Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  issmfgelem Structured version   Visualization version   GIF version

Theorem issmfgelem 43402
Description: The predicate "𝐹 is a real-valued measurable function w.r.t. to the sigma-algebra 𝑆". A function is measurable iff the preimages of all left-closed intervals unbounded above are in the subspace sigma-algebra induced by its domain. The domain of 𝐹 is required to be a subset of the underlying set of 𝑆. Definition 121C of [Fremlin1] p. 36, and Proposition 121B (iv) of [Fremlin1] p. 36 . (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
issmfgelem.x 𝑥𝜑
issmfgelem.a 𝑎𝜑
issmfgelem.s (𝜑𝑆 ∈ SAlg)
issmfgelem.d 𝐷 = dom 𝐹
issmfgelem.i (𝜑𝐷 𝑆)
issmfgelem.f (𝜑𝐹:𝐷⟶ℝ)
issmfgelem.p (𝜑 → ∀𝑎 ∈ ℝ {𝑥𝐷𝑎 ≤ (𝐹𝑥)} ∈ (𝑆t 𝐷))
Assertion
Ref Expression
issmfgelem (𝜑𝐹 ∈ (SMblFn‘𝑆))
Distinct variable groups:   𝐷,𝑎,𝑥   𝐹,𝑎,𝑥   𝑆,𝑎,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑎)

Proof of Theorem issmfgelem
Dummy variable 𝑏 is distinct from all other variables.
StepHypRef Expression
1 issmfgelem.i . . 3 (𝜑𝐷 𝑆)
2 issmfgelem.f . . 3 (𝜑𝐹:𝐷⟶ℝ)
3 issmfgelem.s . . . . . . . . 9 (𝜑𝑆 ∈ SAlg)
43, 1restuni4 41756 . . . . . . . 8 (𝜑 (𝑆t 𝐷) = 𝐷)
54eqcomd 2804 . . . . . . 7 (𝜑𝐷 = (𝑆t 𝐷))
65rabeqdv 3432 . . . . . 6 (𝜑 → {𝑥𝐷 ∣ (𝐹𝑥) < 𝑏} = {𝑥 (𝑆t 𝐷) ∣ (𝐹𝑥) < 𝑏})
76adantr 484 . . . . 5 ((𝜑𝑏 ∈ ℝ) → {𝑥𝐷 ∣ (𝐹𝑥) < 𝑏} = {𝑥 (𝑆t 𝐷) ∣ (𝐹𝑥) < 𝑏})
8 issmfgelem.x . . . . . . 7 𝑥𝜑
9 nfv 1915 . . . . . . 7 𝑥 𝑏 ∈ ℝ
108, 9nfan 1900 . . . . . 6 𝑥(𝜑𝑏 ∈ ℝ)
11 issmfgelem.a . . . . . . 7 𝑎𝜑
12 nfv 1915 . . . . . . 7 𝑎 𝑏 ∈ ℝ
1311, 12nfan 1900 . . . . . 6 𝑎(𝜑𝑏 ∈ ℝ)
143uniexd 7448 . . . . . . . . . . 11 (𝜑 𝑆 ∈ V)
1514adantr 484 . . . . . . . . . 10 ((𝜑𝐷 𝑆) → 𝑆 ∈ V)
16 simpr 488 . . . . . . . . . 10 ((𝜑𝐷 𝑆) → 𝐷 𝑆)
1715, 16ssexd 5192 . . . . . . . . 9 ((𝜑𝐷 𝑆) → 𝐷 ∈ V)
181, 17mpdan 686 . . . . . . . 8 (𝜑𝐷 ∈ V)
19 eqid 2798 . . . . . . . 8 (𝑆t 𝐷) = (𝑆t 𝐷)
203, 18, 19subsalsal 42999 . . . . . . 7 (𝜑 → (𝑆t 𝐷) ∈ SAlg)
2120adantr 484 . . . . . 6 ((𝜑𝑏 ∈ ℝ) → (𝑆t 𝐷) ∈ SAlg)
22 eqid 2798 . . . . . 6 (𝑆t 𝐷) = (𝑆t 𝐷)
232adantr 484 . . . . . . . . 9 ((𝜑𝑥 (𝑆t 𝐷)) → 𝐹:𝐷⟶ℝ)
24 simpr 488 . . . . . . . . . 10 ((𝜑𝑥 (𝑆t 𝐷)) → 𝑥 (𝑆t 𝐷))
254adantr 484 . . . . . . . . . 10 ((𝜑𝑥 (𝑆t 𝐷)) → (𝑆t 𝐷) = 𝐷)
2624, 25eleqtrd 2892 . . . . . . . . 9 ((𝜑𝑥 (𝑆t 𝐷)) → 𝑥𝐷)
2723, 26ffvelrnd 6829 . . . . . . . 8 ((𝜑𝑥 (𝑆t 𝐷)) → (𝐹𝑥) ∈ ℝ)
2827rexrd 10680 . . . . . . 7 ((𝜑𝑥 (𝑆t 𝐷)) → (𝐹𝑥) ∈ ℝ*)
