MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sgrp2nmndlem2 Structured version   Visualization version   GIF version

Theorem sgrp2nmndlem2 18832
Description: Lemma 2 for sgrp2nmnd 18838. (Contributed by AV, 29-Jan-2020.)
Hypotheses
Ref Expression
mgm2nsgrp.s 𝑆 = {𝐴, 𝐵}
mgm2nsgrp.b (Base‘𝑀) = 𝑆
sgrp2nmnd.o (+g𝑀) = (𝑥𝑆, 𝑦𝑆 ↦ if(𝑥 = 𝐴, 𝐴, 𝐵))
sgrp2nmnd.p = (+g𝑀)
Assertion
Ref Expression
sgrp2nmndlem2 ((𝐴𝑆𝐶𝑆) → (𝐴 𝐶) = 𝐴)
Distinct variable groups:   𝑥,𝑆,𝑦   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝑥,𝑀   𝑥,𝐶,𝑦
Allowed substitution hints:   𝑀(𝑦)   (𝑥,𝑦)

Proof of Theorem sgrp2nmndlem2
StepHypRef Expression
1 sgrp2nmnd.p . . . 4 = (+g𝑀)
2 sgrp2nmnd.o . . . 4 (+g𝑀) = (𝑥𝑆, 𝑦𝑆 ↦ if(𝑥 = 𝐴, 𝐴, 𝐵))
31, 2eqtri 2754 . . 3 = (𝑥𝑆, 𝑦𝑆 ↦ if(𝑥 = 𝐴, 𝐴, 𝐵))
43a1i 11 . 2 ((𝐴𝑆𝐶𝑆) → = (𝑥𝑆, 𝑦𝑆 ↦ if(𝑥 = 𝐴, 𝐴, 𝐵)))
5 iftrue 4478 . . 3 (𝑥 = 𝐴 → if(𝑥 = 𝐴, 𝐴, 𝐵) = 𝐴)
65ad2antrl 728 . 2 (((𝐴𝑆𝐶𝑆) ∧ (𝑥 = 𝐴𝑦 = 𝐶)) → if(𝑥 = 𝐴, 𝐴, 𝐵) = 𝐴)
7 simpl 482 . 2 ((𝐴𝑆𝐶𝑆) → 𝐴𝑆)
8 simpr 484 . 2 ((𝐴𝑆𝐶𝑆) → 𝐶𝑆)
94, 6, 7, 8, 7ovmpod 7498 1 ((𝐴𝑆𝐶𝑆) → (𝐴 𝐶) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  ifcif 4472  {cpr 4575  cfv 6481  (class class class)co 7346  cmpo 7348  Basecbs 17120  +gcplusg 17161
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-iota 6437  df-fun 6483  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351
This theorem is referenced by:  sgrp2rid2  18834  sgrp2nmndlem4  18836  sgrp2nmndlem5  18837
  Copyright terms: Public domain W3C validator