HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  imaelshi Structured version   Visualization version   GIF version

Theorem imaelshi 30139
Description: The image of a subspace under a linear operator is a subspace. (Contributed by Mario Carneiro, 19-May-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
rnelsh.1 𝑇 ∈ LinOp
imaelsh.2 𝐴S
Assertion
Ref Expression
imaelshi (𝑇𝐴) ∈ S

Proof of Theorem imaelshi
Dummy variables 𝑣 𝑢 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 imassrn 5940 . . . 4 (𝑇𝐴) ⊆ ran 𝑇
2 rnelsh.1 . . . . . 6 𝑇 ∈ LinOp
32lnopfi 30050 . . . . 5 𝑇: ℋ⟶ ℋ
4 frn 6552 . . . . 5 (𝑇: ℋ⟶ ℋ → ran 𝑇 ⊆ ℋ)
53, 4ax-mp 5 . . . 4 ran 𝑇 ⊆ ℋ
61, 5sstri 3910 . . 3 (𝑇𝐴) ⊆ ℋ
72lnop0i 30051 . . . 4 (𝑇‘0) = 0
8 imaelsh.2 . . . . . 6 𝐴S
9 sh0 29297 . . . . . 6 (𝐴S → 0𝐴)
108, 9ax-mp 5 . . . . 5 0𝐴
11 ffun 6548 . . . . . . 7 (𝑇: ℋ⟶ ℋ → Fun 𝑇)
123, 11ax-mp 5 . . . . . 6 Fun 𝑇
138shssii 29294 . . . . . . 7 𝐴 ⊆ ℋ
143fdmi 6557 . . . . . . 7 dom 𝑇 = ℋ
1513, 14sseqtrri 3938 . . . . . 6 𝐴 ⊆ dom 𝑇
16 funfvima2 7047 . . . . . 6 ((Fun 𝑇𝐴 ⊆ dom 𝑇) → (0𝐴 → (𝑇‘0) ∈ (𝑇𝐴)))
1712, 15, 16mp2an 692 . . . . 5 (0𝐴 → (𝑇‘0) ∈ (𝑇𝐴))
1810, 17ax-mp 5 . . . 4 (𝑇‘0) ∈ (𝑇𝐴)
197, 18eqeltrri 2835 . . 3 0 ∈ (𝑇𝐴)
206, 19pm3.2i 474 . 2 ((𝑇𝐴) ⊆ ℋ ∧ 0 ∈ (𝑇𝐴))
21 ffn 6545 . . . . . 6 (𝑇: ℋ⟶ ℋ → 𝑇 Fn ℋ)
223, 21ax-mp 5 . . . . 5 𝑇 Fn ℋ
23 oveq1 7220 . . . . . . . 8 (𝑢 = (𝑇𝑥) → (𝑢 + 𝑣) = ((𝑇𝑥) + 𝑣))
2423eleq1d 2822 . . . . . . 7 (𝑢 = (𝑇𝑥) → ((𝑢 + 𝑣) ∈ (𝑇𝐴) ↔ ((𝑇𝑥) + 𝑣) ∈ (𝑇𝐴)))
2524ralbidv 3118 . . . . . 6 (𝑢 = (𝑇𝑥) → (∀𝑣 ∈ (𝑇𝐴)(𝑢 + 𝑣) ∈ (𝑇𝐴) ↔ ∀𝑣 ∈ (𝑇𝐴)((𝑇𝑥) + 𝑣) ∈ (𝑇𝐴)))
2625ralima 7054 . . . . 5 ((𝑇 Fn ℋ ∧ 𝐴 ⊆ ℋ) → (∀𝑢 ∈ (𝑇𝐴)∀𝑣 ∈ (𝑇𝐴)(𝑢 + 𝑣) ∈ (𝑇𝐴) ↔ ∀𝑥𝐴𝑣 ∈ (𝑇𝐴)((𝑇𝑥) + 𝑣) ∈ (𝑇𝐴)))
2722, 13, 26mp2an 692 . . . 4 (∀𝑢 ∈ (𝑇𝐴)∀𝑣 ∈ (𝑇𝐴)(𝑢 + 𝑣) ∈ (𝑇𝐴) ↔ ∀𝑥𝐴𝑣 ∈ (𝑇𝐴)((𝑇𝑥) + 𝑣) ∈ (𝑇𝐴))
