HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  imaelshi Structured version   Visualization version   GIF version

Theorem imaelshi 31000
Description: The image of a subspace under a linear operator is a subspace. (Contributed by Mario Carneiro, 19-May-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
rnelsh.1 𝑇 ∈ LinOp
imaelsh.2 𝐴S
Assertion
Ref Expression
imaelshi (𝑇𝐴) ∈ S

Proof of Theorem imaelshi
Dummy variables 𝑣 𝑢 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 imassrn 6024 . . . 4 (𝑇𝐴) ⊆ ran 𝑇
2 rnelsh.1 . . . . . 6 𝑇 ∈ LinOp
32lnopfi 30911 . . . . 5 𝑇: ℋ⟶ ℋ
4 frn 6675 . . . . 5 (𝑇: ℋ⟶ ℋ → ran 𝑇 ⊆ ℋ)
53, 4ax-mp 5 . . . 4 ran 𝑇 ⊆ ℋ
61, 5sstri 3953 . . 3 (𝑇𝐴) ⊆ ℋ
72lnop0i 30912 . . . 4 (𝑇‘0) = 0
8 imaelsh.2 . . . . . 6 𝐴S
9 sh0 30158 . . . . . 6 (𝐴S → 0𝐴)
108, 9ax-mp 5 . . . . 5 0𝐴
11 ffun 6671 . . . . . . 7 (𝑇: ℋ⟶ ℋ → Fun 𝑇)
123, 11ax-mp 5 . . . . . 6 Fun 𝑇
138shssii 30155 . . . . . . 7 𝐴 ⊆ ℋ
143fdmi 6680 . . . . . . 7 dom 𝑇 = ℋ
1513, 14sseqtrri 3981 . . . . . 6 𝐴 ⊆ dom 𝑇
16 funfvima2 7181 . . . . . 6 ((Fun 𝑇𝐴 ⊆ dom 𝑇) → (0𝐴 → (𝑇‘0) ∈ (𝑇𝐴)))
1712, 15, 16mp2an 690 . . . . 5 (0𝐴 → (𝑇‘0) ∈ (𝑇𝐴))
1810, 17ax-mp 5 . . . 4 (𝑇‘0) ∈ (𝑇𝐴)
197, 18eqeltrri 2835 . . 3 0 ∈ (𝑇𝐴)
206, 19pm3.2i 471 . 2 ((𝑇𝐴) ⊆ ℋ ∧ 0 ∈ (𝑇𝐴))
21 ffn 6668 . . . . . 6 (𝑇: ℋ⟶ ℋ → 𝑇 Fn ℋ)
223, 21ax-mp 5 . . . . 5 𝑇 Fn ℋ
23 oveq1 7364 . . . . . . . 8 (𝑢 = (𝑇𝑥) → (𝑢 + 𝑣) = ((𝑇𝑥) + 𝑣))
2423eleq1d 2822 . . . . . . 7 (𝑢 = (𝑇𝑥) → ((𝑢 + 𝑣) ∈ (𝑇𝐴) ↔ ((𝑇𝑥) + 𝑣) ∈ (𝑇𝐴)))
2524ralbidv 3174 . . . . . 6 (𝑢 = (𝑇𝑥) → (∀𝑣 ∈ (𝑇𝐴)(𝑢 + 𝑣) ∈ (𝑇𝐴) ↔ ∀𝑣 ∈ (𝑇𝐴)((𝑇𝑥) + 𝑣) ∈ (𝑇𝐴)))
2625ralima 7188 . . . . 5 ((𝑇 Fn ℋ ∧ 𝐴 ⊆ ℋ) → (∀𝑢 ∈ (𝑇𝐴)∀𝑣 ∈ (𝑇𝐴)(𝑢 + 𝑣) ∈ (𝑇𝐴) ↔ ∀𝑥𝐴𝑣 ∈ (𝑇𝐴)((𝑇𝑥) + 𝑣) ∈ (𝑇𝐴)))
2722, 13, 26mp2an 690 . . . 4 (∀𝑢 ∈ (𝑇𝐴)∀𝑣 ∈ (𝑇𝐴)(𝑢 + 𝑣) ∈ (𝑇𝐴) ↔ ∀𝑥𝐴𝑣 ∈ (𝑇𝐴)((𝑇𝑥) + 𝑣) ∈ (𝑇𝐴))
