HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  shaddcl Structured version   Visualization version   GIF version

Theorem shaddcl 31196
Description: Closure of vector addition in a subspace of a Hilbert space. (Contributed by NM, 13-Sep-1999.) (New usage is discouraged.)
Assertion
Ref Expression
shaddcl ((𝐻S𝐴𝐻𝐵𝐻) → (𝐴 + 𝐵) ∈ 𝐻)

Proof of Theorem shaddcl
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 issh2 31188 . . . . 5 (𝐻S ↔ ((𝐻 ⊆ ℋ ∧ 0𝐻) ∧ (∀𝑥𝐻𝑦𝐻 (𝑥 + 𝑦) ∈ 𝐻 ∧ ∀𝑥 ∈ ℂ ∀𝑦𝐻 (𝑥 · 𝑦) ∈ 𝐻)))
21simprbi 496 . . . 4 (𝐻S → (∀𝑥𝐻𝑦𝐻 (𝑥 + 𝑦) ∈ 𝐻 ∧ ∀𝑥 ∈ ℂ ∀𝑦𝐻 (𝑥 · 𝑦) ∈ 𝐻))
32simpld 494 . . 3 (𝐻S → ∀𝑥𝐻𝑦𝐻 (𝑥 + 𝑦) ∈ 𝐻)
4 oveq1 7376 . . . . 5 (𝑥 = 𝐴 → (𝑥 + 𝑦) = (𝐴 + 𝑦))
54eleq1d 2813 . . . 4 (𝑥 = 𝐴 → ((𝑥 + 𝑦) ∈ 𝐻 ↔ (𝐴 + 𝑦) ∈ 𝐻))
6 oveq2 7377 . . . . 5 (𝑦 = 𝐵 → (𝐴 + 𝑦) = (𝐴 + 𝐵))
76eleq1d 2813 . . . 4 (𝑦 = 𝐵 → ((𝐴 + 𝑦) ∈ 𝐻 ↔ (𝐴 + 𝐵) ∈ 𝐻))
85, 7rspc2v 3596 . . 3 ((𝐴𝐻𝐵𝐻) → (∀𝑥𝐻𝑦𝐻 (𝑥 + 𝑦) ∈ 𝐻 → (𝐴 + 𝐵) ∈ 𝐻))
93, 8syl5com 31 . 2 (𝐻S → ((𝐴𝐻𝐵𝐻) → (𝐴 + 𝐵) ∈ 𝐻))
1093impib 1116 1 ((𝐻S𝐴𝐻𝐵𝐻) → (𝐴 + 𝐵) ∈ 𝐻)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  wss 3911  (class class class)co 7369  cc 11042  chba 30898   + cva 30899   · csm 30900  0c0v 30903   S csh 30907
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382  ax-hilex 30978  ax-hfvadd 30979  ax-hfvmul 30984
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-fv 6507  df-ov 7372  df-sh 31186
This theorem is referenced by:  shsubcl  31199  hhssabloilem  31240  hhssnv  31243  shscli  31296  shintcli  31308  shsleji  31349  shsidmi  31363  pjhthlem1  31370  spanuni  31523  spanunsni  31558  sumspansn  31628  pjaddii  31654  imaelshi  32037
  Copyright terms: Public domain W3C validator