Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sgrp2nmndlem1 | Structured version Visualization version GIF version |
Description: Lemma 1 for sgrp2nmnd 18569: 𝑀 is a magma, even if 𝐴 = 𝐵 (𝑀 is the trivial magma in this case, see mgmb1mgm1 18339). (Contributed by AV, 29-Jan-2020.) |
Ref | Expression |
---|---|
mgm2nsgrp.s | ⊢ 𝑆 = {𝐴, 𝐵} |
mgm2nsgrp.b | ⊢ (Base‘𝑀) = 𝑆 |
sgrp2nmnd.o | ⊢ (+g‘𝑀) = (𝑥 ∈ 𝑆, 𝑦 ∈ 𝑆 ↦ if(𝑥 = 𝐴, 𝐴, 𝐵)) |
Ref | Expression |
---|---|
sgrp2nmndlem1 | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝑀 ∈ Mgm) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prid1g 4696 | . . 3 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ {𝐴, 𝐵}) | |
2 | mgm2nsgrp.s | . . 3 ⊢ 𝑆 = {𝐴, 𝐵} | |
3 | 1, 2 | eleqtrrdi 2850 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ 𝑆) |
4 | prid2g 4697 | . . 3 ⊢ (𝐵 ∈ 𝑊 → 𝐵 ∈ {𝐴, 𝐵}) | |
5 | 4, 2 | eleqtrrdi 2850 | . 2 ⊢ (𝐵 ∈ 𝑊 → 𝐵 ∈ 𝑆) |
6 | mgm2nsgrp.b | . . . 4 ⊢ (Base‘𝑀) = 𝑆 | |
7 | 6 | eqcomi 2747 | . . 3 ⊢ 𝑆 = (Base‘𝑀) |
8 | sgrp2nmnd.o | . . 3 ⊢ (+g‘𝑀) = (𝑥 ∈ 𝑆, 𝑦 ∈ 𝑆 ↦ if(𝑥 = 𝐴, 𝐴, 𝐵)) | |
9 | ne0i 4268 | . . . 4 ⊢ (𝐴 ∈ 𝑆 → 𝑆 ≠ ∅) | |
10 | 9 | adantr 481 | . . 3 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → 𝑆 ≠ ∅) |
11 | simpll 764 | . . 3 ⊢ (((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → 𝐴 ∈ 𝑆) | |
12 | simplr 766 | . . 3 ⊢ (((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → 𝐵 ∈ 𝑆) | |
13 | 7, 8, 10, 11, 12 | opifismgm 18343 | . 2 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → 𝑀 ∈ Mgm) |
14 | 3, 5, 13 | syl2an 596 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝑀 ∈ Mgm) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ≠ wne 2943 ∅c0 4256 ifcif 4459 {cpr 4563 ‘cfv 6433 ∈ cmpo 7277 Basecbs 16912 +gcplusg 16962 Mgmcmgm 18324 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-1st 7831 df-2nd 7832 df-mgm 18326 |
This theorem is referenced by: sgrp2nmndlem4 18567 |
Copyright terms: Public domain | W3C validator |