MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sgrp2nmndlem3 Structured version   Visualization version   GIF version

Theorem sgrp2nmndlem3 18876
Description: Lemma 3 for sgrp2nmnd 18881. (Contributed by AV, 29-Jan-2020.)
Hypotheses
Ref Expression
mgm2nsgrp.s 𝑆 = {𝐴, 𝐵}
mgm2nsgrp.b (Base‘𝑀) = 𝑆
sgrp2nmnd.o (+g𝑀) = (𝑥𝑆, 𝑦𝑆 ↦ if(𝑥 = 𝐴, 𝐴, 𝐵))
sgrp2nmnd.p = (+g𝑀)
Assertion
Ref Expression
sgrp2nmndlem3 ((𝐶𝑆𝐵𝑆𝐴𝐵) → (𝐵 𝐶) = 𝐵)
Distinct variable groups:   𝑥,𝑆,𝑦   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝑥,𝑀   𝑥,𝐶,𝑦
Allowed substitution hints:   𝑀(𝑦)   (𝑥,𝑦)

Proof of Theorem sgrp2nmndlem3
StepHypRef Expression
1 sgrp2nmnd.p . . . 4 = (+g𝑀)
2 sgrp2nmnd.o . . . 4 (+g𝑀) = (𝑥𝑆, 𝑦𝑆 ↦ if(𝑥 = 𝐴, 𝐴, 𝐵))
31, 2eqtri 2753 . . 3 = (𝑥𝑆, 𝑦𝑆 ↦ if(𝑥 = 𝐴, 𝐴, 𝐵))
43a1i 11 . 2 ((𝐶𝑆𝐵𝑆𝐴𝐵) → = (𝑥𝑆, 𝑦𝑆 ↦ if(𝑥 = 𝐴, 𝐴, 𝐵)))
5 df-ne 2931 . . . . . 6 (𝐴𝐵 ↔ ¬ 𝐴 = 𝐵)
6 eqeq2 2737 . . . . . . . . . 10 (𝑥 = 𝐵 → (𝐴 = 𝑥𝐴 = 𝐵))
76adantr 479 . . . . . . . . 9 ((𝑥 = 𝐵𝑦 = 𝐶) → (𝐴 = 𝑥𝐴 = 𝐵))
8 eqcom 2732 . . . . . . . . 9 (𝐴 = 𝑥𝑥 = 𝐴)
97, 8bitr3di 285 . . . . . . . 8 ((𝑥 = 𝐵𝑦 = 𝐶) → (𝐴 = 𝐵𝑥 = 𝐴))
109notbid 317 . . . . . . 7 ((𝑥 = 𝐵𝑦 = 𝐶) → (¬ 𝐴 = 𝐵 ↔ ¬ 𝑥 = 𝐴))
1110biimpcd 248 . . . . . 6 𝐴 = 𝐵 → ((𝑥 = 𝐵𝑦 = 𝐶) → ¬ 𝑥 = 𝐴))
125, 11sylbi 216 . . . . 5 (𝐴𝐵 → ((𝑥 = 𝐵𝑦 = 𝐶) → ¬ 𝑥 = 𝐴))
13123ad2ant3 1132 . . . 4 ((𝐶𝑆𝐵𝑆𝐴𝐵) → ((𝑥 = 𝐵𝑦 = 𝐶) → ¬ 𝑥 = 𝐴))
1413imp 405 . . 3 (((𝐶𝑆𝐵𝑆𝐴𝐵) ∧ (𝑥 = 𝐵𝑦 = 𝐶)) → ¬ 𝑥 = 𝐴)
1514iffalsed 4536 . 2 (((𝐶𝑆𝐵𝑆𝐴𝐵) ∧ (𝑥 = 𝐵𝑦 = 𝐶)) → if(𝑥 = 𝐴, 𝐴, 𝐵) = 𝐵)
16 simp2 1134 . 2 ((𝐶𝑆𝐵𝑆𝐴𝐵) → 𝐵𝑆)
17 simp1 1133 . 2 ((𝐶𝑆𝐵𝑆𝐴𝐵) → 𝐶𝑆)
184, 15, 16, 17, 16ovmpod 7567 1 ((𝐶𝑆𝐵𝑆𝐴𝐵) → (𝐵 𝐶) = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 394  w3a 1084   = wceq 1533  wcel 2098  wne 2930  ifcif 4525  {cpr 4627  cfv 6543  (class class class)co 7413  cmpo 7415  Basecbs 17174  +gcplusg 17227
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5295  ax-nul 5302  ax-pr 5424
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-ral 3052  df-rex 3061  df-rab 3420  df-v 3465  df-sbc 3771  df-dif 3944  df-un 3946  df-ss 3958  df-nul 4320  df-if 4526  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4905  df-br 5145  df-opab 5207  df-id 5571  df-xp 5679  df-rel 5680  df-cnv 5681  df-co 5682  df-dm 5683  df-iota 6495  df-fun 6545  df-fv 6551  df-ov 7416  df-oprab 7417  df-mpo 7418
This theorem is referenced by:  sgrp2rid2  18877  sgrp2nmndlem4  18879  sgrp2nmndlem5  18880
  Copyright terms: Public domain W3C validator