288sheli 29295 . . . . . . . 8 (𝑥𝐴𝑥 ∈ ℋ)
298sheli 29295 . . . . . . . 8 (𝑦𝐴𝑦 ∈ ℋ)
302lnopaddi 30052 . . . . . . . 8 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (𝑇‘(𝑥 + 𝑦)) = ((𝑇𝑥) + (𝑇𝑦)))
3128, 29, 30syl2an 599 . . . . . . 7 ((𝑥𝐴𝑦𝐴) → (𝑇‘(𝑥 + 𝑦)) = ((𝑇𝑥) + (𝑇𝑦)))
32 shaddcl 29298 . . . . . . . . 9 ((𝐴S𝑥𝐴𝑦𝐴) → (𝑥 + 𝑦) ∈ 𝐴)
338, 32mp3an1 1450 . . . . . . . 8 ((𝑥𝐴𝑦𝐴) → (𝑥 + 𝑦) ∈ 𝐴)
34 funfvima2 7047 . . . . . . . . 9 ((Fun 𝑇𝐴 ⊆ dom 𝑇) → ((𝑥 + 𝑦) ∈ 𝐴 → (𝑇‘(𝑥 + 𝑦)) ∈ (𝑇𝐴)))
3512, 15, 34mp2an 692 . . . . . . . 8 ((𝑥 + 𝑦) ∈ 𝐴 → (𝑇‘(𝑥 + 𝑦)) ∈ (𝑇𝐴))
3633, 35syl 17 . . . . . . 7 ((𝑥𝐴𝑦𝐴) → (𝑇‘(𝑥 + 𝑦)) ∈ (𝑇𝐴))
3731, 36eqeltrrd 2839 . . . . . 6 ((𝑥𝐴𝑦𝐴) → ((𝑇𝑥) + (𝑇𝑦)) ∈ (𝑇𝐴))
3837ralrimiva 3105 . . . . 5 (𝑥𝐴 → ∀𝑦𝐴 ((𝑇𝑥) + (𝑇𝑦)) ∈ (𝑇𝐴))
39 oveq2 7221 . . . . . . . 8 (𝑣 = (𝑇𝑦) → ((𝑇𝑥) + 𝑣) = ((𝑇𝑥) + (𝑇𝑦)))
4039eleq1d 2822 . . . . . . 7 (𝑣 = (𝑇𝑦) → (((𝑇𝑥) + 𝑣) ∈ (𝑇𝐴) ↔ ((𝑇𝑥) + (𝑇𝑦)) ∈ (𝑇𝐴)))
4140ralima 7054 . . . . . 6 ((𝑇 Fn ℋ ∧ 𝐴 ⊆ ℋ) → (∀𝑣 ∈ (𝑇𝐴)((𝑇𝑥) + 𝑣) ∈ (𝑇𝐴) ↔ ∀𝑦𝐴 ((𝑇𝑥) + (𝑇𝑦)) ∈ (𝑇𝐴)))
4222, 13, 41mp2an 692 . . . . 5 (∀𝑣 ∈ (𝑇𝐴)((𝑇𝑥) + 𝑣) ∈ (𝑇𝐴) ↔ ∀𝑦𝐴 ((𝑇𝑥) + (𝑇𝑦)) ∈ (𝑇𝐴))
4338, 42sylibr 237 . . . 4 (𝑥𝐴 → ∀𝑣 ∈ (𝑇𝐴)((𝑇𝑥) + 𝑣) ∈ (𝑇𝐴))
4427, 43mprgbir 3076 . . 3 𝑢 ∈ (𝑇𝐴)∀𝑣 ∈ (𝑇𝐴)(𝑢 + 𝑣) ∈ (𝑇𝐴)
452lnopmuli 30053 . . . . . . . 8 ((𝑢 ∈ ℂ ∧ 𝑦 ∈ ℋ) → (𝑇‘(𝑢 · 𝑦)) = (𝑢 · (𝑇𝑦)))
4629, 45sylan2 596 . . . . . . 7 ((𝑢 ∈ ℂ ∧ 𝑦𝐴) → (𝑇‘(𝑢 · 𝑦)) = (𝑢 · (𝑇𝑦)))
47 shmulcl 29299 . . . . . . . . 9 ((𝐴S𝑢 ∈ ℂ ∧ 𝑦𝐴) → (𝑢 · 𝑦) ∈ 𝐴)
488, 47mp3an1 1450 . . . . . . . 8 ((𝑢 ∈ ℂ ∧ 𝑦𝐴) → (𝑢 · 𝑦) ∈ 𝐴)
49 funfvima2 7047 . . . . . . . . 9 ((Fun 𝑇𝐴 ⊆ dom 𝑇) → ((𝑢 · 𝑦) ∈ 𝐴 → (𝑇‘(𝑢 · 𝑦)) ∈ (𝑇𝐴)))
5012, 15, 49mp2an 692 . . . . . . . 8 ((𝑢 · 𝑦) ∈ 𝐴 → (𝑇‘(𝑢 · 𝑦)) ∈ (𝑇𝐴))
5148, 50syl 17 . . . . . . 7 ((𝑢 ∈ ℂ ∧ 𝑦𝐴) → (𝑇‘(𝑢 · 𝑦)) ∈ (𝑇𝐴))
5246, 51eqeltrrd 2839 . . . . . 6 ((𝑢 ∈ ℂ ∧ 𝑦𝐴) → (𝑢 · (𝑇𝑦)) ∈ (𝑇𝐴))
