MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sgrp2nmndlem3 Structured version   Visualization version   GIF version

Theorem sgrp2nmndlem3 18806
Description: Lemma 3 for sgrp2nmnd 18811. (Contributed by AV, 29-Jan-2020.)
Hypotheses
Ref Expression
mgm2nsgrp.s 𝑆 = {𝐴, 𝐵}
mgm2nsgrp.b (Base‘𝑀) = 𝑆
sgrp2nmnd.o (+g𝑀) = (𝑥𝑆, 𝑦𝑆 ↦ if(𝑥 = 𝐴, 𝐴, 𝐵))
sgrp2nmnd.p = (+g𝑀)
Assertion
Ref Expression
sgrp2nmndlem3 ((𝐶𝑆𝐵𝑆𝐴𝐵) → (𝐵 𝐶) = 𝐵)
Distinct variable groups:   𝑥,𝑆,𝑦   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝑥,𝑀   𝑥,𝐶,𝑦
Allowed substitution hints:   𝑀(𝑦)   (𝑥,𝑦)

Proof of Theorem sgrp2nmndlem3
StepHypRef Expression
1 sgrp2nmnd.p . . . 4 = (+g𝑀)
2 sgrp2nmnd.o . . . 4 (+g𝑀) = (𝑥𝑆, 𝑦𝑆 ↦ if(𝑥 = 𝐴, 𝐴, 𝐵))
31, 2eqtri 2761 . . 3 = (𝑥𝑆, 𝑦𝑆 ↦ if(𝑥 = 𝐴, 𝐴, 𝐵))
43a1i 11 . 2 ((𝐶𝑆𝐵𝑆𝐴𝐵) → = (𝑥𝑆, 𝑦𝑆 ↦ if(𝑥 = 𝐴, 𝐴, 𝐵)))
5 df-ne 2942 . . . . . 6 (𝐴𝐵 ↔ ¬ 𝐴 = 𝐵)
6 eqeq2 2745 . . . . . . . . . 10 (𝑥 = 𝐵 → (𝐴 = 𝑥𝐴 = 𝐵))
76adantr 482 . . . . . . . . 9 ((𝑥 = 𝐵𝑦 = 𝐶) → (𝐴 = 𝑥𝐴 = 𝐵))
8 eqcom 2740 . . . . . . . . 9 (𝐴 = 𝑥𝑥 = 𝐴)
97, 8bitr3di 286 . . . . . . . 8 ((𝑥 = 𝐵𝑦 = 𝐶) → (𝐴 = 𝐵𝑥 = 𝐴))
109notbid 318 . . . . . . 7 ((𝑥 = 𝐵𝑦 = 𝐶) → (¬ 𝐴 = 𝐵 ↔ ¬ 𝑥 = 𝐴))
1110biimpcd 248 . . . . . 6 𝐴 = 𝐵 → ((𝑥 = 𝐵𝑦 = 𝐶) → ¬ 𝑥 = 𝐴))
125, 11sylbi 216 . . . . 5 (𝐴𝐵 → ((𝑥 = 𝐵𝑦 = 𝐶) → ¬ 𝑥 = 𝐴))
13123ad2ant3 1136 . . . 4 ((𝐶𝑆𝐵𝑆𝐴𝐵) → ((𝑥 = 𝐵𝑦 = 𝐶) → ¬ 𝑥 = 𝐴))
1413imp 408 . . 3 (((𝐶𝑆𝐵𝑆𝐴𝐵) ∧ (𝑥 = 𝐵𝑦 = 𝐶)) → ¬ 𝑥 = 𝐴)
1514iffalsed 4540 . 2 (((𝐶𝑆𝐵𝑆𝐴𝐵) ∧ (𝑥 = 𝐵𝑦 = 𝐶)) → if(𝑥 = 𝐴, 𝐴, 𝐵) = 𝐵)
16 simp2 1138 . 2 ((𝐶𝑆𝐵𝑆𝐴𝐵) → 𝐵𝑆)
17 simp1 1137 . 2 ((𝐶𝑆𝐵𝑆𝐴𝐵) → 𝐶𝑆)
184, 15, 16, 17, 16ovmpod 7560 1 ((𝐶𝑆𝐵𝑆𝐴𝐵) → (𝐵 𝐶) = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 397  w3a 1088   = wceq 1542  wcel 2107  wne 2941  ifcif 4529  {cpr 4631  cfv 6544  (class class class)co 7409  cmpo 7411  Basecbs 17144  +gcplusg 17197
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-sbc 3779  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-iota 6496  df-fun 6546  df-fv 6552  df-ov 7412  df-oprab 7413  df-mpo 7414
This theorem is referenced by:  sgrp2rid2  18807  sgrp2nmndlem4  18809  sgrp2nmndlem5  18810
  Copyright terms: Public domain W3C validator