Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sgrp2nmndlem1 | Structured version Visualization version GIF version |
Description: Lemma 1 for sgrp2nmnd 18638: 𝑀 is a magma, even if 𝐴 = 𝐵 (𝑀 is the trivial magma in this case, see mgmb1mgm1 18409). (Contributed by AV, 29-Jan-2020.) |
Ref | Expression |
---|---|
mgm2nsgrp.s | ⊢ 𝑆 = {𝐴, 𝐵} |
mgm2nsgrp.b | ⊢ (Base‘𝑀) = 𝑆 |
sgrp2nmnd.o | ⊢ (+g‘𝑀) = (𝑥 ∈ 𝑆, 𝑦 ∈ 𝑆 ↦ if(𝑥 = 𝐴, 𝐴, 𝐵)) |
Ref | Expression |
---|---|
sgrp2nmndlem1 | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝑀 ∈ Mgm) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prid1g 4706 | . . 3 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ {𝐴, 𝐵}) | |
2 | mgm2nsgrp.s | . . 3 ⊢ 𝑆 = {𝐴, 𝐵} | |
3 | 1, 2 | eleqtrrdi 2849 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ 𝑆) |
4 | prid2g 4707 | . . 3 ⊢ (𝐵 ∈ 𝑊 → 𝐵 ∈ {𝐴, 𝐵}) | |
5 | 4, 2 | eleqtrrdi 2849 | . 2 ⊢ (𝐵 ∈ 𝑊 → 𝐵 ∈ 𝑆) |
6 | mgm2nsgrp.b | . . . 4 ⊢ (Base‘𝑀) = 𝑆 | |
7 | 6 | eqcomi 2746 | . . 3 ⊢ 𝑆 = (Base‘𝑀) |
8 | sgrp2nmnd.o | . . 3 ⊢ (+g‘𝑀) = (𝑥 ∈ 𝑆, 𝑦 ∈ 𝑆 ↦ if(𝑥 = 𝐴, 𝐴, 𝐵)) | |
9 | ne0i 4279 | . . . 4 ⊢ (𝐴 ∈ 𝑆 → 𝑆 ≠ ∅) | |
10 | 9 | adantr 481 | . . 3 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → 𝑆 ≠ ∅) |
11 | simpll 764 | . . 3 ⊢ (((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → 𝐴 ∈ 𝑆) | |
12 | simplr 766 | . . 3 ⊢ (((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → 𝐵 ∈ 𝑆) | |
13 | 7, 8, 10, 11, 12 | opifismgm 18413 | . 2 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → 𝑀 ∈ Mgm) |
14 | 3, 5, 13 | syl2an 596 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝑀 ∈ Mgm) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1540 ∈ wcel 2105 ≠ wne 2941 ∅c0 4267 ifcif 4471 {cpr 4573 ‘cfv 6465 ∈ cmpo 7317 Basecbs 16982 +gcplusg 17032 Mgmcmgm 18394 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-sep 5238 ax-nul 5245 ax-pr 5367 ax-un 7628 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3405 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4268 df-if 4472 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4851 df-iun 4939 df-br 5088 df-opab 5150 df-mpt 5171 df-id 5507 df-xp 5613 df-rel 5614 df-cnv 5615 df-co 5616 df-dm 5617 df-rn 5618 df-res 5619 df-ima 5620 df-iota 6417 df-fun 6467 df-fn 6468 df-f 6469 df-fv 6473 df-ov 7318 df-oprab 7319 df-mpo 7320 df-1st 7876 df-2nd 7877 df-mgm 18396 |
This theorem is referenced by: sgrp2nmndlem4 18636 |
Copyright terms: Public domain | W3C validator |