MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sgrp2rid2 Structured version   Visualization version   GIF version

Theorem sgrp2rid2 18085
Description: A small semigroup (with two elements) with two right identities which are different if 𝐴𝐵. (Contributed by AV, 10-Feb-2020.)
Hypotheses
Ref Expression
mgm2nsgrp.s 𝑆 = {𝐴, 𝐵}
mgm2nsgrp.b (Base‘𝑀) = 𝑆
sgrp2nmnd.o (+g𝑀) = (𝑥𝑆, 𝑦𝑆 ↦ if(𝑥 = 𝐴, 𝐴, 𝐵))
sgrp2nmnd.p = (+g𝑀)
Assertion
Ref Expression
sgrp2rid2 ((𝐴𝑉𝐵𝑊) → ∀𝑥𝑆𝑦𝑆 (𝑦 𝑥) = 𝑦)
Distinct variable groups:   𝑥,𝑆,𝑦   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝑥,𝑀   𝑥,𝑉   𝑥,𝑊   𝑥, ,𝑦
Allowed substitution hints:   𝑀(𝑦)   𝑉(𝑦)   𝑊(𝑦)

Proof of Theorem sgrp2rid2
StepHypRef Expression
1 prid1g 4690 . . . 4 (𝐴𝑉𝐴 ∈ {𝐴, 𝐵})
2 mgm2nsgrp.s . . . 4 𝑆 = {𝐴, 𝐵}
31, 2eleqtrrdi 2924 . . 3 (𝐴𝑉𝐴𝑆)
4 prid2g 4691 . . . 4 (𝐵𝑊𝐵 ∈ {𝐴, 𝐵})
54, 2eleqtrrdi 2924 . . 3 (𝐵𝑊𝐵𝑆)
6 simpl 485 . . . . 5 ((𝐴𝑆𝐵𝑆) → 𝐴𝑆)
7 mgm2nsgrp.b . . . . . 6 (Base‘𝑀) = 𝑆
8 sgrp2nmnd.o . . . . . 6 (+g𝑀) = (𝑥𝑆, 𝑦𝑆 ↦ if(𝑥 = 𝐴, 𝐴, 𝐵))
9 sgrp2nmnd.p . . . . . 6 = (+g𝑀)
102, 7, 8, 9sgrp2nmndlem2 18083 . . . . 5 ((𝐴𝑆𝐴𝑆) → (𝐴 𝐴) = 𝐴)
116, 10syldan 593 . . . 4 ((𝐴𝑆𝐵𝑆) → (𝐴 𝐴) = 𝐴)
12 oveq1 7157 . . . . . . 7 (𝐴 = 𝐵 → (𝐴 𝐴) = (𝐵 𝐴))
13 id 22 . . . . . . 7 (𝐴 = 𝐵𝐴 = 𝐵)
1412, 13eqeq12d 2837 . . . . . 6 (𝐴 = 𝐵 → ((𝐴 𝐴) = 𝐴 ↔ (𝐵 𝐴) = 𝐵))
1511, 14syl5ib 246 . . . . 5 (𝐴 = 𝐵 → ((𝐴𝑆𝐵𝑆) → (𝐵 𝐴) = 𝐵))
16 simprl 769 . . . . . . 7 ((¬ 𝐴 = 𝐵 ∧ (𝐴𝑆𝐵𝑆)) → 𝐴𝑆)
17 simprr 771 . . . . . . 7 ((¬ 𝐴 = 𝐵 ∧ (𝐴𝑆𝐵𝑆)) → 𝐵𝑆)
18 neqne 3024 . . . . . . . 8 𝐴 = 𝐵𝐴𝐵)
1918adantr 483 . . . . . . 7 ((¬ 𝐴 = 𝐵 ∧ (𝐴𝑆𝐵𝑆)) → 𝐴𝐵)
202, 7, 8, 9sgrp2nmndlem3 18084 . . . . . . 7 ((𝐴𝑆𝐵𝑆𝐴𝐵) → (𝐵 𝐴) = 𝐵)
