MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sgrp2nmndlem3 Structured version   Visualization version   GIF version

Theorem sgrp2nmndlem3 17799
Description: Lemma 3 for sgrp2nmnd 17804. (Contributed by AV, 29-Jan-2020.)
Hypotheses
Ref Expression
mgm2nsgrp.s 𝑆 = {𝐴, 𝐵}
mgm2nsgrp.b (Base‘𝑀) = 𝑆
sgrp2nmnd.o (+g𝑀) = (𝑥𝑆, 𝑦𝑆 ↦ if(𝑥 = 𝐴, 𝐴, 𝐵))
sgrp2nmnd.p = (+g𝑀)
Assertion
Ref Expression
sgrp2nmndlem3 ((𝐶𝑆𝐵𝑆𝐴𝐵) → (𝐵 𝐶) = 𝐵)
Distinct variable groups:   𝑥,𝑆,𝑦   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝑥,𝑀   𝑥,𝐶,𝑦
Allowed substitution hints:   𝑀(𝑦)   (𝑥,𝑦)

Proof of Theorem sgrp2nmndlem3
StepHypRef Expression
1 sgrp2nmnd.p . . . 4 = (+g𝑀)
2 sgrp2nmnd.o . . . 4 (+g𝑀) = (𝑥𝑆, 𝑦𝑆 ↦ if(𝑥 = 𝐴, 𝐴, 𝐵))
31, 2eqtri 2801 . . 3 = (𝑥𝑆, 𝑦𝑆 ↦ if(𝑥 = 𝐴, 𝐴, 𝐵))
43a1i 11 . 2 ((𝐶𝑆𝐵𝑆𝐴𝐵) → = (𝑥𝑆, 𝑦𝑆 ↦ if(𝑥 = 𝐴, 𝐴, 𝐵)))
5 df-ne 2969 . . . . . 6 (𝐴𝐵 ↔ ¬ 𝐴 = 𝐵)
6 eqcom 2784 . . . . . . . . 9 (𝐴 = 𝑥𝑥 = 𝐴)
7 eqeq2 2788 . . . . . . . . . 10 (𝑥 = 𝐵 → (𝐴 = 𝑥𝐴 = 𝐵))
87adantr 474 . . . . . . . . 9 ((𝑥 = 𝐵𝑦 = 𝐶) → (𝐴 = 𝑥𝐴 = 𝐵))
96, 8syl5rbbr 278 . . . . . . . 8 ((𝑥 = 𝐵𝑦 = 𝐶) → (𝐴 = 𝐵𝑥 = 𝐴))
109notbid 310 . . . . . . 7 ((𝑥 = 𝐵𝑦 = 𝐶) → (¬ 𝐴 = 𝐵 ↔ ¬ 𝑥 = 𝐴))
1110biimpcd 241 . . . . . 6 𝐴 = 𝐵 → ((𝑥 = 𝐵𝑦 = 𝐶) → ¬ 𝑥 = 𝐴))
125, 11sylbi 209 . . . . 5 (𝐴𝐵 → ((𝑥 = 𝐵𝑦 = 𝐶) → ¬ 𝑥 = 𝐴))
13123ad2ant3 1126 . . . 4 ((𝐶𝑆𝐵𝑆𝐴𝐵) → ((𝑥 = 𝐵𝑦 = 𝐶) → ¬ 𝑥 = 𝐴))
1413imp 397 . . 3 (((𝐶𝑆𝐵𝑆𝐴𝐵) ∧ (𝑥 = 𝐵𝑦 = 𝐶)) → ¬ 𝑥 = 𝐴)
1514iffalsed 4317 . 2 (((𝐶𝑆𝐵𝑆𝐴𝐵) ∧ (𝑥 = 𝐵𝑦 = 𝐶)) → if(𝑥 = 𝐴, 𝐴, 𝐵) = 𝐵)
16 simp2 1128 . 2 ((𝐶𝑆𝐵𝑆𝐴𝐵) → 𝐵𝑆)
17 simp1 1127 . 2 ((𝐶𝑆𝐵𝑆𝐴𝐵) → 𝐶𝑆)
184, 15, 16, 17, 16ovmpt2d 7065 1 ((𝐶𝑆𝐵𝑆𝐴𝐵) → (𝐵 𝐶) = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 386  w3a 1071   = wceq 1601  wcel 2106  wne 2968  ifcif 4306  {cpr 4399  cfv 6135  (class class class)co 6922  cmpt2 6924  Basecbs 16255  +gcplusg 16338
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2054  ax-9 2115  ax-10 2134  ax-11 2149  ax-12 2162  ax-13 2333  ax-ext 2753  ax-sep 5017  ax-nul 5025  ax-pr 5138
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2550  df-eu 2586  df-clab 2763  df-cleq 2769  df-clel 2773  df-nfc 2920  df-ne 2969  df-ral 3094  df-rex 3095  df-rab 3098  df-v 3399  df-sbc 3652  df-dif 3794  df-un 3796  df-in 3798  df-ss 3805  df-nul 4141  df-if 4307  df-sn 4398  df-pr 4400  df-op 4404  df-uni 4672  df-br 4887  df-opab 4949  df-id 5261  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-iota 6099  df-fun 6137  df-fv 6143  df-ov 6925  df-oprab 6926  df-mpt2 6927
This theorem is referenced by:  sgrp2rid2  17800  sgrp2nmndlem4  17802  sgrp2nmndlem5  17803
  Copyright terms: Public domain W3C validator