![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sgrp2nmndlem3 | Structured version Visualization version GIF version |
Description: Lemma 3 for sgrp2nmnd 17804. (Contributed by AV, 29-Jan-2020.) |
Ref | Expression |
---|---|
mgm2nsgrp.s | ⊢ 𝑆 = {𝐴, 𝐵} |
mgm2nsgrp.b | ⊢ (Base‘𝑀) = 𝑆 |
sgrp2nmnd.o | ⊢ (+g‘𝑀) = (𝑥 ∈ 𝑆, 𝑦 ∈ 𝑆 ↦ if(𝑥 = 𝐴, 𝐴, 𝐵)) |
sgrp2nmnd.p | ⊢ ⚬ = (+g‘𝑀) |
Ref | Expression |
---|---|
sgrp2nmndlem3 | ⊢ ((𝐶 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵) → (𝐵 ⚬ 𝐶) = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sgrp2nmnd.p | . . . 4 ⊢ ⚬ = (+g‘𝑀) | |
2 | sgrp2nmnd.o | . . . 4 ⊢ (+g‘𝑀) = (𝑥 ∈ 𝑆, 𝑦 ∈ 𝑆 ↦ if(𝑥 = 𝐴, 𝐴, 𝐵)) | |
3 | 1, 2 | eqtri 2801 | . . 3 ⊢ ⚬ = (𝑥 ∈ 𝑆, 𝑦 ∈ 𝑆 ↦ if(𝑥 = 𝐴, 𝐴, 𝐵)) |
4 | 3 | a1i 11 | . 2 ⊢ ((𝐶 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵) → ⚬ = (𝑥 ∈ 𝑆, 𝑦 ∈ 𝑆 ↦ if(𝑥 = 𝐴, 𝐴, 𝐵))) |
5 | df-ne 2969 | . . . . . 6 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵) | |
6 | eqcom 2784 | . . . . . . . . 9 ⊢ (𝐴 = 𝑥 ↔ 𝑥 = 𝐴) | |
7 | eqeq2 2788 | . . . . . . . . . 10 ⊢ (𝑥 = 𝐵 → (𝐴 = 𝑥 ↔ 𝐴 = 𝐵)) | |
8 | 7 | adantr 474 | . . . . . . . . 9 ⊢ ((𝑥 = 𝐵 ∧ 𝑦 = 𝐶) → (𝐴 = 𝑥 ↔ 𝐴 = 𝐵)) |
9 | 6, 8 | syl5rbbr 278 | . . . . . . . 8 ⊢ ((𝑥 = 𝐵 ∧ 𝑦 = 𝐶) → (𝐴 = 𝐵 ↔ 𝑥 = 𝐴)) |
10 | 9 | notbid 310 | . . . . . . 7 ⊢ ((𝑥 = 𝐵 ∧ 𝑦 = 𝐶) → (¬ 𝐴 = 𝐵 ↔ ¬ 𝑥 = 𝐴)) |
11 | 10 | biimpcd 241 | . . . . . 6 ⊢ (¬ 𝐴 = 𝐵 → ((𝑥 = 𝐵 ∧ 𝑦 = 𝐶) → ¬ 𝑥 = 𝐴)) |
12 | 5, 11 | sylbi 209 | . . . . 5 ⊢ (𝐴 ≠ 𝐵 → ((𝑥 = 𝐵 ∧ 𝑦 = 𝐶) → ¬ 𝑥 = 𝐴)) |
13 | 12 | 3ad2ant3 1126 | . . . 4 ⊢ ((𝐶 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵) → ((𝑥 = 𝐵 ∧ 𝑦 = 𝐶) → ¬ 𝑥 = 𝐴)) |
14 | 13 | imp 397 | . . 3 ⊢ (((𝐶 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵) ∧ (𝑥 = 𝐵 ∧ 𝑦 = 𝐶)) → ¬ 𝑥 = 𝐴) |
15 | 14 | iffalsed 4317 | . 2 ⊢ (((𝐶 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵) ∧ (𝑥 = 𝐵 ∧ 𝑦 = 𝐶)) → if(𝑥 = 𝐴, 𝐴, 𝐵) = 𝐵) |
16 | simp2 1128 | . 2 ⊢ ((𝐶 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵) → 𝐵 ∈ 𝑆) | |
17 | simp1 1127 | . 2 ⊢ ((𝐶 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵) → 𝐶 ∈ 𝑆) | |
18 | 4, 15, 16, 17, 16 | ovmpt2d 7065 | 1 ⊢ ((𝐶 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵) → (𝐵 ⚬ 𝐶) = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 198 ∧ wa 386 ∧ w3a 1071 = wceq 1601 ∈ wcel 2106 ≠ wne 2968 ifcif 4306 {cpr 4399 ‘cfv 6135 (class class class)co 6922 ↦ cmpt2 6924 Basecbs 16255 +gcplusg 16338 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2054 ax-9 2115 ax-10 2134 ax-11 2149 ax-12 2162 ax-13 2333 ax-ext 2753 ax-sep 5017 ax-nul 5025 ax-pr 5138 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2550 df-eu 2586 df-clab 2763 df-cleq 2769 df-clel 2773 df-nfc 2920 df-ne 2969 df-ral 3094 df-rex 3095 df-rab 3098 df-v 3399 df-sbc 3652 df-dif 3794 df-un 3796 df-in 3798 df-ss 3805 df-nul 4141 df-if 4307 df-sn 4398 df-pr 4400 df-op 4404 df-uni 4672 df-br 4887 df-opab 4949 df-id 5261 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-iota 6099 df-fun 6137 df-fv 6143 df-ov 6925 df-oprab 6926 df-mpt2 6927 |
This theorem is referenced by: sgrp2rid2 17800 sgrp2nmndlem4 17802 sgrp2nmndlem5 17803 |
Copyright terms: Public domain | W3C validator |