HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  imaelshi Structured version   Visualization version   GIF version

Theorem imaelshi 32086
Description: The image of a subspace under a linear operator is a subspace. (Contributed by Mario Carneiro, 19-May-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
rnelsh.1 𝑇 ∈ LinOp
imaelsh.2 𝐴S
Assertion
Ref Expression
imaelshi (𝑇𝐴) ∈ S

Proof of Theorem imaelshi
Dummy variables 𝑣 𝑢 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 imassrn 6090 . . . 4 (𝑇𝐴) ⊆ ran 𝑇
2 rnelsh.1 . . . . . 6 𝑇 ∈ LinOp
32lnopfi 31997 . . . . 5 𝑇: ℋ⟶ ℋ
4 frn 6743 . . . . 5 (𝑇: ℋ⟶ ℋ → ran 𝑇 ⊆ ℋ)
53, 4ax-mp 5 . . . 4 ran 𝑇 ⊆ ℋ
61, 5sstri 4004 . . 3 (𝑇𝐴) ⊆ ℋ
72lnop0i 31998 . . . 4 (𝑇‘0) = 0
8 imaelsh.2 . . . . . 6 𝐴S
9 sh0 31244 . . . . . 6 (𝐴S → 0𝐴)
108, 9ax-mp 5 . . . . 5 0𝐴
11 ffun 6739 . . . . . . 7 (𝑇: ℋ⟶ ℋ → Fun 𝑇)
123, 11ax-mp 5 . . . . . 6 Fun 𝑇
138shssii 31241 . . . . . . 7 𝐴 ⊆ ℋ
143fdmi 6747 . . . . . . 7 dom 𝑇 = ℋ
1513, 14sseqtrri 4032 . . . . . 6 𝐴 ⊆ dom 𝑇
16 funfvima2 7250 . . . . . 6 ((Fun 𝑇𝐴 ⊆ dom 𝑇) → (0𝐴 → (𝑇‘0) ∈ (𝑇𝐴)))
1712, 15, 16mp2an 692 . . . . 5 (0𝐴 → (𝑇‘0) ∈ (𝑇𝐴))
1810, 17ax-mp 5 . . . 4 (𝑇‘0) ∈ (𝑇𝐴)
197, 18eqeltrri 2835 . . 3 0 ∈ (𝑇𝐴)
206, 19pm3.2i 470 . 2 ((𝑇𝐴) ⊆ ℋ ∧ 0 ∈ (𝑇𝐴))
21 ffn 6736 . . . . . 6 (𝑇: ℋ⟶ ℋ → 𝑇 Fn ℋ)
223, 21ax-mp 5 . . . . 5 𝑇 Fn ℋ
23 oveq1 7437 . . . . . . . 8 (𝑢 = (𝑇𝑥) → (𝑢 + 𝑣) = ((𝑇𝑥) + 𝑣))
2423eleq1d 2823 . . . . . . 7 (𝑢 = (𝑇𝑥) → ((𝑢 + 𝑣) ∈ (𝑇𝐴) ↔ ((𝑇𝑥) + 𝑣) ∈ (𝑇𝐴)))
2524ralbidv 3175 . . . . . 6 (𝑢 = (𝑇𝑥) → (∀𝑣 ∈ (𝑇𝐴)(𝑢 + 𝑣) ∈ (𝑇𝐴) ↔ ∀𝑣 ∈ (𝑇𝐴)((𝑇𝑥) + 𝑣) ∈ (𝑇𝐴)))
2625ralima 7256 . . . . 5 ((𝑇 Fn ℋ ∧ 𝐴 ⊆ ℋ) → (∀𝑢 ∈ (𝑇𝐴)∀𝑣 ∈ (𝑇𝐴)(𝑢 + 𝑣) ∈ (𝑇𝐴) ↔ ∀𝑥𝐴𝑣 ∈ (𝑇𝐴)((𝑇𝑥) + 𝑣) ∈ (𝑇𝐴)))
2722, 13, 26mp2an 692 . . . 4 (∀𝑢 ∈ (𝑇𝐴)∀𝑣 ∈ (𝑇𝐴)(𝑢 + 𝑣) ∈ (𝑇𝐴) ↔ ∀𝑥𝐴𝑣 ∈ (𝑇𝐴)((𝑇𝑥) + 𝑣) ∈ (𝑇𝐴))
