HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  imaelshi Structured version   Visualization version   GIF version

Theorem imaelshi 30321
Description: The image of a subspace under a linear operator is a subspace. (Contributed by Mario Carneiro, 19-May-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
rnelsh.1 𝑇 ∈ LinOp
imaelsh.2 𝐴S
Assertion
Ref Expression
imaelshi (𝑇𝐴) ∈ S

Proof of Theorem imaelshi
Dummy variables 𝑣 𝑢 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 imassrn 5969 . . . 4 (𝑇𝐴) ⊆ ran 𝑇
2 rnelsh.1 . . . . . 6 𝑇 ∈ LinOp
32lnopfi 30232 . . . . 5 𝑇: ℋ⟶ ℋ
4 frn 6591 . . . . 5 (𝑇: ℋ⟶ ℋ → ran 𝑇 ⊆ ℋ)
53, 4ax-mp 5 . . . 4 ran 𝑇 ⊆ ℋ
61, 5sstri 3926 . . 3 (𝑇𝐴) ⊆ ℋ
72lnop0i 30233 . . . 4 (𝑇‘0) = 0
8 imaelsh.2 . . . . . 6 𝐴S
9 sh0 29479 . . . . . 6 (𝐴S → 0𝐴)
108, 9ax-mp 5 . . . . 5 0𝐴
11 ffun 6587 . . . . . . 7 (𝑇: ℋ⟶ ℋ → Fun 𝑇)
123, 11ax-mp 5 . . . . . 6 Fun 𝑇
138shssii 29476 . . . . . . 7 𝐴 ⊆ ℋ
143fdmi 6596 . . . . . . 7 dom 𝑇 = ℋ
1513, 14sseqtrri 3954 . . . . . 6 𝐴 ⊆ dom 𝑇
16 funfvima2 7089 . . . . . 6 ((Fun 𝑇𝐴 ⊆ dom 𝑇) → (0𝐴 → (𝑇‘0) ∈ (𝑇𝐴)))
1712, 15, 16mp2an 688 . . . . 5 (0𝐴 → (𝑇‘0) ∈ (𝑇𝐴))
1810, 17ax-mp 5 . . . 4 (𝑇‘0) ∈ (𝑇𝐴)
197, 18eqeltrri 2836 . . 3 0 ∈ (𝑇𝐴)
206, 19pm3.2i 470 . 2 ((𝑇𝐴) ⊆ ℋ ∧ 0 ∈ (𝑇𝐴))
21 ffn 6584 . . . . . 6 (𝑇: ℋ⟶ ℋ → 𝑇 Fn ℋ)
223, 21ax-mp 5 . . . . 5 𝑇 Fn ℋ
23 oveq1 7262 . . . . . . . 8 (𝑢 = (𝑇𝑥) → (𝑢 + 𝑣) = ((𝑇𝑥) + 𝑣))
2423eleq1d 2823 . . . . . . 7 (𝑢 = (𝑇𝑥) → ((𝑢 + 𝑣) ∈ (𝑇𝐴) ↔ ((𝑇𝑥) + 𝑣) ∈ (𝑇𝐴)))
2524ralbidv 3120 . . . . . 6 (𝑢 = (𝑇𝑥) → (∀𝑣 ∈ (𝑇𝐴)(𝑢 + 𝑣) ∈ (𝑇𝐴) ↔ ∀𝑣 ∈ (𝑇𝐴)((𝑇𝑥) + 𝑣) ∈ (𝑇𝐴)))
2625ralima 7096 . . . . 5 ((𝑇 Fn ℋ ∧ 𝐴 ⊆ ℋ) → (∀𝑢 ∈ (𝑇𝐴)∀𝑣 ∈ (𝑇𝐴)(𝑢 + 𝑣) ∈ (𝑇𝐴) ↔ ∀𝑥𝐴𝑣 ∈ (𝑇𝐴)((𝑇𝑥) + 𝑣) ∈ (𝑇𝐴)))
