Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > issmfgelem | Structured version Visualization version GIF version |
Description: The predicate "𝐹 is a real-valued measurable function w.r.t. to the sigma-algebra 𝑆". A function is measurable iff the preimages of all left-closed intervals unbounded above are in the subspace sigma-algebra induced by its domain. The domain of 𝐹 is required to be a subset of the underlying set of 𝑆. Definition 121C of [Fremlin1] p. 36, and Proposition 121B (iv) of [Fremlin1] p. 36 . (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
issmfgelem.x | ⊢ Ⅎ𝑥𝜑 |
issmfgelem.a | ⊢ Ⅎ𝑎𝜑 |
issmfgelem.s | ⊢ (𝜑 → 𝑆 ∈ SAlg) |
issmfgelem.d | ⊢ 𝐷 = dom 𝐹 |
issmfgelem.i | ⊢ (𝜑 → 𝐷 ⊆ ∪ 𝑆) |
issmfgelem.f | ⊢ (𝜑 → 𝐹:𝐷⟶ℝ) |
issmfgelem.p | ⊢ (𝜑 → ∀𝑎 ∈ ℝ {𝑥 ∈ 𝐷 ∣ 𝑎 ≤ (𝐹‘𝑥)} ∈ (𝑆 ↾t 𝐷)) |
Ref | Expression |
---|---|
issmfgelem | ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | issmfgelem.i | . . 3 ⊢ (𝜑 → 𝐷 ⊆ ∪ 𝑆) | |
2 | issmfgelem.f | . . 3 ⊢ (𝜑 → 𝐹:𝐷⟶ℝ) | |
3 | issmfgelem.s | . . . . . . . . 9 ⊢ (𝜑 → 𝑆 ∈ SAlg) | |
4 | 3, 1 | restuni4 42151 | . . . . . . . 8 ⊢ (𝜑 → ∪ (𝑆 ↾t 𝐷) = 𝐷) |
5 | 4 | eqcomd 2764 | . . . . . . 7 ⊢ (𝜑 → 𝐷 = ∪ (𝑆 ↾t 𝐷)) |
6 | 5 | rabeqdv 3397 | . . . . . 6 ⊢ (𝜑 → {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < 𝑏} = {𝑥 ∈ ∪ (𝑆 ↾t 𝐷) ∣ (𝐹‘𝑥) < 𝑏}) |
7 | 6 | adantr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝑏 ∈ ℝ) → {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < 𝑏} = {𝑥 ∈ ∪ (𝑆 ↾t 𝐷) ∣ (𝐹‘𝑥) < 𝑏}) |
8 | issmfgelem.x | . . . . . . 7 ⊢ Ⅎ𝑥𝜑 | |
9 | nfv 1915 | . . . . . . 7 ⊢ Ⅎ𝑥 𝑏 ∈ ℝ | |
10 | 8, 9 | nfan 1900 | . . . . . 6 ⊢ Ⅎ𝑥(𝜑 ∧ 𝑏 ∈ ℝ) |
11 | issmfgelem.a | . . . . . . 7 ⊢ Ⅎ𝑎𝜑 | |
12 | nfv 1915 | . . . . . . 7 ⊢ Ⅎ𝑎 𝑏 ∈ ℝ | |
13 | 11, 12 | nfan 1900 | . . . . . 6 ⊢ Ⅎ𝑎(𝜑 ∧ 𝑏 ∈ ℝ) |
14 | 3 | uniexd 7466 | . . . . . . . . . . 11 ⊢ (𝜑 → ∪ 𝑆 ∈ V) |
15 | 14 | adantr 484 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝐷 ⊆ ∪ 𝑆) → ∪ 𝑆 ∈ V) |
16 | simpr 488 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝐷 ⊆ ∪ 𝑆) → 𝐷 ⊆ ∪ 𝑆) | |
17 | 15, 16 | ssexd 5194 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝐷 ⊆ ∪ 𝑆) → 𝐷 ∈ V) |
18 | 1, 17 | mpdan 686 | . . . . . . . 8 ⊢ (𝜑 → 𝐷 ∈ V) |
19 | eqid 2758 | . . . . . . . 8 ⊢ (𝑆 ↾t 𝐷) = (𝑆 ↾t 𝐷) | |
20 | 3, 18, 19 | subsalsal 43387 | . . . . . . 7 ⊢ (𝜑 → (𝑆 ↾t 𝐷) ∈ SAlg) |
21 | 20 | adantr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑏 ∈ ℝ) → (𝑆 ↾t 𝐷) ∈ SAlg) |
