MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sgrp2nmndlem1 Structured version   Visualization version   GIF version

Theorem sgrp2nmndlem1 18874
Description: Lemma 1 for sgrp2nmnd 18881: 𝑀 is a magma, even if 𝐴 = 𝐵 (𝑀 is the trivial magma in this case, see mgmb1mgm1 18609). (Contributed by AV, 29-Jan-2020.)
Hypotheses
Ref Expression
mgm2nsgrp.s 𝑆 = {𝐴, 𝐵}
mgm2nsgrp.b (Base‘𝑀) = 𝑆
sgrp2nmnd.o (+g𝑀) = (𝑥𝑆, 𝑦𝑆 ↦ if(𝑥 = 𝐴, 𝐴, 𝐵))
Assertion
Ref Expression
sgrp2nmndlem1 ((𝐴𝑉𝐵𝑊) → 𝑀 ∈ Mgm)
Distinct variable groups:   𝑥,𝑆,𝑦   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝑥,𝑀
Allowed substitution hints:   𝑀(𝑦)   𝑉(𝑥,𝑦)   𝑊(𝑥,𝑦)

Proof of Theorem sgrp2nmndlem1
StepHypRef Expression
1 prid1g 4761 . . 3 (𝐴𝑉𝐴 ∈ {𝐴, 𝐵})
2 mgm2nsgrp.s . . 3 𝑆 = {𝐴, 𝐵}
31, 2eleqtrrdi 2836 . 2 (𝐴𝑉𝐴𝑆)
4 prid2g 4762 . . 3 (𝐵𝑊𝐵 ∈ {𝐴, 𝐵})
54, 2eleqtrrdi 2836 . 2 (𝐵𝑊𝐵𝑆)
6 mgm2nsgrp.b . . . 4 (Base‘𝑀) = 𝑆
76eqcomi 2734 . . 3 𝑆 = (Base‘𝑀)
8 sgrp2nmnd.o . . 3 (+g𝑀) = (𝑥𝑆, 𝑦𝑆 ↦ if(𝑥 = 𝐴, 𝐴, 𝐵))
9 ne0i 4331 . . . 4 (𝐴𝑆𝑆 ≠ ∅)
109adantr 479 . . 3 ((𝐴𝑆𝐵𝑆) → 𝑆 ≠ ∅)
11 simpll 765 . . 3 (((𝐴𝑆𝐵𝑆) ∧ (𝑥𝑆𝑦𝑆)) → 𝐴𝑆)
12 simplr 767 . . 3 (((𝐴𝑆𝐵𝑆) ∧ (𝑥𝑆𝑦𝑆)) → 𝐵𝑆)
137, 8, 10, 11, 12opifismgm 18613 . 2 ((𝐴𝑆𝐵𝑆) → 𝑀 ∈ Mgm)
143, 5, 13syl2an 594 1 ((𝐴𝑉𝐵𝑊) → 𝑀 ∈ Mgm)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1533  wcel 2098  wne 2930  c0 4319  ifcif 4525  {cpr 4627  cfv 6543  cmpo 7415  Basecbs 17174  +gcplusg 17227  Mgmcmgm 18592
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5295  ax-nul 5302  ax-pr 5424  ax-un 7735
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-ral 3052  df-rex 3061  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-nul 4320  df-if 4526  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4905  df-iun 4994  df-br 5145  df-opab 5207  df-mpt 5228  df-id 5571  df-xp 5679  df-rel 5680  df-cnv 5681  df-co 5682  df-dm 5683  df-rn 5684  df-res 5685  df-ima 5686  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-fv 6551  df-ov 7416  df-oprab 7417  df-mpo 7418  df-1st 7987  df-2nd 7988  df-mgm 18594
This theorem is referenced by:  sgrp2nmndlem4  18879
  Copyright terms: Public domain W3C validator