MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  basfn Structured version   Visualization version   GIF version

Theorem basfn 16983
Description: The base set extractor is a function on V. (Contributed by Stefan O'Rear, 8-Jul-2015.)
Assertion
Ref Expression
basfn Base Fn V

Proof of Theorem basfn
StepHypRef Expression
1 baseid 16982 . 2 Base = Slot (Base‘ndx)
21slotfn 16952 1 Base Fn V
Colors of variables: wff setvar class
Syntax hints:  Vcvv 3441   Fn wfn 6458  cfv 6463  ndxcnx 16961  Basecbs 16979
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2708  ax-sep 5236  ax-nul 5243  ax-pow 5301  ax-pr 5365  ax-un 7626  ax-cnex 10997  ax-1cn 10999  ax-addcl 11001
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3351  df-rab 3405  df-v 3443  df-sbc 3726  df-csb 3842  df-dif 3899  df-un 3901  df-in 3903  df-ss 3913  df-pss 3915  df-nul 4267  df-if 4470  df-pw 4545  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4849  df-iun 4937  df-br 5086  df-opab 5148  df-mpt 5169  df-tr 5203  df-id 5505  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5560  df-we 5562  df-xp 5611  df-rel 5612  df-cnv 5613  df-co 5614  df-dm 5615  df-rn 5616  df-res 5617  df-ima 5618  df-pred 6222  df-ord 6289  df-on 6290  df-lim 6291  df-suc 6292  df-iota 6415  df-fun 6465  df-fn 6466  df-f 6467  df-f1 6468  df-fo 6469  df-f1o 6470  df-fv 6471  df-ov 7316  df-om 7756  df-2nd 7875  df-frecs 8142  df-wrecs 8173  df-recs 8247  df-rdg 8286  df-nn 12044  df-slot 16950  df-ndx 16962  df-base 16980
This theorem is referenced by:  bascnvimaeqv  17904  isnumbasgrplem1  41137  isnumbasgrplem2  41140  dfacbasgrp  41144
  Copyright terms: Public domain W3C validator