Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > shaddcl | Structured version Visualization version GIF version |
Description: Closure of vector addition in a subspace of a Hilbert space. (Contributed by NM, 13-Sep-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
shaddcl | ⊢ ((𝐻 ∈ Sℋ ∧ 𝐴 ∈ 𝐻 ∧ 𝐵 ∈ 𝐻) → (𝐴 +ℎ 𝐵) ∈ 𝐻) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | issh2 29707 | . . . . 5 ⊢ (𝐻 ∈ Sℋ ↔ ((𝐻 ⊆ ℋ ∧ 0ℎ ∈ 𝐻) ∧ (∀𝑥 ∈ 𝐻 ∀𝑦 ∈ 𝐻 (𝑥 +ℎ 𝑦) ∈ 𝐻 ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ 𝐻 (𝑥 ·ℎ 𝑦) ∈ 𝐻))) | |
2 | 1 | simprbi 497 | . . . 4 ⊢ (𝐻 ∈ Sℋ → (∀𝑥 ∈ 𝐻 ∀𝑦 ∈ 𝐻 (𝑥 +ℎ 𝑦) ∈ 𝐻 ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ 𝐻 (𝑥 ·ℎ 𝑦) ∈ 𝐻)) |
3 | 2 | simpld 495 | . . 3 ⊢ (𝐻 ∈ Sℋ → ∀𝑥 ∈ 𝐻 ∀𝑦 ∈ 𝐻 (𝑥 +ℎ 𝑦) ∈ 𝐻) |
4 | oveq1 7324 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑥 +ℎ 𝑦) = (𝐴 +ℎ 𝑦)) | |
5 | 4 | eleq1d 2822 | . . . 4 ⊢ (𝑥 = 𝐴 → ((𝑥 +ℎ 𝑦) ∈ 𝐻 ↔ (𝐴 +ℎ 𝑦) ∈ 𝐻)) |
6 | oveq2 7325 | . . . . 5 ⊢ (𝑦 = 𝐵 → (𝐴 +ℎ 𝑦) = (𝐴 +ℎ 𝐵)) | |
7 | 6 | eleq1d 2822 | . . . 4 ⊢ (𝑦 = 𝐵 → ((𝐴 +ℎ 𝑦) ∈ 𝐻 ↔ (𝐴 +ℎ 𝐵) ∈ 𝐻)) |
8 | 5, 7 | rspc2v 3579 | . . 3 ⊢ ((𝐴 ∈ 𝐻 ∧ 𝐵 ∈ 𝐻) → (∀𝑥 ∈ 𝐻 ∀𝑦 ∈ 𝐻 (𝑥 +ℎ 𝑦) ∈ 𝐻 → (𝐴 +ℎ 𝐵) ∈ 𝐻)) |
9 | 3, 8 | syl5com 31 | . 2 ⊢ (𝐻 ∈ Sℋ → ((𝐴 ∈ 𝐻 ∧ 𝐵 ∈ 𝐻) → (𝐴 +ℎ 𝐵) ∈ 𝐻)) |
10 | 9 | 3impib 1115 | 1 ⊢ ((𝐻 ∈ Sℋ ∧ 𝐴 ∈ 𝐻 ∧ 𝐵 ∈ 𝐻) → (𝐴 +ℎ 𝐵) ∈ 𝐻) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 = wceq 1540 ∈ wcel 2105 ∀wral 3062 ⊆ wss 3897 (class class class)co 7317 ℂcc 10949 ℋchba 29417 +ℎ cva 29418 ·ℎ csm 29419 0ℎc0v 29422 Sℋ csh 29426 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-sep 5238 ax-nul 5245 ax-pr 5367 ax-hilex 29497 ax-hfvadd 29498 ax-hfvmul 29503 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3405 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4268 df-if 4472 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4851 df-iun 4939 df-br 5088 df-opab 5150 df-id 5507 df-xp 5614 df-rel 5615 df-cnv 5616 df-co 5617 df-dm 5618 df-rn 5619 df-res 5620 df-ima 5621 df-iota 6418 df-fun 6468 df-fn 6469 df-f 6470 df-fv 6474 df-ov 7320 df-sh 29705 |
This theorem is referenced by: shsubcl 29718 hhssabloilem 29759 hhssnv 29762 shscli 29815 shintcli 29827 shsleji 29868 shsidmi 29882 pjhthlem1 29889 spanuni 30042 spanunsni 30077 sumspansn 30147 pjaddii 30173 imaelshi 30556 |
Copyright terms: Public domain | W3C validator |