| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sgrp2nmndlem1 | Structured version Visualization version GIF version | ||
| Description: Lemma 1 for sgrp2nmnd 18804: 𝑀 is a magma, even if 𝐴 = 𝐵 (𝑀 is the trivial magma in this case, see mgmb1mgm1 18529). (Contributed by AV, 29-Jan-2020.) |
| Ref | Expression |
|---|---|
| mgm2nsgrp.s | ⊢ 𝑆 = {𝐴, 𝐵} |
| mgm2nsgrp.b | ⊢ (Base‘𝑀) = 𝑆 |
| sgrp2nmnd.o | ⊢ (+g‘𝑀) = (𝑥 ∈ 𝑆, 𝑦 ∈ 𝑆 ↦ if(𝑥 = 𝐴, 𝐴, 𝐵)) |
| Ref | Expression |
|---|---|
| sgrp2nmndlem1 | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝑀 ∈ Mgm) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prid1g 4712 | . . 3 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ {𝐴, 𝐵}) | |
| 2 | mgm2nsgrp.s | . . 3 ⊢ 𝑆 = {𝐴, 𝐵} | |
| 3 | 1, 2 | eleqtrrdi 2839 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ 𝑆) |
| 4 | prid2g 4713 | . . 3 ⊢ (𝐵 ∈ 𝑊 → 𝐵 ∈ {𝐴, 𝐵}) | |
| 5 | 4, 2 | eleqtrrdi 2839 | . 2 ⊢ (𝐵 ∈ 𝑊 → 𝐵 ∈ 𝑆) |
| 6 | mgm2nsgrp.b | . . . 4 ⊢ (Base‘𝑀) = 𝑆 | |
| 7 | 6 | eqcomi 2738 | . . 3 ⊢ 𝑆 = (Base‘𝑀) |
| 8 | sgrp2nmnd.o | . . 3 ⊢ (+g‘𝑀) = (𝑥 ∈ 𝑆, 𝑦 ∈ 𝑆 ↦ if(𝑥 = 𝐴, 𝐴, 𝐵)) | |
| 9 | ne0i 4292 | . . . 4 ⊢ (𝐴 ∈ 𝑆 → 𝑆 ≠ ∅) | |
| 10 | 9 | adantr 480 | . . 3 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → 𝑆 ≠ ∅) |
| 11 | simpll 766 | . . 3 ⊢ (((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → 𝐴 ∈ 𝑆) | |
| 12 | simplr 768 | . . 3 ⊢ (((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → 𝐵 ∈ 𝑆) | |
| 13 | 7, 8, 10, 11, 12 | opifismgm 18533 | . 2 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → 𝑀 ∈ Mgm) |
| 14 | 3, 5, 13 | syl2an 596 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝑀 ∈ Mgm) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∅c0 4284 ifcif 4476 {cpr 4579 ‘cfv 6482 ∈ cmpo 7351 Basecbs 17120 +gcplusg 17161 Mgmcmgm 18512 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-fv 6490 df-ov 7352 df-oprab 7353 df-mpo 7354 df-1st 7924 df-2nd 7925 df-mgm 18514 |
| This theorem is referenced by: sgrp2nmndlem4 18802 |
| Copyright terms: Public domain | W3C validator |