2722, 13, 26mp2an 688 . . . 4 (∀𝑢 ∈ (𝑇𝐴)∀𝑣 ∈ (𝑇𝐴)(𝑢 + 𝑣) ∈ (𝑇𝐴) ↔ ∀𝑥𝐴𝑣 ∈ (𝑇𝐴)((𝑇𝑥) + 𝑣) ∈ (𝑇𝐴))
288sheli 29477 . . . . . . . 8 (𝑥𝐴𝑥 ∈ ℋ)
298sheli 29477 . . . . . . . 8 (𝑦𝐴𝑦 ∈ ℋ)
302lnopaddi 30234 . . . . . . . 8 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (𝑇‘(𝑥 + 𝑦)) = ((𝑇𝑥) + (𝑇𝑦)))
3128, 29, 30syl2an 595 . . . . . . 7 ((𝑥𝐴𝑦𝐴) → (𝑇‘(𝑥 + 𝑦)) = ((𝑇𝑥) + (𝑇𝑦)))
32 shaddcl 29480 . . . . . . . . 9 ((𝐴S𝑥𝐴𝑦𝐴) → (𝑥 + 𝑦) ∈ 𝐴)
338, 32mp3an1 1446 . . . . . . . 8 ((𝑥𝐴𝑦𝐴) → (𝑥 + 𝑦) ∈ 𝐴)
34 funfvima2 7089 . . . . . . . . 9 ((Fun 𝑇𝐴 ⊆ dom 𝑇) → ((𝑥 + 𝑦) ∈ 𝐴 → (𝑇‘(𝑥 + 𝑦)) ∈ (𝑇𝐴)))
3512, 15, 34mp2an 688 . . . . . . . 8 ((𝑥 + 𝑦) ∈ 𝐴 → (𝑇‘(𝑥 + 𝑦)) ∈ (𝑇𝐴))
3633, 35syl 17 . . . . . . 7 ((𝑥𝐴𝑦𝐴) → (𝑇‘(𝑥 + 𝑦)) ∈ (𝑇𝐴))
3731, 36eqeltrrd 2840 . . . . . 6 ((𝑥𝐴𝑦𝐴) → ((𝑇𝑥) + (𝑇𝑦)) ∈ (𝑇𝐴))
3837ralrimiva 3107 . . . . 5 (𝑥𝐴 → ∀𝑦𝐴 ((𝑇𝑥) + (𝑇𝑦)) ∈ (𝑇𝐴))
39 oveq2 7263 . . . . . . . 8 (𝑣 = (𝑇𝑦) → ((𝑇𝑥) + 𝑣) = ((𝑇𝑥) + (𝑇𝑦)))
4039eleq1d 2823 . . . . . . 7 (𝑣 = (𝑇𝑦) → (((𝑇𝑥) + 𝑣) ∈ (𝑇𝐴) ↔ ((𝑇𝑥) + (𝑇𝑦)) ∈ (𝑇𝐴)))
4140ralima 7096 . . . . . 6 ((𝑇 Fn ℋ ∧ 𝐴 ⊆ ℋ) → (∀𝑣 ∈ (𝑇𝐴)((𝑇𝑥) + 𝑣) ∈ (𝑇𝐴) ↔ ∀𝑦𝐴 ((𝑇𝑥) + (𝑇𝑦)) ∈ (𝑇𝐴)))
4222, 13, 41mp2an 688 . . . . 5 (∀𝑣 ∈ (𝑇𝐴)((𝑇𝑥) + 𝑣) ∈ (𝑇𝐴) ↔ ∀𝑦𝐴 ((𝑇𝑥) + (𝑇𝑦)) ∈ (𝑇𝐴))
4338, 42sylibr 233 . . . 4 (𝑥𝐴 → ∀𝑣 ∈ (𝑇𝐴)((𝑇𝑥) + 𝑣) ∈ (𝑇𝐴))
4427, 43mprgbir 3078 . . 3 𝑢 ∈ (𝑇𝐴)∀𝑣 ∈ (𝑇𝐴)(𝑢 + 𝑣) ∈ (𝑇𝐴)
452lnopmuli 30235 . . . . . . . 8 ((𝑢 ∈ ℂ ∧ 𝑦 ∈ ℋ) → (𝑇‘(𝑢 · 𝑦)) = (𝑢 · (𝑇𝑦)))
4629, 45sylan2 592 . . . . . . 7 ((𝑢 ∈ ℂ ∧ 𝑦𝐴) → (𝑇‘(𝑢 · 𝑦)) = (𝑢 · (𝑇𝑦)))
47 shmulcl 29481 . . . . . . . . 9 ((𝐴S𝑢 ∈ ℂ ∧ 𝑦𝐴) → (𝑢 · 𝑦) ∈ 𝐴)
488, 47mp3an1 1446 . . . . . . . 8 ((𝑢 ∈ ℂ ∧ 𝑦𝐴) → (𝑢 · 𝑦) ∈ 𝐴)
49 funfvima2 7089 . . . . . . . . 9 ((Fun 𝑇𝐴 ⊆ dom 𝑇) → ((𝑢 · 𝑦) ∈ 𝐴 → (𝑇‘(𝑢 · 𝑦)) ∈ (𝑇𝐴)))
5012, 15, 49mp2an 688 . . . . . . . 8 ((𝑢 · 𝑦) ∈ 𝐴 → (𝑇‘(𝑢 · 𝑦)) ∈ (𝑇𝐴))