288sheli 31242 . . . . . . . 8 (𝑥𝐴𝑥 ∈ ℋ)
298sheli 31242 . . . . . . . 8 (𝑦𝐴𝑦 ∈ ℋ)
302lnopaddi 31999 . . . . . . . 8 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (𝑇‘(𝑥 + 𝑦)) = ((𝑇𝑥) + (𝑇𝑦)))
3128, 29, 30syl2an 596 . . . . . . 7 ((𝑥𝐴𝑦𝐴) → (𝑇‘(𝑥 + 𝑦)) = ((𝑇𝑥) + (𝑇𝑦)))
32 shaddcl 31245 . . . . . . . . 9 ((𝐴S𝑥𝐴𝑦𝐴) → (𝑥 + 𝑦) ∈ 𝐴)
338, 32mp3an1 1447 . . . . . . . 8 ((𝑥𝐴𝑦𝐴) → (𝑥 + 𝑦) ∈ 𝐴)
34 funfvima2 7250 . . . . . . . . 9 ((Fun 𝑇𝐴 ⊆ dom 𝑇) → ((𝑥 + 𝑦) ∈ 𝐴 → (𝑇‘(𝑥 + 𝑦)) ∈ (𝑇𝐴)))
3512, 15, 34mp2an 692 . . . . . . . 8 ((𝑥 + 𝑦) ∈ 𝐴 → (𝑇‘(𝑥 + 𝑦)) ∈ (𝑇𝐴))
3633, 35syl 17 . . . . . . 7 ((𝑥𝐴𝑦𝐴) → (𝑇‘(𝑥 + 𝑦)) ∈ (𝑇𝐴))
3731, 36eqeltrrd 2839 . . . . . 6 ((𝑥𝐴𝑦𝐴) → ((𝑇𝑥) + (𝑇𝑦)) ∈ (𝑇𝐴))
3837ralrimiva 3143 . . . . 5 (𝑥𝐴 → ∀𝑦𝐴 ((𝑇𝑥) + (𝑇𝑦)) ∈ (𝑇𝐴))
39 oveq2 7438 . . . . . . . 8 (𝑣 = (𝑇𝑦) → ((𝑇𝑥) + 𝑣) = ((𝑇𝑥) + (𝑇𝑦)))
4039eleq1d 2823 . . . . . . 7 (𝑣 = (𝑇𝑦) → (((𝑇𝑥) + 𝑣) ∈ (𝑇𝐴) ↔ ((𝑇𝑥) + (𝑇𝑦)) ∈ (𝑇𝐴)))
4140ralima 7256 . . . . . 6 ((𝑇 Fn ℋ ∧ 𝐴 ⊆ ℋ) → (∀𝑣 ∈ (𝑇𝐴)((𝑇𝑥) + 𝑣) ∈ (𝑇𝐴) ↔ ∀𝑦𝐴 ((𝑇𝑥) + (𝑇𝑦)) ∈ (𝑇𝐴)))
4222, 13, 41mp2an 692 . . . . 5 (∀𝑣 ∈ (𝑇𝐴)((𝑇𝑥) + 𝑣) ∈ (𝑇𝐴) ↔ ∀𝑦𝐴 ((𝑇𝑥) + (𝑇𝑦)) ∈ (𝑇𝐴))
4338, 42sylibr 234 . . . 4 (𝑥𝐴 → ∀𝑣 ∈ (𝑇𝐴)((𝑇𝑥) + 𝑣) ∈ (𝑇𝐴))
4427, 43mprgbir 3065 . . 3 𝑢 ∈ (𝑇𝐴)∀𝑣 ∈ (𝑇𝐴)(𝑢 + 𝑣) ∈ (𝑇𝐴)
452lnopmuli 32000 . . . . . . . 8 ((𝑢 ∈ ℂ ∧ 𝑦 ∈ ℋ) → (𝑇‘(𝑢 · 𝑦)) = (𝑢 · (𝑇𝑦)))
4629, 45sylan2 593 . . . . . . 7 ((𝑢 ∈ ℂ ∧ 𝑦𝐴) → (𝑇‘(𝑢 · 𝑦)) = (𝑢 · (𝑇𝑦)))
47 shmulcl 31246 . . . . . . . . 9 ((𝐴S𝑢 ∈ ℂ ∧ 𝑦𝐴) → (𝑢 · 𝑦) ∈ 𝐴)
488, 47mp3an1 1447 . . . . . . . 8 ((𝑢 ∈ ℂ ∧ 𝑦𝐴) → (𝑢 · 𝑦) ∈ 𝐴)
49 funfvima2 7250 . . . . . . . . 9 ((Fun 𝑇𝐴 ⊆ dom 𝑇) → ((𝑢 · 𝑦) ∈ 𝐴 → (𝑇‘(𝑢 · 𝑦)) ∈ (𝑇𝐴)))
5012, 15, 49mp2an 692 . . . . . . . 8 ((𝑢 · 𝑦) ∈ 𝐴 → (𝑇‘(𝑢 · 𝑦)) ∈ (𝑇𝐴))
5148, 50syl 17 . . . . . . 7 ((𝑢 ∈ ℂ ∧ 𝑦𝐴) → (𝑇‘(𝑢 · 𝑦)) ∈ (𝑇𝐴))
