MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sgrp2nmndlem1 Structured version   Visualization version   GIF version

Theorem sgrp2nmndlem1 18958
Description: Lemma 1 for sgrp2nmnd 18965: 𝑀 is a magma, even if 𝐴 = 𝐵 (𝑀 is the trivial magma in this case, see mgmb1mgm1 18693). (Contributed by AV, 29-Jan-2020.)
Hypotheses
Ref Expression
mgm2nsgrp.s 𝑆 = {𝐴, 𝐵}
mgm2nsgrp.b (Base‘𝑀) = 𝑆
sgrp2nmnd.o (+g𝑀) = (𝑥𝑆, 𝑦𝑆 ↦ if(𝑥 = 𝐴, 𝐴, 𝐵))
Assertion
Ref Expression
sgrp2nmndlem1 ((𝐴𝑉𝐵𝑊) → 𝑀 ∈ Mgm)
Distinct variable groups:   𝑥,𝑆,𝑦   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝑥,𝑀
Allowed substitution hints:   𝑀(𝑦)   𝑉(𝑥,𝑦)   𝑊(𝑥,𝑦)

Proof of Theorem sgrp2nmndlem1
StepHypRef Expression
1 prid1g 4785 . . 3 (𝐴𝑉𝐴 ∈ {𝐴, 𝐵})
2 mgm2nsgrp.s . . 3 𝑆 = {𝐴, 𝐵}
31, 2eleqtrrdi 2855 . 2 (𝐴𝑉𝐴𝑆)
4 prid2g 4786 . . 3 (𝐵𝑊𝐵 ∈ {𝐴, 𝐵})
54, 2eleqtrrdi 2855 . 2 (𝐵𝑊𝐵𝑆)
6 mgm2nsgrp.b . . . 4 (Base‘𝑀) = 𝑆
76eqcomi 2749 . . 3 𝑆 = (Base‘𝑀)
8 sgrp2nmnd.o . . 3 (+g𝑀) = (𝑥𝑆, 𝑦𝑆 ↦ if(𝑥 = 𝐴, 𝐴, 𝐵))
9 ne0i 4364 . . . 4 (𝐴𝑆𝑆 ≠ ∅)
109adantr 480 . . 3 ((𝐴𝑆𝐵𝑆) → 𝑆 ≠ ∅)
11 simpll 766 . . 3 (((𝐴𝑆𝐵𝑆) ∧ (𝑥𝑆𝑦𝑆)) → 𝐴𝑆)
12 simplr 768 . . 3 (((𝐴𝑆𝐵𝑆) ∧ (𝑥𝑆𝑦𝑆)) → 𝐵𝑆)
137, 8, 10, 11, 12opifismgm 18697 . 2 ((𝐴𝑆𝐵𝑆) → 𝑀 ∈ Mgm)
143, 5, 13syl2an 595 1 ((𝐴𝑉𝐵𝑊) → 𝑀 ∈ Mgm)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  wne 2946  c0 4352  ifcif 4548  {cpr 4650  cfv 6573  cmpo 7450  Basecbs 17258  +gcplusg 17311  Mgmcmgm 18676
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031  df-mgm 18678
This theorem is referenced by:  sgrp2nmndlem4  18963
  Copyright terms: Public domain W3C validator