| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > oc0 | Structured version Visualization version GIF version | ||
| Description: The zero vector belongs to an orthogonal complement of a Hilbert subspace. (Contributed by NM, 11-Oct-1999.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| oc0 | ⊢ (𝐻 ∈ Sℋ → 0ℎ ∈ (⊥‘𝐻)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | shocsh 31270 | . 2 ⊢ (𝐻 ∈ Sℋ → (⊥‘𝐻) ∈ Sℋ ) | |
| 2 | sh0 31202 | . 2 ⊢ ((⊥‘𝐻) ∈ Sℋ → 0ℎ ∈ (⊥‘𝐻)) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝐻 ∈ Sℋ → 0ℎ ∈ (⊥‘𝐻)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ‘cfv 6536 0ℎc0v 30910 Sℋ csh 30914 ⊥cort 30916 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-hilex 30985 ax-hfvadd 30986 ax-hv0cl 30989 ax-hfvmul 30991 ax-hvmul0 30996 ax-hfi 31065 ax-his2 31069 ax-his3 31070 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-po 5566 df-so 5567 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-ov 7413 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11276 df-mnf 11277 df-ltxr 11279 df-sh 31193 df-oc 31238 |
| This theorem is referenced by: ocin 31282 pj0i 31679 |
| Copyright terms: Public domain | W3C validator |