![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sgrp2nmndlem3 | Structured version Visualization version GIF version |
Description: Lemma 3 for sgrp2nmnd 18811. (Contributed by AV, 29-Jan-2020.) |
Ref | Expression |
---|---|
mgm2nsgrp.s | ⊢ 𝑆 = {𝐴, 𝐵} |
mgm2nsgrp.b | ⊢ (Base‘𝑀) = 𝑆 |
sgrp2nmnd.o | ⊢ (+g‘𝑀) = (𝑥 ∈ 𝑆, 𝑦 ∈ 𝑆 ↦ if(𝑥 = 𝐴, 𝐴, 𝐵)) |
sgrp2nmnd.p | ⊢ ⚬ = (+g‘𝑀) |
Ref | Expression |
---|---|
sgrp2nmndlem3 | ⊢ ((𝐶 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵) → (𝐵 ⚬ 𝐶) = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sgrp2nmnd.p | . . . 4 ⊢ ⚬ = (+g‘𝑀) | |
2 | sgrp2nmnd.o | . . . 4 ⊢ (+g‘𝑀) = (𝑥 ∈ 𝑆, 𝑦 ∈ 𝑆 ↦ if(𝑥 = 𝐴, 𝐴, 𝐵)) | |
3 | 1, 2 | eqtri 2761 | . . 3 ⊢ ⚬ = (𝑥 ∈ 𝑆, 𝑦 ∈ 𝑆 ↦ if(𝑥 = 𝐴, 𝐴, 𝐵)) |
4 | 3 | a1i 11 | . 2 ⊢ ((𝐶 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵) → ⚬ = (𝑥 ∈ 𝑆, 𝑦 ∈ 𝑆 ↦ if(𝑥 = 𝐴, 𝐴, 𝐵))) |
5 | df-ne 2942 | . . . . . 6 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵) | |
6 | eqeq2 2745 | . . . . . . . . . 10 ⊢ (𝑥 = 𝐵 → (𝐴 = 𝑥 ↔ 𝐴 = 𝐵)) | |
7 | 6 | adantr 482 | . . . . . . . . 9 ⊢ ((𝑥 = 𝐵 ∧ 𝑦 = 𝐶) → (𝐴 = 𝑥 ↔ 𝐴 = 𝐵)) |
8 | eqcom 2740 | . . . . . . . . 9 ⊢ (𝐴 = 𝑥 ↔ 𝑥 = 𝐴) | |
9 | 7, 8 | bitr3di 286 | . . . . . . . 8 ⊢ ((𝑥 = 𝐵 ∧ 𝑦 = 𝐶) → (𝐴 = 𝐵 ↔ 𝑥 = 𝐴)) |
10 | 9 | notbid 318 | . . . . . . 7 ⊢ ((𝑥 = 𝐵 ∧ 𝑦 = 𝐶) → (¬ 𝐴 = 𝐵 ↔ ¬ 𝑥 = 𝐴)) |
11 | 10 | biimpcd 248 | . . . . . 6 ⊢ (¬ 𝐴 = 𝐵 → ((𝑥 = 𝐵 ∧ 𝑦 = 𝐶) → ¬ 𝑥 = 𝐴)) |
12 | 5, 11 | sylbi 216 | . . . . 5 ⊢ (𝐴 ≠ 𝐵 → ((𝑥 = 𝐵 ∧ 𝑦 = 𝐶) → ¬ 𝑥 = 𝐴)) |
13 | 12 | 3ad2ant3 1136 | . . . 4 ⊢ ((𝐶 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵) → ((𝑥 = 𝐵 ∧ 𝑦 = 𝐶) → ¬ 𝑥 = 𝐴)) |
14 | 13 | imp 408 | . . 3 ⊢ (((𝐶 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵) ∧ (𝑥 = 𝐵 ∧ 𝑦 = 𝐶)) → ¬ 𝑥 = 𝐴) |
15 | 14 | iffalsed 4540 | . 2 ⊢ (((𝐶 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵) ∧ (𝑥 = 𝐵 ∧ 𝑦 = 𝐶)) → if(𝑥 = 𝐴, 𝐴, 𝐵) = 𝐵) |
16 | simp2 1138 | . 2 ⊢ ((𝐶 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵) → 𝐵 ∈ 𝑆) | |
17 | simp1 1137 | . 2 ⊢ ((𝐶 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵) → 𝐶 ∈ 𝑆) | |
18 | 4, 15, 16, 17, 16 | ovmpod 7560 | 1 ⊢ ((𝐶 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵) → (𝐵 ⚬ 𝐶) = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 397 ∧ w3a 1088 = wceq 1542 ∈ wcel 2107 ≠ wne 2941 ifcif 4529 {cpr 4631 ‘cfv 6544 (class class class)co 7409 ∈ cmpo 7411 Basecbs 17144 +gcplusg 17197 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-sbc 3779 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-iota 6496 df-fun 6546 df-fv 6552 df-ov 7412 df-oprab 7413 df-mpo 7414 |
This theorem is referenced by: sgrp2rid2 18807 sgrp2nmndlem4 18809 sgrp2nmndlem5 18810 |
Copyright terms: Public domain | W3C validator |