![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sgrp2nmndlem3 | Structured version Visualization version GIF version |
Description: Lemma 3 for sgrp2nmnd 17732. (Contributed by AV, 29-Jan-2020.) |
Ref | Expression |
---|---|
mgm2nsgrp.s | ⊢ 𝑆 = {𝐴, 𝐵} |
mgm2nsgrp.b | ⊢ (Base‘𝑀) = 𝑆 |
sgrp2nmnd.o | ⊢ (+g‘𝑀) = (𝑥 ∈ 𝑆, 𝑦 ∈ 𝑆 ↦ if(𝑥 = 𝐴, 𝐴, 𝐵)) |
sgrp2nmnd.p | ⊢ ⚬ = (+g‘𝑀) |
Ref | Expression |
---|---|
sgrp2nmndlem3 | ⊢ ((𝐶 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵) → (𝐵 ⚬ 𝐶) = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sgrp2nmnd.p | . . . 4 ⊢ ⚬ = (+g‘𝑀) | |
2 | sgrp2nmnd.o | . . . 4 ⊢ (+g‘𝑀) = (𝑥 ∈ 𝑆, 𝑦 ∈ 𝑆 ↦ if(𝑥 = 𝐴, 𝐴, 𝐵)) | |
3 | 1, 2 | eqtri 2822 | . . 3 ⊢ ⚬ = (𝑥 ∈ 𝑆, 𝑦 ∈ 𝑆 ↦ if(𝑥 = 𝐴, 𝐴, 𝐵)) |
4 | 3 | a1i 11 | . 2 ⊢ ((𝐶 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵) → ⚬ = (𝑥 ∈ 𝑆, 𝑦 ∈ 𝑆 ↦ if(𝑥 = 𝐴, 𝐴, 𝐵))) |
5 | df-ne 2973 | . . . . . 6 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵) | |
6 | eqcom 2807 | . . . . . . . . 9 ⊢ (𝐴 = 𝑥 ↔ 𝑥 = 𝐴) | |
7 | eqeq2 2811 | . . . . . . . . . 10 ⊢ (𝑥 = 𝐵 → (𝐴 = 𝑥 ↔ 𝐴 = 𝐵)) | |
8 | 7 | adantr 473 | . . . . . . . . 9 ⊢ ((𝑥 = 𝐵 ∧ 𝑦 = 𝐶) → (𝐴 = 𝑥 ↔ 𝐴 = 𝐵)) |
9 | 6, 8 | syl5rbbr 278 | . . . . . . . 8 ⊢ ((𝑥 = 𝐵 ∧ 𝑦 = 𝐶) → (𝐴 = 𝐵 ↔ 𝑥 = 𝐴)) |
10 | 9 | notbid 310 | . . . . . . 7 ⊢ ((𝑥 = 𝐵 ∧ 𝑦 = 𝐶) → (¬ 𝐴 = 𝐵 ↔ ¬ 𝑥 = 𝐴)) |
11 | 10 | biimpcd 241 | . . . . . 6 ⊢ (¬ 𝐴 = 𝐵 → ((𝑥 = 𝐵 ∧ 𝑦 = 𝐶) → ¬ 𝑥 = 𝐴)) |
12 | 5, 11 | sylbi 209 | . . . . 5 ⊢ (𝐴 ≠ 𝐵 → ((𝑥 = 𝐵 ∧ 𝑦 = 𝐶) → ¬ 𝑥 = 𝐴)) |
13 | 12 | 3ad2ant3 1166 | . . . 4 ⊢ ((𝐶 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵) → ((𝑥 = 𝐵 ∧ 𝑦 = 𝐶) → ¬ 𝑥 = 𝐴)) |
14 | 13 | imp 396 | . . 3 ⊢ (((𝐶 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵) ∧ (𝑥 = 𝐵 ∧ 𝑦 = 𝐶)) → ¬ 𝑥 = 𝐴) |
15 | 14 | iffalsed 4289 | . 2 ⊢ (((𝐶 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵) ∧ (𝑥 = 𝐵 ∧ 𝑦 = 𝐶)) → if(𝑥 = 𝐴, 𝐴, 𝐵) = 𝐵) |
16 | simp2 1168 | . 2 ⊢ ((𝐶 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵) → 𝐵 ∈ 𝑆) | |
17 | simp1 1167 | . 2 ⊢ ((𝐶 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵) → 𝐶 ∈ 𝑆) | |
18 | 4, 15, 16, 17, 16 | ovmpt2d 7023 | 1 ⊢ ((𝐶 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵) → (𝐵 ⚬ 𝐶) = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 198 ∧ wa 385 ∧ w3a 1108 = wceq 1653 ∈ wcel 2157 ≠ wne 2972 ifcif 4278 {cpr 4371 ‘cfv 6102 (class class class)co 6879 ↦ cmpt2 6881 Basecbs 16183 +gcplusg 16266 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2378 ax-ext 2778 ax-sep 4976 ax-nul 4984 ax-pr 5098 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2592 df-eu 2610 df-clab 2787 df-cleq 2793 df-clel 2796 df-nfc 2931 df-ne 2973 df-ral 3095 df-rex 3096 df-rab 3099 df-v 3388 df-sbc 3635 df-dif 3773 df-un 3775 df-in 3777 df-ss 3784 df-nul 4117 df-if 4279 df-sn 4370 df-pr 4372 df-op 4376 df-uni 4630 df-br 4845 df-opab 4907 df-id 5221 df-xp 5319 df-rel 5320 df-cnv 5321 df-co 5322 df-dm 5323 df-iota 6065 df-fun 6104 df-fv 6110 df-ov 6882 df-oprab 6883 df-mpt2 6884 |
This theorem is referenced by: sgrp2rid2 17728 sgrp2nmndlem4 17730 sgrp2nmndlem5 17731 |
Copyright terms: Public domain | W3C validator |