288sheli 30156 . . . . . . . 8 (𝑥𝐴𝑥 ∈ ℋ)
298sheli 30156 . . . . . . . 8 (𝑦𝐴𝑦 ∈ ℋ)
302lnopaddi 30913 . . . . . . . 8 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (𝑇‘(𝑥 + 𝑦)) = ((𝑇𝑥) + (𝑇𝑦)))
3128, 29, 30syl2an 596 . . . . . . 7 ((𝑥𝐴𝑦𝐴) → (𝑇‘(𝑥 + 𝑦)) = ((𝑇𝑥) + (𝑇𝑦)))
32 shaddcl 30159 . . . . . . . . 9 ((𝐴S𝑥𝐴𝑦𝐴) → (𝑥 + 𝑦) ∈ 𝐴)
338, 32mp3an1 1448 . . . . . . . 8 ((𝑥𝐴𝑦𝐴) → (𝑥 + 𝑦) ∈ 𝐴)
34 funfvima2 7181 . . . . . . . . 9 ((Fun 𝑇𝐴 ⊆ dom 𝑇) → ((𝑥 + 𝑦) ∈ 𝐴 → (𝑇‘(𝑥 + 𝑦)) ∈ (𝑇𝐴)))
3512, 15, 34mp2an 690 . . . . . . . 8 ((𝑥 + 𝑦) ∈ 𝐴 → (𝑇‘(𝑥 + 𝑦)) ∈ (𝑇𝐴))
3633, 35syl 17 . . . . . . 7 ((𝑥𝐴𝑦𝐴) → (𝑇‘(𝑥 + 𝑦)) ∈ (𝑇𝐴))
3731, 36eqeltrrd 2839 . . . . . 6 ((𝑥𝐴𝑦𝐴) → ((𝑇𝑥) + (𝑇𝑦)) ∈ (𝑇𝐴))
3837ralrimiva 3143 . . . . 5 (𝑥𝐴 → ∀𝑦𝐴 ((𝑇𝑥) + (𝑇𝑦)) ∈ (𝑇𝐴))
39 oveq2 7365 . . . . . . . 8 (𝑣 = (𝑇𝑦) → ((𝑇𝑥) + 𝑣) = ((𝑇𝑥) + (𝑇𝑦)))
4039eleq1d 2822 . . . . . . 7 (𝑣 = (𝑇𝑦) → (((𝑇𝑥) + 𝑣) ∈ (𝑇𝐴) ↔ ((𝑇𝑥) + (𝑇𝑦)) ∈ (𝑇𝐴)))
4140ralima 7188 . . . . . 6 ((𝑇 Fn ℋ ∧ 𝐴 ⊆ ℋ) → (∀𝑣 ∈ (𝑇𝐴)((𝑇𝑥) + 𝑣) ∈ (𝑇𝐴) ↔ ∀𝑦𝐴 ((𝑇𝑥) + (𝑇𝑦)) ∈ (𝑇𝐴)))
4222, 13, 41mp2an 690 . . . . 5 (∀𝑣 ∈ (𝑇𝐴)((𝑇𝑥) + 𝑣) ∈ (𝑇𝐴) ↔ ∀𝑦𝐴 ((𝑇𝑥) + (𝑇𝑦)) ∈ (𝑇𝐴))
4338, 42sylibr 233 . . . 4 (𝑥𝐴 → ∀𝑣 ∈ (𝑇𝐴)((𝑇𝑥) + 𝑣) ∈ (𝑇𝐴))
4427, 43mprgbir 3071 . . 3 𝑢 ∈ (𝑇𝐴)∀𝑣 ∈ (𝑇𝐴)(𝑢 + 𝑣) ∈ (𝑇𝐴)
452lnopmuli 30914 . . . . . . . 8 ((𝑢 ∈ ℂ ∧ 𝑦 ∈ ℋ) → (𝑇‘(𝑢 · 𝑦)) = (𝑢 · (𝑇𝑦)))
4629, 45sylan2 593 . . . . . . 7 ((𝑢 ∈ ℂ ∧ 𝑦𝐴) → (𝑇‘(𝑢 · 𝑦)) = (𝑢 · (𝑇𝑦)))
47 shmulcl 30160 . . . . . . . . 9 ((𝐴S𝑢 ∈ ℂ ∧ 𝑦𝐴) → (𝑢 · 𝑦) ∈ 𝐴)
488, 47mp3an1 1448 . . . . . . . 8 ((𝑢 ∈ ℂ ∧ 𝑦𝐴) → (𝑢 · 𝑦) ∈ 𝐴)
49 funfvima2 7181 . . . . . . . . 9 ((Fun 𝑇𝐴 ⊆ dom 𝑇) → ((𝑢 · 𝑦) ∈ 𝐴 → (𝑇‘(𝑢 · 𝑦)) ∈ (𝑇𝐴)))
5012, 15, 49mp2an 690 . . . . . . . 8 ((𝑢 · 𝑦) ∈ 𝐴 → (𝑇‘(𝑢 · 𝑦)) ∈ (𝑇𝐴))
5148, 50syl 17 . . . . . . 7 ((𝑢 ∈ ℂ ∧ 𝑦𝐴) → (𝑇‘(𝑢 · 𝑦)) ∈ (𝑇𝐴))