2116, 17, 19, 20syl3anc 1367 . . . . . 6 ((¬ 𝐴 = 𝐵 ∧ (𝐴𝑆𝐵𝑆)) → (𝐵 𝐴) = 𝐵)
2221ex 415 . . . . 5 𝐴 = 𝐵 → ((𝐴𝑆𝐵𝑆) → (𝐵 𝐴) = 𝐵))
2315, 22pm2.61i 184 . . . 4 ((𝐴𝑆𝐵𝑆) → (𝐵 𝐴) = 𝐵)
242, 7, 8, 9sgrp2nmndlem2 18083 . . . . 5 ((𝐴𝑆𝐵𝑆) → (𝐴 𝐵) = 𝐴)
2513, 13oveq12d 7168 . . . . . . . 8 (𝐴 = 𝐵 → (𝐴 𝐴) = (𝐵 𝐵))
2625, 13eqeq12d 2837 . . . . . . 7 (𝐴 = 𝐵 → ((𝐴 𝐴) = 𝐴 ↔ (𝐵 𝐵) = 𝐵))
2711, 26syl5ib 246 . . . . . 6 (𝐴 = 𝐵 → ((𝐴𝑆𝐵𝑆) → (𝐵 𝐵) = 𝐵))
282, 7, 8, 9sgrp2nmndlem3 18084 . . . . . . . 8 ((𝐵𝑆𝐵𝑆𝐴𝐵) → (𝐵 𝐵) = 𝐵)
2917, 17, 19, 28syl3anc 1367 . . . . . . 7 ((¬ 𝐴 = 𝐵 ∧ (𝐴𝑆𝐵𝑆)) → (𝐵 𝐵) = 𝐵)
3029ex 415 . . . . . 6 𝐴 = 𝐵 → ((𝐴𝑆𝐵𝑆) → (𝐵 𝐵) = 𝐵))
3127, 30pm2.61i 184 . . . . 5 ((𝐴𝑆𝐵𝑆) → (𝐵 𝐵) = 𝐵)
3224, 31jca 514 . . . 4 ((𝐴𝑆𝐵𝑆) → ((𝐴 𝐵) = 𝐴 ∧ (𝐵 𝐵) = 𝐵))
3311, 23, 32jca31 517 . . 3 ((𝐴𝑆𝐵𝑆) → (((𝐴 𝐴) = 𝐴 ∧ (𝐵 𝐴) = 𝐵) ∧ ((𝐴 𝐵) = 𝐴 ∧ (𝐵 𝐵) = 𝐵)))
343, 5, 33syl2an 597 . 2 ((𝐴𝑉𝐵𝑊) → (((𝐴 𝐴) = 𝐴 ∧ (𝐵 𝐴) = 𝐵) ∧ ((𝐴 𝐵) = 𝐴 ∧ (𝐵 𝐵) = 𝐵)))
352raleqi 3414 . . . . 5 (∀𝑦𝑆 (𝑦 𝑥) = 𝑦 ↔ ∀𝑦 ∈ {𝐴, 𝐵} (𝑦 𝑥) = 𝑦)
36 oveq1 7157 . . . . . . 7 (𝑦 = 𝐴 → (𝑦 𝑥) = (𝐴 𝑥))
37 id 22 . . . . . . 7 (𝑦 = 𝐴𝑦 = 𝐴)
3836, 37eqeq12d 2837 . . . . . 6 (𝑦 = 𝐴 → ((𝑦 𝑥) = 𝑦 ↔ (𝐴 𝑥) = 𝐴))
39 oveq1 7157 . . . . . . 7 (𝑦 = 𝐵 → (𝑦 𝑥) = (𝐵 𝑥))
40 id 22 . . . . . . 7 (𝑦 = 𝐵𝑦 = 𝐵)
4139, 40eqeq12d 2837 . . . . . 6 (𝑦 = 𝐵 → ((𝑦 𝑥) = 𝑦 ↔ (𝐵 𝑥) = 𝐵))
4238, 41ralprg 4626 . . . . 5 ((𝐴𝑉𝐵𝑊) → (∀𝑦 ∈ {𝐴, 𝐵} (𝑦 𝑥) = 𝑦 ↔ ((𝐴 𝑥) = 𝐴 ∧ (𝐵 𝑥) = 𝐵)))
4335, 42syl5bb 285 . . . 4 ((𝐴𝑉𝐵𝑊) → (∀𝑦𝑆 (𝑦 𝑥) = 𝑦 ↔ ((𝐴 𝑥) = 𝐴 ∧ (𝐵 𝑥) = 𝐵)))
4443ralbidv 3197 . . 3 ((𝐴𝑉𝐵𝑊) → (∀𝑥𝑆𝑦𝑆 (𝑦 𝑥) = 𝑦 ↔ ∀𝑥𝑆 ((𝐴 𝑥) = 𝐴 ∧ (𝐵 𝑥) = 𝐵)))
452raleqi 3414 . . . 4 (∀𝑥𝑆 ((𝐴 𝑥) = 𝐴 ∧ (𝐵 𝑥) = 𝐵) ↔ ∀𝑥 ∈ {𝐴, 𝐵} ((𝐴 𝑥) = 𝐴 ∧ (𝐵 𝑥) = 𝐵))
46 oveq2 7158 . . . . . . 7 (𝑥 = 𝐴 → (𝐴 𝑥) = (𝐴 𝐴))
