Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-isrvec Structured version   Visualization version   GIF version

Theorem bj-isrvec 35765
Description: The predicate "is a real vector space". Using df-sca 17149 instead of scaid 17196 would shorten the proof by two syntactic steps, but it is preferable not to rely on the precise definition df-sca 17149. (Contributed by BJ, 6-Jan-2024.)
Assertion
Ref Expression
bj-isrvec (𝑉 ∈ ℝ-Vec ↔ (𝑉 ∈ LMod ∧ (Scalar‘𝑉) = ℝfld))

Proof of Theorem bj-isrvec
StepHypRef Expression
1 df-bj-rvec 35764 . . 3 ℝ-Vec = (LMod ∩ (Scalar “ {ℝfld}))
21elin2 4157 . 2 (𝑉 ∈ ℝ-Vec ↔ (𝑉 ∈ LMod ∧ 𝑉 ∈ (Scalar “ {ℝfld})))
3 scaid 17196 . . . . . . . 8 Scalar = Slot (Scalar‘ndx)
43slotfn 17056 . . . . . . 7 Scalar Fn V
5 df-fn 6499 . . . . . . 7 (Scalar Fn V ↔ (Fun Scalar ∧ dom Scalar = V))
64, 5mpbi 229 . . . . . 6 (Fun Scalar ∧ dom Scalar = V)
7 elex 3463 . . . . . . . 8 (𝑉 ∈ LMod → 𝑉 ∈ V)
8 eleq2 2826 . . . . . . . 8 (dom Scalar = V → (𝑉 ∈ dom Scalar ↔ 𝑉 ∈ V))
97, 8syl5ibrcom 246 . . . . . . 7 (𝑉 ∈ LMod → (dom Scalar = V → 𝑉 ∈ dom Scalar))
109anim2d 612 . . . . . 6 (𝑉 ∈ LMod → ((Fun Scalar ∧ dom Scalar = V) → (Fun Scalar ∧ 𝑉 ∈ dom Scalar)))
116, 10mpi 20 . . . . 5 (𝑉 ∈ LMod → (Fun Scalar ∧ 𝑉 ∈ dom Scalar))
12 fvimacnv 7003 . . . . 5 ((Fun Scalar ∧ 𝑉 ∈ dom Scalar) → ((Scalar‘𝑉) ∈ {ℝfld} ↔ 𝑉 ∈ (Scalar “ {ℝfld})))
1311, 12syl 17 . . . 4 (𝑉 ∈ LMod → ((Scalar‘𝑉) ∈ {ℝfld} ↔ 𝑉 ∈ (Scalar “ {ℝfld})))
14 fvex 6855 . . . . 5 (Scalar‘𝑉) ∈ V
1514elsn 4601 . . . 4 ((Scalar‘𝑉) ∈ {ℝfld} ↔ (Scalar‘𝑉) = ℝfld)
1613, 15bitr3di 285 . . 3 (𝑉 ∈ LMod → (𝑉 ∈ (Scalar “ {ℝfld}) ↔ (Scalar‘𝑉) = ℝfld))
1716pm5.32i 575 . 2 ((𝑉 ∈ LMod ∧ 𝑉 ∈ (Scalar “ {ℝfld})) ↔ (𝑉 ∈ LMod ∧ (Scalar‘𝑉) = ℝfld))
182, 17bitri 274 1 (𝑉 ∈ ℝ-Vec ↔ (𝑉 ∈ LMod ∧ (Scalar‘𝑉) = ℝfld))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396   = wceq 1541  wcel 2106  Vcvv 3445  {csn 4586  ccnv 5632  dom cdm 5633  cima 5636  Fun wfun 6490   Fn wfn 6491  cfv 6496  ndxcnx 17065  Scalarcsca 17136  LModclmod 20322  fldcrefld 21008  ℝ-Veccrrvec 35763
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-1cn 11109  ax-addcl 11111
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-ov 7360  df-om 7803  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-slot 17054  df-ndx 17066  df-sca 17149  df-bj-rvec 35764
This theorem is referenced by:  bj-rvecmod  35766  bj-rvecrr  35768  bj-isrvecd  35769
  Copyright terms: Public domain W3C validator