MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sgrp2nmndlem3 Structured version   Visualization version   GIF version

Theorem sgrp2nmndlem3 18960
Description: Lemma 3 for sgrp2nmnd 18965. (Contributed by AV, 29-Jan-2020.)
Hypotheses
Ref Expression
mgm2nsgrp.s 𝑆 = {𝐴, 𝐵}
mgm2nsgrp.b (Base‘𝑀) = 𝑆
sgrp2nmnd.o (+g𝑀) = (𝑥𝑆, 𝑦𝑆 ↦ if(𝑥 = 𝐴, 𝐴, 𝐵))
sgrp2nmnd.p = (+g𝑀)
Assertion
Ref Expression
sgrp2nmndlem3 ((𝐶𝑆𝐵𝑆𝐴𝐵) → (𝐵 𝐶) = 𝐵)
Distinct variable groups:   𝑥,𝑆,𝑦   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝑥,𝑀   𝑥,𝐶,𝑦
Allowed substitution hints:   𝑀(𝑦)   (𝑥,𝑦)

Proof of Theorem sgrp2nmndlem3
StepHypRef Expression
1 sgrp2nmnd.p . . . 4 = (+g𝑀)
2 sgrp2nmnd.o . . . 4 (+g𝑀) = (𝑥𝑆, 𝑦𝑆 ↦ if(𝑥 = 𝐴, 𝐴, 𝐵))
31, 2eqtri 2768 . . 3 = (𝑥𝑆, 𝑦𝑆 ↦ if(𝑥 = 𝐴, 𝐴, 𝐵))
43a1i 11 . 2 ((𝐶𝑆𝐵𝑆𝐴𝐵) → = (𝑥𝑆, 𝑦𝑆 ↦ if(𝑥 = 𝐴, 𝐴, 𝐵)))
5 df-ne 2947 . . . . . 6 (𝐴𝐵 ↔ ¬ 𝐴 = 𝐵)
6 eqeq2 2752 . . . . . . . . . 10 (𝑥 = 𝐵 → (𝐴 = 𝑥𝐴 = 𝐵))
76adantr 480 . . . . . . . . 9 ((𝑥 = 𝐵𝑦 = 𝐶) → (𝐴 = 𝑥𝐴 = 𝐵))
8 eqcom 2747 . . . . . . . . 9 (𝐴 = 𝑥𝑥 = 𝐴)
97, 8bitr3di 286 . . . . . . . 8 ((𝑥 = 𝐵𝑦 = 𝐶) → (𝐴 = 𝐵𝑥 = 𝐴))
109notbid 318 . . . . . . 7 ((𝑥 = 𝐵𝑦 = 𝐶) → (¬ 𝐴 = 𝐵 ↔ ¬ 𝑥 = 𝐴))
1110biimpcd 249 . . . . . 6 𝐴 = 𝐵 → ((𝑥 = 𝐵𝑦 = 𝐶) → ¬ 𝑥 = 𝐴))
125, 11sylbi 217 . . . . 5 (𝐴𝐵 → ((𝑥 = 𝐵𝑦 = 𝐶) → ¬ 𝑥 = 𝐴))
13123ad2ant3 1135 . . . 4 ((𝐶𝑆𝐵𝑆𝐴𝐵) → ((𝑥 = 𝐵𝑦 = 𝐶) → ¬ 𝑥 = 𝐴))
1413imp 406 . . 3 (((𝐶𝑆𝐵𝑆𝐴𝐵) ∧ (𝑥 = 𝐵𝑦 = 𝐶)) → ¬ 𝑥 = 𝐴)
1514iffalsed 4559 . 2 (((𝐶𝑆𝐵𝑆𝐴𝐵) ∧ (𝑥 = 𝐵𝑦 = 𝐶)) → if(𝑥 = 𝐴, 𝐴, 𝐵) = 𝐵)
16 simp2 1137 . 2 ((𝐶𝑆𝐵𝑆𝐴𝐵) → 𝐵𝑆)
17 simp1 1136 . 2 ((𝐶𝑆𝐵𝑆𝐴𝐵) → 𝐶𝑆)
184, 15, 16, 17, 16ovmpod 7602 1 ((𝐶𝑆𝐵𝑆𝐴𝐵) → (𝐵 𝐶) = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wne 2946  ifcif 4548  {cpr 4650  cfv 6573  (class class class)co 7448  cmpo 7450  Basecbs 17258  +gcplusg 17311
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-iota 6525  df-fun 6575  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453
This theorem is referenced by:  sgrp2rid2  18961  sgrp2nmndlem4  18963  sgrp2nmndlem5  18964
  Copyright terms: Public domain W3C validator