22 | eqid 2758 | . . . . . 6 ⊢ ∪ (𝑆 ↾t 𝐷) = ∪ (𝑆 ↾t 𝐷) | |
23 | 2 | adantr 484 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ ∪ (𝑆 ↾t 𝐷)) → 𝐹:𝐷⟶ℝ) |
24 | simpr 488 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑥 ∈ ∪ (𝑆 ↾t 𝐷)) → 𝑥 ∈ ∪ (𝑆 ↾t 𝐷)) | |
25 | 4 | adantr 484 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑥 ∈ ∪ (𝑆 ↾t 𝐷)) → ∪ (𝑆 ↾t 𝐷) = 𝐷) |
26 | 24, 25 | eleqtrd 2854 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ ∪ (𝑆 ↾t 𝐷)) → 𝑥 ∈ 𝐷) |
27 | 23, 26 | ffvelrnd 6843 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ ∪ (𝑆 ↾t 𝐷)) → (𝐹‘𝑥) ∈ ℝ) |
28 | 27 | rexrd 10729 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ ∪ (𝑆 ↾t 𝐷)) → (𝐹‘𝑥) ∈ ℝ*) |
29 | 28 | adantlr 714 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑏 ∈ ℝ) ∧ 𝑥 ∈ ∪ (𝑆 ↾t 𝐷)) → (𝐹‘𝑥) ∈ ℝ*) |
30 | issmfgelem.p | . . . . . . . . . 10 ⊢ (𝜑 → ∀𝑎 ∈ ℝ {𝑥 ∈ 𝐷 ∣ 𝑎 ≤ (𝐹‘𝑥)} ∈ (𝑆 ↾t 𝐷)) | |
31 | 5 | rabeqdv 3397 | . . . . . . . . . . . 12 ⊢ (𝜑 → {𝑥 ∈ 𝐷 ∣ 𝑎 ≤ (𝐹‘𝑥)} = {𝑥 ∈ ∪ (𝑆 ↾t 𝐷) ∣ 𝑎 ≤ (𝐹‘𝑥)}) |
32 | 31 | eleq1d 2836 | . . . . . . . . . . 11 ⊢ (𝜑 → ({𝑥 ∈ 𝐷 ∣ 𝑎 ≤ (𝐹‘𝑥)} ∈ (𝑆 ↾t 𝐷) ↔ {𝑥 ∈ ∪ (𝑆 ↾t 𝐷) ∣ 𝑎 ≤ (𝐹‘𝑥)} ∈ (𝑆 ↾t 𝐷))) |
33 | 11, 32 | ralbid 3159 | . . . . . . . . . 10 ⊢ (𝜑 → (∀𝑎 ∈ ℝ {𝑥 ∈ 𝐷 ∣ 𝑎 ≤ (𝐹‘𝑥)} ∈ (𝑆 ↾t 𝐷) ↔ ∀𝑎 ∈ ℝ {𝑥 ∈ ∪ (𝑆 ↾t 𝐷) ∣ 𝑎 ≤ (𝐹‘𝑥)} ∈ (𝑆 ↾t 𝐷))) |
34 | 30, 33 | mpbid 235 | . . . . . . . . 9 ⊢ (𝜑 → ∀𝑎 ∈ ℝ {𝑥 ∈ ∪ (𝑆 ↾t 𝐷) ∣ 𝑎 ≤ (𝐹‘𝑥)} ∈ (𝑆 ↾t 𝐷)) |
35 | 34 | adantr 484 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → ∀𝑎 ∈ ℝ {𝑥 ∈ ∪ (𝑆 ↾t 𝐷) ∣ 𝑎 ≤ (𝐹‘𝑥)} ∈ (𝑆 ↾t 𝐷)) |
36 | simpr 488 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → 𝑎 ∈ ℝ) | |
37 | rspa 3135 | . . . . . . . 8 ⊢ ((∀𝑎 ∈ ℝ {𝑥 ∈ ∪ (𝑆 ↾t 𝐷) ∣ 𝑎 ≤ (𝐹‘𝑥)} ∈ (𝑆 ↾t 𝐷) ∧ 𝑎 ∈ ℝ) → {𝑥 ∈ ∪ (𝑆 ↾t 𝐷) ∣ 𝑎 ≤ (𝐹‘𝑥)} ∈ (𝑆 ↾t 𝐷)) | |
38 | 35, 36, 37 | syl2anc 587 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → {𝑥 ∈ ∪ (𝑆 ↾t 𝐷) ∣ 𝑎 ≤ (𝐹‘𝑥)} ∈ (𝑆 ↾t 𝐷)) |
39 | 38 | adantlr 714 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑏 ∈ ℝ) ∧ 𝑎 ∈ ℝ) → {𝑥 ∈ ∪ (𝑆 ↾t 𝐷) ∣ 𝑎 ≤ (𝐹‘𝑥)} ∈ (𝑆 ↾t 𝐷)) |
40 | simpr 488 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑏 ∈ ℝ) → 𝑏 ∈ ℝ) | |
41 | 10, 13, 21, 22, 29, 39, 40 | salpreimagelt 43731 | . . . . 5 ⊢ ((𝜑 ∧ 𝑏 ∈ ℝ) → {𝑥 ∈ ∪ (𝑆 ↾t 𝐷) ∣ (𝐹‘𝑥) < 𝑏} ∈ (𝑆 ↾t 𝐷)) |
42 | 7, 41 | eqeltrd 2852 | . . . 4 ⊢ ((𝜑 ∧ 𝑏 ∈ ℝ) → {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < 𝑏} ∈ (𝑆 ↾t 𝐷)) |
43 | 42 | ralrimiva 3113 | . . 3 ⊢ (𝜑 → ∀𝑏 ∈ ℝ {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < 𝑏} ∈ (𝑆 ↾t 𝐷)) |
