Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sgrp2nmndlem2 | Structured version Visualization version GIF version |
Description: Lemma 2 for sgrp2nmnd 18484. (Contributed by AV, 29-Jan-2020.) |
Ref | Expression |
---|---|
mgm2nsgrp.s | ⊢ 𝑆 = {𝐴, 𝐵} |
mgm2nsgrp.b | ⊢ (Base‘𝑀) = 𝑆 |
sgrp2nmnd.o | ⊢ (+g‘𝑀) = (𝑥 ∈ 𝑆, 𝑦 ∈ 𝑆 ↦ if(𝑥 = 𝐴, 𝐴, 𝐵)) |
sgrp2nmnd.p | ⊢ ⚬ = (+g‘𝑀) |
Ref | Expression |
---|---|
sgrp2nmndlem2 | ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆) → (𝐴 ⚬ 𝐶) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sgrp2nmnd.p | . . . 4 ⊢ ⚬ = (+g‘𝑀) | |
2 | sgrp2nmnd.o | . . . 4 ⊢ (+g‘𝑀) = (𝑥 ∈ 𝑆, 𝑦 ∈ 𝑆 ↦ if(𝑥 = 𝐴, 𝐴, 𝐵)) | |
3 | 1, 2 | eqtri 2766 | . . 3 ⊢ ⚬ = (𝑥 ∈ 𝑆, 𝑦 ∈ 𝑆 ↦ if(𝑥 = 𝐴, 𝐴, 𝐵)) |
4 | 3 | a1i 11 | . 2 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆) → ⚬ = (𝑥 ∈ 𝑆, 𝑦 ∈ 𝑆 ↦ if(𝑥 = 𝐴, 𝐴, 𝐵))) |
5 | iftrue 4462 | . . 3 ⊢ (𝑥 = 𝐴 → if(𝑥 = 𝐴, 𝐴, 𝐵) = 𝐴) | |
6 | 5 | ad2antrl 724 | . 2 ⊢ (((𝐴 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆) ∧ (𝑥 = 𝐴 ∧ 𝑦 = 𝐶)) → if(𝑥 = 𝐴, 𝐴, 𝐵) = 𝐴) |
7 | simpl 482 | . 2 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆) → 𝐴 ∈ 𝑆) | |
8 | simpr 484 | . 2 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆) → 𝐶 ∈ 𝑆) | |
9 | 4, 6, 7, 8, 7 | ovmpod 7403 | 1 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆) → (𝐴 ⚬ 𝐶) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ifcif 4456 {cpr 4560 ‘cfv 6418 (class class class)co 7255 ∈ cmpo 7257 Basecbs 16840 +gcplusg 16888 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-iota 6376 df-fun 6420 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 |
This theorem is referenced by: sgrp2rid2 18480 sgrp2nmndlem4 18482 sgrp2nmndlem5 18483 |
Copyright terms: Public domain | W3C validator |