MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sgrp2nmndlem1 Structured version   Visualization version   GIF version

Theorem sgrp2nmndlem1 18797
Description: Lemma 1 for sgrp2nmnd 18804: 𝑀 is a magma, even if 𝐴 = 𝐵 (𝑀 is the trivial magma in this case, see mgmb1mgm1 18529). (Contributed by AV, 29-Jan-2020.)
Hypotheses
Ref Expression
mgm2nsgrp.s 𝑆 = {𝐴, 𝐵}
mgm2nsgrp.b (Base‘𝑀) = 𝑆
sgrp2nmnd.o (+g𝑀) = (𝑥𝑆, 𝑦𝑆 ↦ if(𝑥 = 𝐴, 𝐴, 𝐵))
Assertion
Ref Expression
sgrp2nmndlem1 ((𝐴𝑉𝐵𝑊) → 𝑀 ∈ Mgm)
Distinct variable groups:   𝑥,𝑆,𝑦   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝑥,𝑀
Allowed substitution hints:   𝑀(𝑦)   𝑉(𝑥,𝑦)   𝑊(𝑥,𝑦)

Proof of Theorem sgrp2nmndlem1
StepHypRef Expression
1 prid1g 4712 . . 3 (𝐴𝑉𝐴 ∈ {𝐴, 𝐵})
2 mgm2nsgrp.s . . 3 𝑆 = {𝐴, 𝐵}
31, 2eleqtrrdi 2839 . 2 (𝐴𝑉𝐴𝑆)
4 prid2g 4713 . . 3 (𝐵𝑊𝐵 ∈ {𝐴, 𝐵})
54, 2eleqtrrdi 2839 . 2 (𝐵𝑊𝐵𝑆)
6 mgm2nsgrp.b . . . 4 (Base‘𝑀) = 𝑆
76eqcomi 2738 . . 3 𝑆 = (Base‘𝑀)
8 sgrp2nmnd.o . . 3 (+g𝑀) = (𝑥𝑆, 𝑦𝑆 ↦ if(𝑥 = 𝐴, 𝐴, 𝐵))
9 ne0i 4292 . . . 4 (𝐴𝑆𝑆 ≠ ∅)
109adantr 480 . . 3 ((𝐴𝑆𝐵𝑆) → 𝑆 ≠ ∅)
11 simpll 766 . . 3 (((𝐴𝑆𝐵𝑆) ∧ (𝑥𝑆𝑦𝑆)) → 𝐴𝑆)
12 simplr 768 . . 3 (((𝐴𝑆𝐵𝑆) ∧ (𝑥𝑆𝑦𝑆)) → 𝐵𝑆)
137, 8, 10, 11, 12opifismgm 18533 . 2 ((𝐴𝑆𝐵𝑆) → 𝑀 ∈ Mgm)
143, 5, 13syl2an 596 1 ((𝐴𝑉𝐵𝑊) → 𝑀 ∈ Mgm)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2925  c0 4284  ifcif 4476  {cpr 4579  cfv 6482  cmpo 7351  Basecbs 17120  +gcplusg 17161  Mgmcmgm 18512
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-fv 6490  df-ov 7352  df-oprab 7353  df-mpo 7354  df-1st 7924  df-2nd 7925  df-mgm 18514
This theorem is referenced by:  sgrp2nmndlem4  18802
  Copyright terms: Public domain W3C validator