![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > shaddcl | Structured version Visualization version GIF version |
Description: Closure of vector addition in a subspace of a Hilbert space. (Contributed by NM, 13-Sep-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
shaddcl | ⊢ ((𝐻 ∈ Sℋ ∧ 𝐴 ∈ 𝐻 ∧ 𝐵 ∈ 𝐻) → (𝐴 +ℎ 𝐵) ∈ 𝐻) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | issh2 31237 | . . . . 5 ⊢ (𝐻 ∈ Sℋ ↔ ((𝐻 ⊆ ℋ ∧ 0ℎ ∈ 𝐻) ∧ (∀𝑥 ∈ 𝐻 ∀𝑦 ∈ 𝐻 (𝑥 +ℎ 𝑦) ∈ 𝐻 ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ 𝐻 (𝑥 ·ℎ 𝑦) ∈ 𝐻))) | |
2 | 1 | simprbi 496 | . . . 4 ⊢ (𝐻 ∈ Sℋ → (∀𝑥 ∈ 𝐻 ∀𝑦 ∈ 𝐻 (𝑥 +ℎ 𝑦) ∈ 𝐻 ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ 𝐻 (𝑥 ·ℎ 𝑦) ∈ 𝐻)) |
3 | 2 | simpld 494 | . . 3 ⊢ (𝐻 ∈ Sℋ → ∀𝑥 ∈ 𝐻 ∀𝑦 ∈ 𝐻 (𝑥 +ℎ 𝑦) ∈ 𝐻) |
4 | oveq1 7437 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑥 +ℎ 𝑦) = (𝐴 +ℎ 𝑦)) | |
5 | 4 | eleq1d 2823 | . . . 4 ⊢ (𝑥 = 𝐴 → ((𝑥 +ℎ 𝑦) ∈ 𝐻 ↔ (𝐴 +ℎ 𝑦) ∈ 𝐻)) |
6 | oveq2 7438 | . . . . 5 ⊢ (𝑦 = 𝐵 → (𝐴 +ℎ 𝑦) = (𝐴 +ℎ 𝐵)) | |
7 | 6 | eleq1d 2823 | . . . 4 ⊢ (𝑦 = 𝐵 → ((𝐴 +ℎ 𝑦) ∈ 𝐻 ↔ (𝐴 +ℎ 𝐵) ∈ 𝐻)) |
8 | 5, 7 | rspc2v 3632 | . . 3 ⊢ ((𝐴 ∈ 𝐻 ∧ 𝐵 ∈ 𝐻) → (∀𝑥 ∈ 𝐻 ∀𝑦 ∈ 𝐻 (𝑥 +ℎ 𝑦) ∈ 𝐻 → (𝐴 +ℎ 𝐵) ∈ 𝐻)) |
9 | 3, 8 | syl5com 31 | . 2 ⊢ (𝐻 ∈ Sℋ → ((𝐴 ∈ 𝐻 ∧ 𝐵 ∈ 𝐻) → (𝐴 +ℎ 𝐵) ∈ 𝐻)) |
10 | 9 | 3impib 1115 | 1 ⊢ ((𝐻 ∈ Sℋ ∧ 𝐴 ∈ 𝐻 ∧ 𝐵 ∈ 𝐻) → (𝐴 +ℎ 𝐵) ∈ 𝐻) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1536 ∈ wcel 2105 ∀wral 3058 ⊆ wss 3962 (class class class)co 7430 ℂcc 11150 ℋchba 30947 +ℎ cva 30948 ·ℎ csm 30949 0ℎc0v 30952 Sℋ csh 30956 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pr 5437 ax-hilex 31027 ax-hfvadd 31028 ax-hfvmul 31033 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-ral 3059 df-rex 3068 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-iun 4997 df-br 5148 df-opab 5210 df-id 5582 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-fv 6570 df-ov 7433 df-sh 31235 |
This theorem is referenced by: shsubcl 31248 hhssabloilem 31289 hhssnv 31292 shscli 31345 shintcli 31357 shsleji 31398 shsidmi 31412 pjhthlem1 31419 spanuni 31572 spanunsni 31607 sumspansn 31677 pjaddii 31703 imaelshi 32086 |
Copyright terms: Public domain | W3C validator |