| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > shaddcl | Structured version Visualization version GIF version | ||
| Description: Closure of vector addition in a subspace of a Hilbert space. (Contributed by NM, 13-Sep-1999.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| shaddcl | ⊢ ((𝐻 ∈ Sℋ ∧ 𝐴 ∈ 𝐻 ∧ 𝐵 ∈ 𝐻) → (𝐴 +ℎ 𝐵) ∈ 𝐻) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | issh2 31138 | . . . . 5 ⊢ (𝐻 ∈ Sℋ ↔ ((𝐻 ⊆ ℋ ∧ 0ℎ ∈ 𝐻) ∧ (∀𝑥 ∈ 𝐻 ∀𝑦 ∈ 𝐻 (𝑥 +ℎ 𝑦) ∈ 𝐻 ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ 𝐻 (𝑥 ·ℎ 𝑦) ∈ 𝐻))) | |
| 2 | 1 | simprbi 496 | . . . 4 ⊢ (𝐻 ∈ Sℋ → (∀𝑥 ∈ 𝐻 ∀𝑦 ∈ 𝐻 (𝑥 +ℎ 𝑦) ∈ 𝐻 ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ 𝐻 (𝑥 ·ℎ 𝑦) ∈ 𝐻)) |
| 3 | 2 | simpld 494 | . . 3 ⊢ (𝐻 ∈ Sℋ → ∀𝑥 ∈ 𝐻 ∀𝑦 ∈ 𝐻 (𝑥 +ℎ 𝑦) ∈ 𝐻) |
| 4 | oveq1 7394 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑥 +ℎ 𝑦) = (𝐴 +ℎ 𝑦)) | |
| 5 | 4 | eleq1d 2813 | . . . 4 ⊢ (𝑥 = 𝐴 → ((𝑥 +ℎ 𝑦) ∈ 𝐻 ↔ (𝐴 +ℎ 𝑦) ∈ 𝐻)) |
| 6 | oveq2 7395 | . . . . 5 ⊢ (𝑦 = 𝐵 → (𝐴 +ℎ 𝑦) = (𝐴 +ℎ 𝐵)) | |
| 7 | 6 | eleq1d 2813 | . . . 4 ⊢ (𝑦 = 𝐵 → ((𝐴 +ℎ 𝑦) ∈ 𝐻 ↔ (𝐴 +ℎ 𝐵) ∈ 𝐻)) |
| 8 | 5, 7 | rspc2v 3599 | . . 3 ⊢ ((𝐴 ∈ 𝐻 ∧ 𝐵 ∈ 𝐻) → (∀𝑥 ∈ 𝐻 ∀𝑦 ∈ 𝐻 (𝑥 +ℎ 𝑦) ∈ 𝐻 → (𝐴 +ℎ 𝐵) ∈ 𝐻)) |
| 9 | 3, 8 | syl5com 31 | . 2 ⊢ (𝐻 ∈ Sℋ → ((𝐴 ∈ 𝐻 ∧ 𝐵 ∈ 𝐻) → (𝐴 +ℎ 𝐵) ∈ 𝐻)) |
| 10 | 9 | 3impib 1116 | 1 ⊢ ((𝐻 ∈ Sℋ ∧ 𝐴 ∈ 𝐻 ∧ 𝐵 ∈ 𝐻) → (𝐴 +ℎ 𝐵) ∈ 𝐻) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ⊆ wss 3914 (class class class)co 7387 ℂcc 11066 ℋchba 30848 +ℎ cva 30849 ·ℎ csm 30850 0ℎc0v 30853 Sℋ csh 30857 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-hilex 30928 ax-hfvadd 30929 ax-hfvmul 30934 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-fv 6519 df-ov 7390 df-sh 31136 |
| This theorem is referenced by: shsubcl 31149 hhssabloilem 31190 hhssnv 31193 shscli 31246 shintcli 31258 shsleji 31299 shsidmi 31313 pjhthlem1 31320 spanuni 31473 spanunsni 31508 sumspansn 31578 pjaddii 31604 imaelshi 31987 |
| Copyright terms: Public domain | W3C validator |