5148, 50syl 17 . . . . . . 7 ((𝑢 ∈ ℂ ∧ 𝑦𝐴) → (𝑇‘(𝑢 · 𝑦)) ∈ (𝑇𝐴))
5246, 51eqeltrrd 2840 . . . . . 6 ((𝑢 ∈ ℂ ∧ 𝑦𝐴) → (𝑢 · (𝑇𝑦)) ∈ (𝑇𝐴))
5352ralrimiva 3107 . . . . 5 (𝑢 ∈ ℂ → ∀𝑦𝐴 (𝑢 · (𝑇𝑦)) ∈ (𝑇𝐴))
54 oveq2 7263 . . . . . . . 8 (𝑣 = (𝑇𝑦) → (𝑢 · 𝑣) = (𝑢 · (𝑇𝑦)))
5554eleq1d 2823 . . . . . . 7 (𝑣 = (𝑇𝑦) → ((𝑢 · 𝑣) ∈ (𝑇𝐴) ↔ (𝑢 · (𝑇𝑦)) ∈ (𝑇𝐴)))
5655ralima 7096 . . . . . 6 ((𝑇 Fn ℋ ∧ 𝐴 ⊆ ℋ) → (∀𝑣 ∈ (𝑇𝐴)(𝑢 · 𝑣) ∈ (𝑇𝐴) ↔ ∀𝑦𝐴 (𝑢 · (𝑇𝑦)) ∈ (𝑇𝐴)))
5722, 13, 56mp2an 688 . . . . 5 (∀𝑣 ∈ (𝑇𝐴)(𝑢 · 𝑣) ∈ (𝑇𝐴) ↔ ∀𝑦𝐴 (𝑢 · (𝑇𝑦)) ∈ (𝑇𝐴))
5853, 57sylibr 233 . . . 4 (𝑢 ∈ ℂ → ∀𝑣 ∈ (𝑇𝐴)(𝑢 · 𝑣) ∈ (𝑇𝐴))
5958rgen 3073 . . 3 𝑢 ∈ ℂ ∀𝑣 ∈ (𝑇𝐴)(𝑢 · 𝑣) ∈ (𝑇𝐴)
6044, 59pm3.2i 470 . 2 (∀𝑢 ∈ (𝑇𝐴)∀𝑣 ∈ (𝑇𝐴)(𝑢 + 𝑣) ∈ (𝑇𝐴) ∧ ∀𝑢 ∈ ℂ ∀𝑣 ∈ (𝑇𝐴)(𝑢 · 𝑣) ∈ (𝑇𝐴))
61 issh2 29472 . 2 ((𝑇𝐴) ∈ S ↔ (((𝑇𝐴) ⊆ ℋ ∧ 0 ∈ (𝑇𝐴)) ∧ (∀𝑢 ∈ (𝑇𝐴)∀𝑣 ∈ (𝑇𝐴)(𝑢 + 𝑣) ∈ (𝑇𝐴) ∧ ∀𝑢 ∈ ℂ ∀𝑣 ∈ (𝑇𝐴)(𝑢 · 𝑣) ∈ (𝑇𝐴))))
6220, 60, 61mpbir2an 707 1 (𝑇𝐴) ∈ S
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wral 3063  wss 3883  dom cdm 5580  ran crn 5581  cima 5583  Fun wfun 6412   Fn wfn 6413  wf 6414  cfv 6418  (class class class)co 7255  cc 10800  chba 29182   + cva 29183   · csm 29184  0c0v 29187   S csh 29191  LinOpclo 29210
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-hilex 29262  ax-hfvadd 29263  ax-hvass 29265  ax-hv0cl 29266  ax-hvaddid 29267  ax-hfvmul 29268  ax-hvmulid 29269  ax-hvdistr2 29272  ax-hvmul0 29273
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-po 5494  df-so 5495  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-ltxr 10945  df-sub 11137  df-neg 11138  df-hvsub 29234  df-sh 29470  df-lnop 30104
This theorem is referenced by:  rnelshi  30322
  Copyright terms: Public domain W3C validator