![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sgrp2nmndlem3 | Structured version Visualization version GIF version |
Description: Lemma 3 for sgrp2nmnd 18873. (Contributed by AV, 29-Jan-2020.) |
Ref | Expression |
---|---|
mgm2nsgrp.s | ⊢ 𝑆 = {𝐴, 𝐵} |
mgm2nsgrp.b | ⊢ (Base‘𝑀) = 𝑆 |
sgrp2nmnd.o | ⊢ (+g‘𝑀) = (𝑥 ∈ 𝑆, 𝑦 ∈ 𝑆 ↦ if(𝑥 = 𝐴, 𝐴, 𝐵)) |
sgrp2nmnd.p | ⊢ ⚬ = (+g‘𝑀) |
Ref | Expression |
---|---|
sgrp2nmndlem3 | ⊢ ((𝐶 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵) → (𝐵 ⚬ 𝐶) = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sgrp2nmnd.p | . . . 4 ⊢ ⚬ = (+g‘𝑀) | |
2 | sgrp2nmnd.o | . . . 4 ⊢ (+g‘𝑀) = (𝑥 ∈ 𝑆, 𝑦 ∈ 𝑆 ↦ if(𝑥 = 𝐴, 𝐴, 𝐵)) | |
3 | 1, 2 | eqtri 2755 | . . 3 ⊢ ⚬ = (𝑥 ∈ 𝑆, 𝑦 ∈ 𝑆 ↦ if(𝑥 = 𝐴, 𝐴, 𝐵)) |
4 | 3 | a1i 11 | . 2 ⊢ ((𝐶 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵) → ⚬ = (𝑥 ∈ 𝑆, 𝑦 ∈ 𝑆 ↦ if(𝑥 = 𝐴, 𝐴, 𝐵))) |
5 | df-ne 2936 | . . . . . 6 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵) | |
6 | eqeq2 2739 | . . . . . . . . . 10 ⊢ (𝑥 = 𝐵 → (𝐴 = 𝑥 ↔ 𝐴 = 𝐵)) | |
7 | 6 | adantr 480 | . . . . . . . . 9 ⊢ ((𝑥 = 𝐵 ∧ 𝑦 = 𝐶) → (𝐴 = 𝑥 ↔ 𝐴 = 𝐵)) |
8 | eqcom 2734 | . . . . . . . . 9 ⊢ (𝐴 = 𝑥 ↔ 𝑥 = 𝐴) | |
9 | 7, 8 | bitr3di 286 | . . . . . . . 8 ⊢ ((𝑥 = 𝐵 ∧ 𝑦 = 𝐶) → (𝐴 = 𝐵 ↔ 𝑥 = 𝐴)) |
10 | 9 | notbid 318 | . . . . . . 7 ⊢ ((𝑥 = 𝐵 ∧ 𝑦 = 𝐶) → (¬ 𝐴 = 𝐵 ↔ ¬ 𝑥 = 𝐴)) |
11 | 10 | biimpcd 248 | . . . . . 6 ⊢ (¬ 𝐴 = 𝐵 → ((𝑥 = 𝐵 ∧ 𝑦 = 𝐶) → ¬ 𝑥 = 𝐴)) |
12 | 5, 11 | sylbi 216 | . . . . 5 ⊢ (𝐴 ≠ 𝐵 → ((𝑥 = 𝐵 ∧ 𝑦 = 𝐶) → ¬ 𝑥 = 𝐴)) |
13 | 12 | 3ad2ant3 1133 | . . . 4 ⊢ ((𝐶 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵) → ((𝑥 = 𝐵 ∧ 𝑦 = 𝐶) → ¬ 𝑥 = 𝐴)) |
14 | 13 | imp 406 | . . 3 ⊢ (((𝐶 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵) ∧ (𝑥 = 𝐵 ∧ 𝑦 = 𝐶)) → ¬ 𝑥 = 𝐴) |
15 | 14 | iffalsed 4535 | . 2 ⊢ (((𝐶 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵) ∧ (𝑥 = 𝐵 ∧ 𝑦 = 𝐶)) → if(𝑥 = 𝐴, 𝐴, 𝐵) = 𝐵) |
16 | simp2 1135 | . 2 ⊢ ((𝐶 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵) → 𝐵 ∈ 𝑆) | |
17 | simp1 1134 | . 2 ⊢ ((𝐶 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵) → 𝐶 ∈ 𝑆) | |
18 | 4, 15, 16, 17, 16 | ovmpod 7567 | 1 ⊢ ((𝐶 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵) → (𝐵 ⚬ 𝐶) = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1085 = wceq 1534 ∈ wcel 2099 ≠ wne 2935 ifcif 4524 {cpr 4626 ‘cfv 6542 (class class class)co 7414 ∈ cmpo 7416 Basecbs 17171 +gcplusg 17224 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-sep 5293 ax-nul 5300 ax-pr 5423 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-ral 3057 df-rex 3066 df-rab 3428 df-v 3471 df-sbc 3775 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4525 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-br 5143 df-opab 5205 df-id 5570 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-iota 6494 df-fun 6544 df-fv 6550 df-ov 7417 df-oprab 7418 df-mpo 7419 |
This theorem is referenced by: sgrp2rid2 18869 sgrp2nmndlem4 18871 sgrp2nmndlem5 18872 |
Copyright terms: Public domain | W3C validator |