4746eqeq1d 2823 . . . . . 6 (𝑥 = 𝐴 → ((𝐴 𝑥) = 𝐴 ↔ (𝐴 𝐴) = 𝐴))
48 oveq2 7158 . . . . . . 7 (𝑥 = 𝐴 → (𝐵 𝑥) = (𝐵 𝐴))
4948eqeq1d 2823 . . . . . 6 (𝑥 = 𝐴 → ((𝐵 𝑥) = 𝐵 ↔ (𝐵 𝐴) = 𝐵))
5047, 49anbi12d 632 . . . . 5 (𝑥 = 𝐴 → (((𝐴 𝑥) = 𝐴 ∧ (𝐵 𝑥) = 𝐵) ↔ ((𝐴 𝐴) = 𝐴 ∧ (𝐵 𝐴) = 𝐵)))
51 oveq2 7158 . . . . . . 7 (𝑥 = 𝐵 → (𝐴 𝑥) = (𝐴 𝐵))
5251eqeq1d 2823 . . . . . 6 (𝑥 = 𝐵 → ((𝐴 𝑥) = 𝐴 ↔ (𝐴 𝐵) = 𝐴))
53 oveq2 7158 . . . . . . 7 (𝑥 = 𝐵 → (𝐵 𝑥) = (𝐵 𝐵))
5453eqeq1d 2823 . . . . . 6 (𝑥 = 𝐵 → ((𝐵 𝑥) = 𝐵 ↔ (𝐵 𝐵) = 𝐵))
5552, 54anbi12d 632 . . . . 5 (𝑥 = 𝐵 → (((𝐴 𝑥) = 𝐴 ∧ (𝐵 𝑥) = 𝐵) ↔ ((𝐴 𝐵) = 𝐴 ∧ (𝐵 𝐵) = 𝐵)))
5650, 55ralprg 4626 . . . 4 ((𝐴𝑉𝐵𝑊) → (∀𝑥 ∈ {𝐴, 𝐵} ((𝐴 𝑥) = 𝐴 ∧ (𝐵 𝑥) = 𝐵) ↔ (((𝐴 𝐴) = 𝐴 ∧ (𝐵 𝐴) = 𝐵) ∧ ((𝐴 𝐵) = 𝐴 ∧ (𝐵 𝐵) = 𝐵))))
5745, 56syl5bb 285 . . 3 ((𝐴𝑉𝐵𝑊) → (∀𝑥𝑆 ((𝐴 𝑥) = 𝐴 ∧ (𝐵 𝑥) = 𝐵) ↔ (((𝐴 𝐴) = 𝐴 ∧ (𝐵 𝐴) = 𝐵) ∧ ((𝐴 𝐵) = 𝐴 ∧ (𝐵 𝐵) = 𝐵))))
5844, 57bitrd 281 . 2 ((𝐴𝑉𝐵𝑊) → (∀𝑥𝑆𝑦𝑆 (𝑦 𝑥) = 𝑦 ↔ (((𝐴 𝐴) = 𝐴 ∧ (𝐵 𝐴) = 𝐵) ∧ ((𝐴 𝐵) = 𝐴 ∧ (𝐵 𝐵) = 𝐵))))
5934, 58mpbird 259 1 ((𝐴𝑉𝐵𝑊) → ∀𝑥𝑆𝑦𝑆 (𝑦 𝑥) = 𝑦)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398   = wceq 1533  wcel 2110  wne 3016  wral 3138  ifcif 4467  {cpr 4563  cfv 6350  (class class class)co 7150  cmpo 7152  Basecbs 16477  +gcplusg 16559
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-sep 5196  ax-nul 5203  ax-pr 5322
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3497  df-sbc 3773  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4833  df-br 5060  df-opab 5122  df-id 5455  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-iota 6309  df-fun 6352  df-fv 6358  df-ov 7153  df-oprab 7154  df-mpo 7155
This theorem is referenced by:  sgrp2rid2ex  18086
  Copyright terms: Public domain W3C validator