏 ∈ ℝ) → {𝑥𝐷 ∣ (𝐹𝑥) < 𝑏} ∈ (𝑆t 𝐷))
4342ralrimiva 3186 . . 3 (𝜑 → ∀𝑏 ∈ ℝ {𝑥𝐷 ∣ (𝐹𝑥) < 𝑏} ∈ (𝑆t 𝐷))
441, 2, 433jca 1122 . 2 (𝜑 → (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑏 ∈ ℝ {𝑥𝐷 ∣ (𝐹𝑥) < 𝑏} ∈ (𝑆t 𝐷)))
45 issmfgelem.d . . 3 𝐷 = dom 𝐹
463, 45issmf 42867 . 2 (𝜑 → (𝐹 ∈ (SMblFn‘𝑆) ↔ (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑏 ∈ ℝ {𝑥𝐷 ∣ (𝐹𝑥) < 𝑏} ∈ (𝑆t 𝐷))))
4744, 46mpbird 258 1 (𝜑𝐹 ∈ (SMblFn‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1081   = wceq 1530  wnf 1777  wcel 2107  wral 3142  {crab 3146  Vcvv 3499  wss 3939   cuni 4836   class class class wbr 5062  dom cdm 5553  wf 6347  cfv 6351  (class class class)co 7151  cr 10528  *cxr 10666   < clt 10667  cle 10668  t crest 16686  SAlgcsalg 42455  SMblFncsmblfn 42839
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-13 2385  ax-ext 2797  ax-rep 5186  ax-sep 5199  ax-nul 5206  ax-pow 5262  ax-pr 5325  ax-un 7454  ax-inf2 9096  ax-cc 9849  ax-ac2 9877  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2619  df-eu 2651  df-clab 2804  df-cleq 2818  df-clel 2897  df-nfc 2967  df-ne 3021  df-nel 3128  df-ral 3147  df-rex 3148  df-reu 3149  df-rmo 3150  df-rab 3151  df-v 3501  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4470  df-pw 4543  df-sn 4564  df-pr 4566  df-tp 4568  df-op 4570  df-uni 4837  df-int 4874  df-iun 4918  df-br 5063  df-opab 5125  df-mpt 5143  df-tr 5169  df-id 5458  df-eprel 5463  df-po 5472  df-so 5473  df-fr 5512  df-se 5513  df-we 5514  df-xp 5559  df-rel 5560  df-cnv 5561  df-co 5562  df-dm 5563  df-rn 5564  df-res 5565  df-ima 5566  df-pred 6145  df-ord 6191  df-on 6192  df-lim 6193  df-suc 6194  df-iota 6311  df-fun 6353  df-fn 6354  df-f 6355  df-f1 6356  df-fo 6357  df-f1o 6358  df-fv 6359  df-isom 6360  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-om 7572  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-oadd 8100  df-er 8282  df-map 8401  df-pm 8402  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-card 9360  df-acn 9363  df-ac 9534  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-nn 11631  df-n0 11890  df-z 11974  df-uz 12236  df-ioo 12735  df-ico 12737  df-rest 16688  df-salg 42456  df-smblfn 42840
This theorem is referenced by:  issmfge  42908
  Copyright terms: Public domain W3C validator