| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > shaddcl | Structured version Visualization version GIF version | ||
| Description: Closure of vector addition in a subspace of a Hilbert space. (Contributed by NM, 13-Sep-1999.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| shaddcl | ⊢ ((𝐻 ∈ Sℋ ∧ 𝐴 ∈ 𝐻 ∧ 𝐵 ∈ 𝐻) → (𝐴 +ℎ 𝐵) ∈ 𝐻) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | issh2 31145 | . . . . 5 ⊢ (𝐻 ∈ Sℋ ↔ ((𝐻 ⊆ ℋ ∧ 0ℎ ∈ 𝐻) ∧ (∀𝑥 ∈ 𝐻 ∀𝑦 ∈ 𝐻 (𝑥 +ℎ 𝑦) ∈ 𝐻 ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ 𝐻 (𝑥 ·ℎ 𝑦) ∈ 𝐻))) | |
| 2 | 1 | simprbi 496 | . . . 4 ⊢ (𝐻 ∈ Sℋ → (∀𝑥 ∈ 𝐻 ∀𝑦 ∈ 𝐻 (𝑥 +ℎ 𝑦) ∈ 𝐻 ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ 𝐻 (𝑥 ·ℎ 𝑦) ∈ 𝐻)) |
| 3 | 2 | simpld 494 | . . 3 ⊢ (𝐻 ∈ Sℋ → ∀𝑥 ∈ 𝐻 ∀𝑦 ∈ 𝐻 (𝑥 +ℎ 𝑦) ∈ 𝐻) |
| 4 | oveq1 7397 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑥 +ℎ 𝑦) = (𝐴 +ℎ 𝑦)) | |
| 5 | 4 | eleq1d 2814 | . . . 4 ⊢ (𝑥 = 𝐴 → ((𝑥 +ℎ 𝑦) ∈ 𝐻 ↔ (𝐴 +ℎ 𝑦) ∈ 𝐻)) |
| 6 | oveq2 7398 | . . . . 5 ⊢ (𝑦 = 𝐵 → (𝐴 +ℎ 𝑦) = (𝐴 +ℎ 𝐵)) | |
| 7 | 6 | eleq1d 2814 | . . . 4 ⊢ (𝑦 = 𝐵 → ((𝐴 +ℎ 𝑦) ∈ 𝐻 ↔ (𝐴 +ℎ 𝐵) ∈ 𝐻)) |
| 8 | 5, 7 | rspc2v 3602 | . . 3 ⊢ ((𝐴 ∈ 𝐻 ∧ 𝐵 ∈ 𝐻) → (∀𝑥 ∈ 𝐻 ∀𝑦 ∈ 𝐻 (𝑥 +ℎ 𝑦) ∈ 𝐻 → (𝐴 +ℎ 𝐵) ∈ 𝐻)) |
| 9 | 3, 8 | syl5com 31 | . 2 ⊢ (𝐻 ∈ Sℋ → ((𝐴 ∈ 𝐻 ∧ 𝐵 ∈ 𝐻) → (𝐴 +ℎ 𝐵) ∈ 𝐻)) |
| 10 | 9 | 3impib 1116 | 1 ⊢ ((𝐻 ∈ Sℋ ∧ 𝐴 ∈ 𝐻 ∧ 𝐵 ∈ 𝐻) → (𝐴 +ℎ 𝐵) ∈ 𝐻) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3045 ⊆ wss 3917 (class class class)co 7390 ℂcc 11073 ℋchba 30855 +ℎ cva 30856 ·ℎ csm 30857 0ℎc0v 30860 Sℋ csh 30864 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 ax-hilex 30935 ax-hfvadd 30936 ax-hfvmul 30941 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-fv 6522 df-ov 7393 df-sh 31143 |
| This theorem is referenced by: shsubcl 31156 hhssabloilem 31197 hhssnv 31200 shscli 31253 shintcli 31265 shsleji 31306 shsidmi 31320 pjhthlem1 31327 spanuni 31480 spanunsni 31515 sumspansn 31585 pjaddii 31611 imaelshi 31994 |
| Copyright terms: Public domain | W3C validator |