2928adantlr 714 . . . . . 6 (((𝜑𝑏 ∈ ℝ) ∧ 𝑥 (𝑆t 𝐷)) → (𝐹𝑥) ∈ ℝ*)
30 issmfgelem.p . . . . . . . . . 10 (𝜑 → ∀𝑎 ∈ ℝ {𝑥𝐷𝑎 ≤ (𝐹𝑥)} ∈ (𝑆t 𝐷))
315rabeqdv 3432 . . . . . . . . . . . 12 (𝜑 → {𝑥𝐷𝑎 ≤ (𝐹𝑥)} = {𝑥 (𝑆t 𝐷) ∣ 𝑎 ≤ (𝐹𝑥)})
3231eleq1d 2874 . . . . . . . . . . 11 (𝜑 → ({𝑥𝐷𝑎 ≤ (𝐹𝑥)} ∈ (𝑆t 𝐷) ↔ {𝑥 (𝑆t 𝐷) ∣ 𝑎 ≤ (𝐹𝑥)} ∈ (𝑆t 𝐷)))
3311, 32ralbid 3195 . . . . . . . . . 10 (𝜑 → (∀𝑎 ∈ ℝ {𝑥𝐷𝑎 ≤ (𝐹𝑥)} ∈ (𝑆t 𝐷) ↔ ∀𝑎 ∈ ℝ {𝑥 (𝑆t 𝐷) ∣ 𝑎 ≤ (𝐹𝑥)} ∈ (𝑆t 𝐷)))
3430, 33mpbid 235 . . . . . . . . 9 (𝜑 → ∀𝑎 ∈ ℝ {𝑥 (𝑆t 𝐷) ∣ 𝑎 ≤ (𝐹𝑥)} ∈ (𝑆t 𝐷))
3534adantr 484 . . . . . . . 8 ((𝜑𝑎 ∈ ℝ) → ∀𝑎 ∈ ℝ {𝑥 (𝑆t 𝐷) ∣ 𝑎 ≤ (𝐹𝑥)} ∈ (𝑆t 𝐷))
36 simpr 488 . . . . . . . 8 ((𝜑𝑎 ∈ ℝ) → 𝑎 ∈ ℝ)
37 rspa 3171 . . . . . . . 8 ((∀𝑎 ∈ ℝ {𝑥 (𝑆t 𝐷) ∣ 𝑎 ≤ (𝐹𝑥)} ∈ (𝑆t 𝐷) ∧ 𝑎 ∈ ℝ) → {𝑥 (𝑆t 𝐷) ∣ 𝑎 ≤ (𝐹𝑥)} ∈ (𝑆t 𝐷))
3835, 36, 37syl2anc 587 . . . . . . 7 ((𝜑𝑎 ∈ ℝ) → {𝑥 (𝑆t 𝐷) ∣ 𝑎 ≤ (𝐹𝑥)} ∈ (𝑆t 𝐷))
3938adantlr 714 . . . . . 6 (((𝜑𝑏 ∈ ℝ) ∧ 𝑎 ∈ ℝ) → {𝑥 (𝑆t 𝐷) ∣ 𝑎 ≤ (𝐹𝑥)} ∈ (𝑆t 𝐷))
40 simpr 488 . . . . . 6 ((𝜑𝑏 ∈ ℝ) → 𝑏 ∈ ℝ)
4110, 13, 21, 22, 29, 39, 40salpreimagelt 43343 . . . . 5 ((𝜑𝑏 ∈ ℝ) → {𝑥 (𝑆t 𝐷) ∣ (𝐹𝑥) < 𝑏} ∈ (𝑆t 𝐷))
427, 41eqeltrd 2890 . . . 4 ((𝜑𝑏 ∈ ℝ) → {𝑥𝐷 ∣ (𝐹𝑥) < 𝑏} ∈ (𝑆t 𝐷))
4342ralrimiva 3149 . . 3 (𝜑 → ∀𝑏 ∈ ℝ {𝑥𝐷 ∣ (𝐹𝑥) < 𝑏} ∈ (𝑆t 𝐷))
441, 2, 433jca 1125 . 2 (𝜑 → (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑏 ∈ ℝ {𝑥𝐷 ∣ (𝐹𝑥) < 𝑏} ∈ (𝑆t 𝐷)))
45 issmfgelem.d . . 3 𝐷 = dom 𝐹
463, 45issmf 43362 . 2 (𝜑 → (𝐹 ∈ (SMblFn‘𝑆) ↔ (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑏 ∈ ℝ {𝑥𝐷 ∣ (𝐹𝑥) < 𝑏} ∈ (𝑆t 𝐷))))
4744, 46mpbird 260 1 (𝜑𝐹 ∈ (SMblFn‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084   = wceq 1538  wnf 1785  wcel 2111  wral 3106  {crab 3110  Vcvv 3441  wss 3881   cuni 4800   class class class wbr 5030  dom cdm 5519  wf 6320  cfv 6324  (class class class)co 7135  cr 10525  *cxr 10663   < clt 10664  cle 10665  t crest 16686  SAlgcsalg 42950  SMblFncsmblfn 43334
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-inf2 9088  ax-cc 9846  ax-ac2 9874  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-map 8391  df-pm 8392  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-card 9352  df-acn 9355  df-ac 9527  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-n0 11886  df-z 11970  df-uz 12232  df-ioo 12730  df-ico 12732  df-rest 16688  df-salg 42951  df-smblfn 43335
This theorem is referenced by:  issmfge  43403
  Copyright terms: Public domain W3C validator