| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sgrp2nmndlem2 | Structured version Visualization version GIF version | ||
| Description: Lemma 2 for sgrp2nmnd 18911. (Contributed by AV, 29-Jan-2020.) |
| Ref | Expression |
|---|---|
| mgm2nsgrp.s | ⊢ 𝑆 = {𝐴, 𝐵} |
| mgm2nsgrp.b | ⊢ (Base‘𝑀) = 𝑆 |
| sgrp2nmnd.o | ⊢ (+g‘𝑀) = (𝑥 ∈ 𝑆, 𝑦 ∈ 𝑆 ↦ if(𝑥 = 𝐴, 𝐴, 𝐵)) |
| sgrp2nmnd.p | ⊢ ⚬ = (+g‘𝑀) |
| Ref | Expression |
|---|---|
| sgrp2nmndlem2 | ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆) → (𝐴 ⚬ 𝐶) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sgrp2nmnd.p | . . . 4 ⊢ ⚬ = (+g‘𝑀) | |
| 2 | sgrp2nmnd.o | . . . 4 ⊢ (+g‘𝑀) = (𝑥 ∈ 𝑆, 𝑦 ∈ 𝑆 ↦ if(𝑥 = 𝐴, 𝐴, 𝐵)) | |
| 3 | 1, 2 | eqtri 2757 | . . 3 ⊢ ⚬ = (𝑥 ∈ 𝑆, 𝑦 ∈ 𝑆 ↦ if(𝑥 = 𝐴, 𝐴, 𝐵)) |
| 4 | 3 | a1i 11 | . 2 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆) → ⚬ = (𝑥 ∈ 𝑆, 𝑦 ∈ 𝑆 ↦ if(𝑥 = 𝐴, 𝐴, 𝐵))) |
| 5 | iftrue 4511 | . . 3 ⊢ (𝑥 = 𝐴 → if(𝑥 = 𝐴, 𝐴, 𝐵) = 𝐴) | |
| 6 | 5 | ad2antrl 728 | . 2 ⊢ (((𝐴 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆) ∧ (𝑥 = 𝐴 ∧ 𝑦 = 𝐶)) → if(𝑥 = 𝐴, 𝐴, 𝐵) = 𝐴) |
| 7 | simpl 482 | . 2 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆) → 𝐴 ∈ 𝑆) | |
| 8 | simpr 484 | . 2 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆) → 𝐶 ∈ 𝑆) | |
| 9 | 4, 6, 7, 8, 7 | ovmpod 7566 | 1 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆) → (𝐴 ⚬ 𝐶) = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ifcif 4505 {cpr 4608 ‘cfv 6540 (class class class)co 7412 ∈ cmpo 7414 Basecbs 17228 +gcplusg 17272 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pr 5412 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-sbc 3771 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-br 5124 df-opab 5186 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-iota 6493 df-fun 6542 df-fv 6548 df-ov 7415 df-oprab 7416 df-mpo 7417 |
| This theorem is referenced by: sgrp2rid2 18907 sgrp2nmndlem4 18909 sgrp2nmndlem5 18910 |
| Copyright terms: Public domain | W3C validator |