44 | 1, 2, 43 | 3jca 1125 | . 2 ⊢ (𝜑 → (𝐷 ⊆ ∪ 𝑆 ∧ 𝐹:𝐷⟶ℝ ∧ ∀𝑏 ∈ ℝ {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < 𝑏} ∈ (𝑆 ↾t 𝐷))) |
45 | issmfgelem.d | . . 3 ⊢ 𝐷 = dom 𝐹 | |
46 | 3, 45 | issmf 43750 | . 2 ⊢ (𝜑 → (𝐹 ∈ (SMblFn‘𝑆) ↔ (𝐷 ⊆ ∪ 𝑆 ∧ 𝐹:𝐷⟶ℝ ∧ ∀𝑏 ∈ ℝ {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < 𝑏} ∈ (𝑆 ↾t 𝐷)))) |
47 | 44, 46 | mpbird 260 | 1 ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∧ w3a 1084 = wceq 1538 Ⅎwnf 1785 ∈ wcel 2111 ∀wral 3070 {crab 3074 Vcvv 3409 ⊆ wss 3858 ∪ cuni 4798 class class class wbr 5032 dom cdm 5524 ⟶wf 6331 ‘cfv 6335 (class class class)co 7150 ℝcr 10574 ℝ*cxr 10712 < clt 10713 ≤ cle 10714 ↾t crest 16752 SAlgcsalg 43338 SMblFncsmblfn 43722 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5156 ax-sep 5169 ax-nul 5176 ax-pow 5234 ax-pr 5298 ax-un 7459 ax-inf2 9137 ax-cc 9895 ax-ac2 9923 ax-cnex 10631 ax-resscn 10632 ax-1cn 10633 ax-icn 10634 ax-addcl 10635 ax-addrcl 10636 ax-mulcl 10637 ax-mulrcl 10638 ax-mulcom 10639 ax-addass 10640 ax-mulass 10641 ax-distr 10642 ax-i2m1 10643 ax-1ne0 10644 ax-1rid 10645 ax-rnegex 10646 ax-rrecex 10647 ax-cnre 10648 ax-pre-lttri 10649 ax-pre-lttrn 10650 ax-pre-ltadd 10651 ax-pre-mulgt0 10652 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rmo 3078 df-rab 3079 df-v 3411 df-sbc 3697 df-csb 3806 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-pss 3877 df-nul 4226 df-if 4421 df-pw 4496 df-sn 4523 df-pr 4525 df-tp 4527 df-op 4529 df-uni 4799 df-int 4839 df-iun 4885 df-br 5033 df-opab 5095 df-mpt 5113 df-tr 5139 df-id 5430 df-eprel 5435 df-po 5443 df-so 5444 df-fr 5483 df-se 5484 df-we 5485 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-res 5536 df-ima 5537 df-pred 6126 df-ord 6172 df-on 6173 df-lim 6174 df-suc 6175 df-iota 6294 df-fun 6337 df-fn 6338 df-f 6339 df-f1 6340 df-fo 6341 df-f1o 6342 df-fv 6343 df-isom 6344 df-riota 7108 df-ov 7153 df-oprab 7154 df-mpo 7155 df-om 7580 df-1st 7693 df-2nd 7694 df-wrecs 7957 df-recs 8018 df-rdg 8056 df-1o 8112 df-er 8299 df-map 8418 df-pm 8419 df-en 8528 df-dom 8529 df-sdom 8530 df-fin 8531 df-card 9401 df-acn 9404 df-ac 9576 df-pnf 10715 df-mnf 10716 df-xr 10717 df-ltxr 10718 df-le 10719 df-sub 10910 df-neg 10911 df-nn 11675 df-n0 11935 df-z 12021 df-uz 12283 df-ioo 12783 df-ico 12785 df-rest 16754 df-salg 43339 df-smblfn 43723 |
This theorem is referenced by: issmfge 43791 |
Copyright terms: Public domain | W3C validator |