MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sgrp2nmndlem3 Structured version   Visualization version   GIF version

Theorem sgrp2nmndlem3 18479
Description: Lemma 3 for sgrp2nmnd 18484. (Contributed by AV, 29-Jan-2020.)
Hypotheses
Ref Expression
mgm2nsgrp.s 𝑆 = {𝐴, 𝐵}
mgm2nsgrp.b (Base‘𝑀) = 𝑆
sgrp2nmnd.o (+g𝑀) = (𝑥𝑆, 𝑦𝑆 ↦ if(𝑥 = 𝐴, 𝐴, 𝐵))
sgrp2nmnd.p = (+g𝑀)
Assertion
Ref Expression
sgrp2nmndlem3 ((𝐶𝑆𝐵𝑆𝐴𝐵) → (𝐵 𝐶) = 𝐵)
Distinct variable groups:   𝑥,𝑆,𝑦   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝑥,𝑀   𝑥,𝐶,𝑦
Allowed substitution hints:   𝑀(𝑦)   (𝑥,𝑦)

Proof of Theorem sgrp2nmndlem3
StepHypRef Expression
1 sgrp2nmnd.p . . . 4 = (+g𝑀)
2 sgrp2nmnd.o . . . 4 (+g𝑀) = (𝑥𝑆, 𝑦𝑆 ↦ if(𝑥 = 𝐴, 𝐴, 𝐵))
31, 2eqtri 2766 . . 3 = (𝑥𝑆, 𝑦𝑆 ↦ if(𝑥 = 𝐴, 𝐴, 𝐵))
43a1i 11 . 2 ((𝐶𝑆𝐵𝑆𝐴𝐵) → = (𝑥𝑆, 𝑦𝑆 ↦ if(𝑥 = 𝐴, 𝐴, 𝐵)))
5 df-ne 2943 . . . . . 6 (𝐴𝐵 ↔ ¬ 𝐴 = 𝐵)
6 eqeq2 2750 . . . . . . . . . 10 (𝑥 = 𝐵 → (𝐴 = 𝑥𝐴 = 𝐵))
76adantr 480 . . . . . . . . 9 ((𝑥 = 𝐵𝑦 = 𝐶) → (𝐴 = 𝑥𝐴 = 𝐵))
8 eqcom 2745 . . . . . . . . 9 (𝐴 = 𝑥𝑥 = 𝐴)
97, 8bitr3di 285 . . . . . . . 8 ((𝑥 = 𝐵𝑦 = 𝐶) → (𝐴 = 𝐵𝑥 = 𝐴))
109notbid 317 . . . . . . 7 ((𝑥 = 𝐵𝑦 = 𝐶) → (¬ 𝐴 = 𝐵 ↔ ¬ 𝑥 = 𝐴))
1110biimpcd 248 . . . . . 6 𝐴 = 𝐵 → ((𝑥 = 𝐵𝑦 = 𝐶) → ¬ 𝑥 = 𝐴))
125, 11sylbi 216 . . . . 5 (𝐴𝐵 → ((𝑥 = 𝐵𝑦 = 𝐶) → ¬ 𝑥 = 𝐴))
13123ad2ant3 1133 . . . 4 ((𝐶𝑆𝐵𝑆𝐴𝐵) → ((𝑥 = 𝐵𝑦 = 𝐶) → ¬ 𝑥 = 𝐴))
1413imp 406 . . 3 (((𝐶𝑆𝐵𝑆𝐴𝐵) ∧ (𝑥 = 𝐵𝑦 = 𝐶)) → ¬ 𝑥 = 𝐴)
1514iffalsed 4467 . 2 (((𝐶𝑆𝐵𝑆𝐴𝐵) ∧ (𝑥 = 𝐵𝑦 = 𝐶)) → if(𝑥 = 𝐴, 𝐴, 𝐵) = 𝐵)
16 simp2 1135 . 2 ((𝐶𝑆𝐵𝑆𝐴𝐵) → 𝐵𝑆)
17 simp1 1134 . 2 ((𝐶𝑆𝐵𝑆𝐴𝐵) → 𝐶𝑆)
184, 15, 16, 17, 16ovmpod 7403 1 ((𝐶𝑆𝐵𝑆𝐴𝐵) → (𝐵 𝐶) = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wne 2942  ifcif 4456  {cpr 4560  cfv 6418  (class class class)co 7255  cmpo 7257  Basecbs 16840  +gcplusg 16888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-iota 6376  df-fun 6420  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260
This theorem is referenced by:  sgrp2rid2  18480  sgrp2nmndlem4  18482  sgrp2nmndlem5  18483
  Copyright terms: Public domain W3C validator