HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  shaddcl Structured version   Visualization version   GIF version

Theorem shaddcl 31153
Description: Closure of vector addition in a subspace of a Hilbert space. (Contributed by NM, 13-Sep-1999.) (New usage is discouraged.)
Assertion
Ref Expression
shaddcl ((𝐻S𝐴𝐻𝐵𝐻) → (𝐴 + 𝐵) ∈ 𝐻)

Proof of Theorem shaddcl
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 issh2 31145 . . . . 5 (𝐻S ↔ ((𝐻 ⊆ ℋ ∧ 0𝐻) ∧ (∀𝑥𝐻𝑦𝐻 (𝑥 + 𝑦) ∈ 𝐻 ∧ ∀𝑥 ∈ ℂ ∀𝑦𝐻 (𝑥 · 𝑦) ∈ 𝐻)))
21simprbi 496 . . . 4 (𝐻S → (∀𝑥𝐻𝑦𝐻 (𝑥 + 𝑦) ∈ 𝐻 ∧ ∀𝑥 ∈ ℂ ∀𝑦𝐻 (𝑥 · 𝑦) ∈ 𝐻))
32simpld 494 . . 3 (𝐻S → ∀𝑥𝐻𝑦𝐻 (𝑥 + 𝑦) ∈ 𝐻)
4 oveq1 7397 . . . . 5 (𝑥 = 𝐴 → (𝑥 + 𝑦) = (𝐴 + 𝑦))
54eleq1d 2814 . . . 4 (𝑥 = 𝐴 → ((𝑥 + 𝑦) ∈ 𝐻 ↔ (𝐴 + 𝑦) ∈ 𝐻))
6 oveq2 7398 . . . . 5 (𝑦 = 𝐵 → (𝐴 + 𝑦) = (𝐴 + 𝐵))
76eleq1d 2814 . . . 4 (𝑦 = 𝐵 → ((𝐴 + 𝑦) ∈ 𝐻 ↔ (𝐴 + 𝐵) ∈ 𝐻))
85, 7rspc2v 3602 . . 3 ((𝐴𝐻𝐵𝐻) → (∀𝑥𝐻𝑦𝐻 (𝑥 + 𝑦) ∈ 𝐻 → (𝐴 + 𝐵) ∈ 𝐻))
93, 8syl5com 31 . 2 (𝐻S → ((𝐴𝐻𝐵𝐻) → (𝐴 + 𝐵) ∈ 𝐻))
1093impib 1116 1 ((𝐻S𝐴𝐻𝐵𝐻) → (𝐴 + 𝐵) ∈ 𝐻)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3045  wss 3917  (class class class)co 7390  cc 11073  chba 30855   + cva 30856   · csm 30857  0c0v 30860   S csh 30864
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390  ax-hilex 30935  ax-hfvadd 30936  ax-hfvmul 30941
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-fv 6522  df-ov 7393  df-sh 31143
This theorem is referenced by:  shsubcl  31156  hhssabloilem  31197  hhssnv  31200  shscli  31253  shintcli  31265  shsleji  31306  shsidmi  31320  pjhthlem1  31327  spanuni  31480  spanunsni  31515  sumspansn  31585  pjaddii  31611  imaelshi  31994
  Copyright terms: Public domain W3C validator