| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-isrvec | Structured version Visualization version GIF version | ||
| Description: The predicate "is a real vector space". Using df-sca 17313 instead of scaid 17359 would shorten the proof by two syntactic steps, but it is preferable not to rely on the precise definition df-sca 17313. (Contributed by BJ, 6-Jan-2024.) |
| Ref | Expression |
|---|---|
| bj-isrvec | ⊢ (𝑉 ∈ ℝ-Vec ↔ (𝑉 ∈ LMod ∧ (Scalar‘𝑉) = ℝfld)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-bj-rvec 37294 | . . 3 ⊢ ℝ-Vec = (LMod ∩ (◡Scalar “ {ℝfld})) | |
| 2 | 1 | elin2 4203 | . 2 ⊢ (𝑉 ∈ ℝ-Vec ↔ (𝑉 ∈ LMod ∧ 𝑉 ∈ (◡Scalar “ {ℝfld}))) |
| 3 | scaid 17359 | . . . . . . . 8 ⊢ Scalar = Slot (Scalar‘ndx) | |
| 4 | 3 | slotfn 17221 | . . . . . . 7 ⊢ Scalar Fn V |
| 5 | df-fn 6564 | . . . . . . 7 ⊢ (Scalar Fn V ↔ (Fun Scalar ∧ dom Scalar = V)) | |
| 6 | 4, 5 | mpbi 230 | . . . . . 6 ⊢ (Fun Scalar ∧ dom Scalar = V) |
| 7 | elex 3501 | . . . . . . . 8 ⊢ (𝑉 ∈ LMod → 𝑉 ∈ V) | |
| 8 | eleq2 2830 | . . . . . . . 8 ⊢ (dom Scalar = V → (𝑉 ∈ dom Scalar ↔ 𝑉 ∈ V)) | |
| 9 | 7, 8 | syl5ibrcom 247 | . . . . . . 7 ⊢ (𝑉 ∈ LMod → (dom Scalar = V → 𝑉 ∈ dom Scalar)) |
| 10 | 9 | anim2d 612 | . . . . . 6 ⊢ (𝑉 ∈ LMod → ((Fun Scalar ∧ dom Scalar = V) → (Fun Scalar ∧ 𝑉 ∈ dom Scalar))) |
| 11 | 6, 10 | mpi 20 | . . . . 5 ⊢ (𝑉 ∈ LMod → (Fun Scalar ∧ 𝑉 ∈ dom Scalar)) |
| 12 | fvimacnv 7073 | . . . . 5 ⊢ ((Fun Scalar ∧ 𝑉 ∈ dom Scalar) → ((Scalar‘𝑉) ∈ {ℝfld} ↔ 𝑉 ∈ (◡Scalar “ {ℝfld}))) | |
| 13 | 11, 12 | syl 17 | . . . 4 ⊢ (𝑉 ∈ LMod → ((Scalar‘𝑉) ∈ {ℝfld} ↔ 𝑉 ∈ (◡Scalar “ {ℝfld}))) |
| 14 | fvex 6919 | . . . . 5 ⊢ (Scalar‘𝑉) ∈ V | |
| 15 | 14 | elsn 4641 | . . . 4 ⊢ ((Scalar‘𝑉) ∈ {ℝfld} ↔ (Scalar‘𝑉) = ℝfld) |
| 16 | 13, 15 | bitr3di 286 | . . 3 ⊢ (𝑉 ∈ LMod → (𝑉 ∈ (◡Scalar “ {ℝfld}) ↔ (Scalar‘𝑉) = ℝfld)) |
| 17 | 16 | pm5.32i 574 | . 2 ⊢ ((𝑉 ∈ LMod ∧ 𝑉 ∈ (◡Scalar “ {ℝfld})) ↔ (𝑉 ∈ LMod ∧ (Scalar‘𝑉) = ℝfld)) |
| 18 | 2, 17 | bitri 275 | 1 ⊢ (𝑉 ∈ ℝ-Vec ↔ (𝑉 ∈ LMod ∧ (Scalar‘𝑉) = ℝfld)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 Vcvv 3480 {csn 4626 ◡ccnv 5684 dom cdm 5685 “ cima 5688 Fun wfun 6555 Fn wfn 6556 ‘cfv 6561 ndxcnx 17230 Scalarcsca 17300 LModclmod 20858 ℝfldcrefld 21622 ℝ-Veccrrvec 37293 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-1cn 11213 ax-addcl 11215 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-ov 7434 df-om 7888 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-nn 12267 df-2 12329 df-3 12330 df-4 12331 df-5 12332 df-slot 17219 df-ndx 17231 df-sca 17313 df-bj-rvec 37294 |
| This theorem is referenced by: bj-rvecmod 37296 bj-rvecrr 37298 bj-isrvecd 37299 |
| Copyright terms: Public domain | W3C validator |