![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sgrp2nmndlem2 | Structured version Visualization version GIF version |
Description: Lemma 2 for sgrp2nmnd 18881. (Contributed by AV, 29-Jan-2020.) |
Ref | Expression |
---|---|
mgm2nsgrp.s | ⊢ 𝑆 = {𝐴, 𝐵} |
mgm2nsgrp.b | ⊢ (Base‘𝑀) = 𝑆 |
sgrp2nmnd.o | ⊢ (+g‘𝑀) = (𝑥 ∈ 𝑆, 𝑦 ∈ 𝑆 ↦ if(𝑥 = 𝐴, 𝐴, 𝐵)) |
sgrp2nmnd.p | ⊢ ⚬ = (+g‘𝑀) |
Ref | Expression |
---|---|
sgrp2nmndlem2 | ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆) → (𝐴 ⚬ 𝐶) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sgrp2nmnd.p | . . . 4 ⊢ ⚬ = (+g‘𝑀) | |
2 | sgrp2nmnd.o | . . . 4 ⊢ (+g‘𝑀) = (𝑥 ∈ 𝑆, 𝑦 ∈ 𝑆 ↦ if(𝑥 = 𝐴, 𝐴, 𝐵)) | |
3 | 1, 2 | eqtri 2753 | . . 3 ⊢ ⚬ = (𝑥 ∈ 𝑆, 𝑦 ∈ 𝑆 ↦ if(𝑥 = 𝐴, 𝐴, 𝐵)) |
4 | 3 | a1i 11 | . 2 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆) → ⚬ = (𝑥 ∈ 𝑆, 𝑦 ∈ 𝑆 ↦ if(𝑥 = 𝐴, 𝐴, 𝐵))) |
5 | iftrue 4531 | . . 3 ⊢ (𝑥 = 𝐴 → if(𝑥 = 𝐴, 𝐴, 𝐵) = 𝐴) | |
6 | 5 | ad2antrl 726 | . 2 ⊢ (((𝐴 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆) ∧ (𝑥 = 𝐴 ∧ 𝑦 = 𝐶)) → if(𝑥 = 𝐴, 𝐴, 𝐵) = 𝐴) |
7 | simpl 481 | . 2 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆) → 𝐴 ∈ 𝑆) | |
8 | simpr 483 | . 2 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆) → 𝐶 ∈ 𝑆) | |
9 | 4, 6, 7, 8, 7 | ovmpod 7567 | 1 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆) → (𝐴 ⚬ 𝐶) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1533 ∈ wcel 2098 ifcif 4525 {cpr 4627 ‘cfv 6543 (class class class)co 7413 ∈ cmpo 7415 Basecbs 17174 +gcplusg 17227 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5295 ax-nul 5302 ax-pr 5424 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3465 df-sbc 3771 df-dif 3944 df-un 3946 df-ss 3958 df-nul 4320 df-if 4526 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4905 df-br 5145 df-opab 5207 df-id 5571 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-iota 6495 df-fun 6545 df-fv 6551 df-ov 7416 df-oprab 7417 df-mpo 7418 |
This theorem is referenced by: sgrp2rid2 18877 sgrp2nmndlem4 18879 sgrp2nmndlem5 18880 |
Copyright terms: Public domain | W3C validator |