5246, 51eqeltrrd 2839 . . . . . 6 ((𝑢 ∈ ℂ ∧ 𝑦𝐴) → (𝑢 · (𝑇𝑦)) ∈ (𝑇𝐴))
5352ralrimiva 3143 . . . . 5 (𝑢 ∈ ℂ → ∀𝑦𝐴 (𝑢 · (𝑇𝑦)) ∈ (𝑇𝐴))
54 oveq2 7365 . . . . . . . 8 (𝑣 = (𝑇𝑦) → (𝑢 · 𝑣) = (𝑢 · (𝑇𝑦)))
5554eleq1d 2822 . . . . . . 7 (𝑣 = (𝑇𝑦) → ((𝑢 · 𝑣) ∈ (𝑇𝐴) ↔ (𝑢 · (𝑇𝑦)) ∈ (𝑇𝐴)))
5655ralima 7188 . . . . . 6 ((𝑇 Fn ℋ ∧ 𝐴 ⊆ ℋ) → (∀𝑣 ∈ (𝑇𝐴)(𝑢 · 𝑣) ∈ (𝑇𝐴) ↔ ∀𝑦𝐴 (𝑢 · (𝑇𝑦)) ∈ (𝑇𝐴)))
5722, 13, 56mp2an 690 . . . . 5 (∀𝑣 ∈ (𝑇𝐴)(𝑢 · 𝑣) ∈ (𝑇𝐴) ↔ ∀𝑦𝐴 (𝑢 · (𝑇𝑦)) ∈ (𝑇𝐴))
5853, 57sylibr 233 . . . 4 (𝑢 ∈ ℂ → ∀𝑣 ∈ (𝑇𝐴)(𝑢 · 𝑣) ∈ (𝑇𝐴))
5958rgen 3066 . . 3 𝑢 ∈ ℂ ∀𝑣 ∈ (𝑇𝐴)(𝑢 · 𝑣) ∈ (𝑇𝐴)
6044, 59pm3.2i 471 . 2 (∀𝑢 ∈ (𝑇𝐴)∀𝑣 ∈ (𝑇𝐴)(𝑢 + 𝑣) ∈ (𝑇𝐴) ∧ ∀𝑢 ∈ ℂ ∀𝑣 ∈ (𝑇𝐴)(𝑢 · 𝑣) ∈ (𝑇𝐴))
61 issh2 30151 . 2 ((𝑇𝐴) ∈ S ↔ (((𝑇𝐴) ⊆ ℋ ∧ 0 ∈ (𝑇𝐴)) ∧ (∀𝑢 ∈ (𝑇𝐴)∀𝑣 ∈ (𝑇𝐴)(𝑢 + 𝑣) ∈ (𝑇𝐴) ∧ ∀𝑢 ∈ ℂ ∀𝑣 ∈ (𝑇𝐴)(𝑢 · 𝑣) ∈ (𝑇𝐴))))
6220, 60, 61mpbir2an 709 1 (𝑇𝐴) ∈ S
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wral 3064  wss 3910  dom cdm 5633  ran crn 5634  cima 5636  Fun wfun 6490   Fn wfn 6491  wf 6492  cfv 6496  (class class class)co 7357  cc 11049  chba 29861   + cva 29862   · csm 29863  0c0v 29866   S csh 29870  LinOpclo 29889
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-hilex 29941  ax-hfvadd 29942  ax-hvass 29944  ax-hv0cl 29945  ax-hvaddid 29946  ax-hfvmul 29947  ax-hvmulid 29948  ax-hvdistr2 29951  ax-hvmul0 29952
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-id 5531  df-po 5545  df-so 5546  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-er 8648  df-map 8767  df-en 8884  df-dom 8885  df-sdom 8886  df-pnf 11191  df-mnf 11192  df-ltxr 11194  df-sub 11387  df-neg 11388  df-hvsub 29913  df-sh 30149  df-lnop 30783
This theorem is referenced by:  rnelshi  31001
  Copyright terms: Public domain W3C validator