5352ralrimiva 3105 . . . . 5 (𝑢 ∈ ℂ → ∀𝑦𝐴 (𝑢 · (𝑇𝑦)) ∈ (𝑇𝐴))
54 oveq2 7221 . . . . . . . 8 (𝑣 = (𝑇𝑦) → (𝑢 · 𝑣) = (𝑢 · (𝑇𝑦)))
5554eleq1d 2822 . . . . . . 7 (𝑣 = (𝑇𝑦) → ((𝑢 · 𝑣) ∈ (𝑇𝐴) ↔ (𝑢 · (𝑇𝑦)) ∈ (𝑇𝐴)))
5655ralima 7054 . . . . . 6 ((𝑇 Fn ℋ ∧ 𝐴 ⊆ ℋ) → (∀𝑣 ∈ (𝑇𝐴)(𝑢 · 𝑣) ∈ (𝑇𝐴) ↔ ∀𝑦𝐴 (𝑢 · (𝑇𝑦)) ∈ (𝑇𝐴)))
5722, 13, 56mp2an 692 . . . . 5 (∀𝑣 ∈ (𝑇𝐴)(𝑢 · 𝑣) ∈ (𝑇𝐴) ↔ ∀𝑦𝐴 (𝑢 · (𝑇𝑦)) ∈ (𝑇𝐴))
5853, 57sylibr 237 . . . 4 (𝑢 ∈ ℂ → ∀𝑣 ∈ (𝑇𝐴)(𝑢 · 𝑣) ∈ (𝑇𝐴))
5958rgen 3071 . . 3 𝑢 ∈ ℂ ∀𝑣 ∈ (𝑇𝐴)(𝑢 · 𝑣) ∈ (𝑇𝐴)
6044, 59pm3.2i 474 . 2 (∀𝑢 ∈ (𝑇𝐴)∀𝑣 ∈ (𝑇𝐴)(𝑢 + 𝑣) ∈ (𝑇𝐴) ∧ ∀𝑢 ∈ ℂ ∀𝑣 ∈ (𝑇𝐴)(𝑢 · 𝑣) ∈ (𝑇𝐴))
61 issh2 29290 . 2 ((𝑇𝐴) ∈ S ↔ (((𝑇𝐴) ⊆ ℋ ∧ 0 ∈ (𝑇𝐴)) ∧ (∀𝑢 ∈ (𝑇𝐴)∀𝑣 ∈ (𝑇𝐴)(𝑢 + 𝑣) ∈ (𝑇𝐴) ∧ ∀𝑢 ∈ ℂ ∀𝑣 ∈ (𝑇𝐴)(𝑢 · 𝑣) ∈ (𝑇𝐴))))
6220, 60, 61mpbir2an 711 1 (𝑇𝐴) ∈ S
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1543  wcel 2110  wral 3061  wss 3866  dom cdm 5551  ran crn 5552  cima 5554  Fun wfun 6374   Fn wfn 6375  wf 6376  cfv 6380  (class class class)co 7213  cc 10727  chba 29000   + cva 29001   · csm 29002  0c0v 29005   S csh 29009  LinOpclo 29028
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-hilex 29080  ax-hfvadd 29081  ax-hvass 29083  ax-hv0cl 29084  ax-hvaddid 29085  ax-hfvmul 29086  ax-hvmulid 29087  ax-hvdistr2 29090  ax-hvmul0 29091
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-op 4548  df-uni 4820  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-id 5455  df-po 5468  df-so 5469  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-er 8391  df-map 8510  df-en 8627  df-dom 8628  df-sdom 8629  df-pnf 10869  df-mnf 10870  df-ltxr 10872  df-sub 11064  df-neg 11065  df-hvsub 29052  df-sh 29288  df-lnop 29922
This theorem is referenced by:  rnelshi  30140
  Copyright terms: Public domain W3C validator