5246, 51eqeltrrd 2839 . . . . . 6 ((𝑢 ∈ ℂ ∧ 𝑦𝐴) → (𝑢 · (𝑇𝑦)) ∈ (𝑇𝐴))
5352ralrimiva 3143 . . . . 5 (𝑢 ∈ ℂ → ∀𝑦𝐴 (𝑢 · (𝑇𝑦)) ∈ (𝑇𝐴))
54 oveq2 7438 . . . . . . . 8 (𝑣 = (𝑇𝑦) → (𝑢 · 𝑣) = (𝑢 · (𝑇𝑦)))
5554eleq1d 2823 . . . . . . 7 (𝑣 = (𝑇𝑦) → ((𝑢 · 𝑣) ∈ (𝑇𝐴) ↔ (𝑢 · (𝑇𝑦)) ∈ (𝑇𝐴)))
5655ralima 7256 . . . . . 6 ((𝑇 Fn ℋ ∧ 𝐴 ⊆ ℋ) → (∀𝑣 ∈ (𝑇𝐴)(𝑢 · 𝑣) ∈ (𝑇𝐴) ↔ ∀𝑦𝐴 (𝑢 · (𝑇𝑦)) ∈ (𝑇𝐴)))
5722, 13, 56mp2an 692 . . . . 5 (∀𝑣 ∈ (𝑇𝐴)(𝑢 · 𝑣) ∈ (𝑇𝐴) ↔ ∀𝑦𝐴 (𝑢 · (𝑇𝑦)) ∈ (𝑇𝐴))
5853, 57sylibr 234 . . . 4 (𝑢 ∈ ℂ → ∀𝑣 ∈ (𝑇𝐴)(𝑢 · 𝑣) ∈ (𝑇𝐴))
5958rgen 3060 . . 3 𝑢 ∈ ℂ ∀𝑣 ∈ (𝑇𝐴)(𝑢 · 𝑣) ∈ (𝑇𝐴)
6044, 59pm3.2i 470 . 2 (∀𝑢 ∈ (𝑇𝐴)∀𝑣 ∈ (𝑇𝐴)(𝑢 + 𝑣) ∈ (𝑇𝐴) ∧ ∀𝑢 ∈ ℂ ∀𝑣 ∈ (𝑇𝐴)(𝑢 · 𝑣) ∈ (𝑇𝐴))
61 issh2 31237 . 2 ((𝑇𝐴) ∈ S ↔ (((𝑇𝐴) ⊆ ℋ ∧ 0 ∈ (𝑇𝐴)) ∧ (∀𝑢 ∈ (𝑇𝐴)∀𝑣 ∈ (𝑇𝐴)(𝑢 + 𝑣) ∈ (𝑇𝐴) ∧ ∀𝑢 ∈ ℂ ∀𝑣 ∈ (𝑇𝐴)(𝑢 · 𝑣) ∈ (𝑇𝐴))))
6220, 60, 61mpbir2an 711 1 (𝑇𝐴) ∈ S
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1536  wcel 2105  wral 3058  wss 3962  dom cdm 5688  ran crn 5689  cima 5691  Fun wfun 6556   Fn wfn 6557  wf 6558  cfv 6562  (class class class)co 7430  cc 11150  chba 30947   + cva 30948   · csm 30949  0c0v 30952   S csh 30956  LinOpclo 30975
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-hilex 31027  ax-hfvadd 31028  ax-hvass 31030  ax-hv0cl 31031  ax-hvaddid 31032  ax-hfvmul 31033  ax-hvmulid 31034  ax-hvdistr2 31037  ax-hvmul0 31038
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5582  df-po 5596  df-so 5597  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-er 8743  df-map 8866  df-en 8984  df-dom 8985  df-sdom 8986  df-pnf 11294  df-mnf 11295  df-ltxr 11297  df-sub 11491  df-neg 11492  df-hvsub 30999  df-sh 31235  df-lnop 31869
This theorem is referenced by:  rnelshi  32087
  Copyright terms: Public domain W3C validator