Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-isrvec | Structured version Visualization version GIF version |
Description: The predicate "is a real vector space". (Contributed by BJ, 6-Jan-2024.) |
Ref | Expression |
---|---|
bj-isrvec | ⊢ (𝑉 ∈ ℝ-Vec ↔ (𝑉 ∈ LMod ∧ (Scalar‘𝑉) = ℝfld)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-bj-rvec 34987 | . . 3 ⊢ ℝ-Vec = (LMod ∩ (◡Scalar “ {ℝfld})) | |
2 | 1 | elin2 4102 | . 2 ⊢ (𝑉 ∈ ℝ-Vec ↔ (𝑉 ∈ LMod ∧ 𝑉 ∈ (◡Scalar “ {ℝfld}))) |
3 | bj-evalfun 34768 | . . . . . 6 ⊢ Fun Slot 5 | |
4 | df-sca 16639 | . . . . . . 7 ⊢ Scalar = Slot 5 | |
5 | 4 | funeqi 6356 | . . . . . 6 ⊢ (Fun Scalar ↔ Fun Slot 5) |
6 | 3, 5 | mpbir 234 | . . . . 5 ⊢ Fun Scalar |
7 | 0re 10681 | . . . . . . . . 9 ⊢ 0 ∈ ℝ | |
8 | 7 | n0ii 4235 | . . . . . . . 8 ⊢ ¬ ℝ = ∅ |
9 | eqcom 2765 | . . . . . . . 8 ⊢ (∅ = ℝ ↔ ℝ = ∅) | |
10 | 8, 9 | mtbir 326 | . . . . . . 7 ⊢ ¬ ∅ = ℝ |
11 | fveq2 6658 | . . . . . . . 8 ⊢ (∅ = ℝfld → (Base‘∅) = (Base‘ℝfld)) | |
12 | base0 16594 | . . . . . . . 8 ⊢ ∅ = (Base‘∅) | |
13 | rebase 20371 | . . . . . . . 8 ⊢ ℝ = (Base‘ℝfld) | |
14 | 11, 12, 13 | 3eqtr4g 2818 | . . . . . . 7 ⊢ (∅ = ℝfld → ∅ = ℝ) |
15 | 10, 14 | mto 200 | . . . . . 6 ⊢ ¬ ∅ = ℝfld |
16 | elsni 4539 | . . . . . 6 ⊢ (∅ ∈ {ℝfld} → ∅ = ℝfld) | |
17 | 15, 16 | mto 200 | . . . . 5 ⊢ ¬ ∅ ∈ {ℝfld} |
18 | bj-fvimacnv0 34981 | . . . . 5 ⊢ ((Fun Scalar ∧ ¬ ∅ ∈ {ℝfld}) → ((Scalar‘𝑉) ∈ {ℝfld} ↔ 𝑉 ∈ (◡Scalar “ {ℝfld}))) | |
19 | 6, 17, 18 | mp2an 691 | . . . 4 ⊢ ((Scalar‘𝑉) ∈ {ℝfld} ↔ 𝑉 ∈ (◡Scalar “ {ℝfld})) |
20 | fvex 6671 | . . . . 5 ⊢ (Scalar‘𝑉) ∈ V | |
21 | 20 | elsn 4537 | . . . 4 ⊢ ((Scalar‘𝑉) ∈ {ℝfld} ↔ (Scalar‘𝑉) = ℝfld) |
22 | 19, 21 | bitr3i 280 | . . 3 ⊢ (𝑉 ∈ (◡Scalar “ {ℝfld}) ↔ (Scalar‘𝑉) = ℝfld) |
23 | 22 | anbi2i 625 | . 2 ⊢ ((𝑉 ∈ LMod ∧ 𝑉 ∈ (◡Scalar “ {ℝfld})) ↔ (𝑉 ∈ LMod ∧ (Scalar‘𝑉) = ℝfld)) |
24 | 2, 23 | bitri 278 | 1 ⊢ (𝑉 ∈ ℝ-Vec ↔ (𝑉 ∈ LMod ∧ (Scalar‘𝑉) = ℝfld)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 209 ∧ wa 399 = wceq 1538 ∈ wcel 2111 ∅c0 4225 {csn 4522 ◡ccnv 5523 “ cima 5527 Fun wfun 6329 ‘cfv 6335 ℝcr 10574 0cc0 10575 5c5 11732 Slot cslot 16540 Basecbs 16541 Scalarcsca 16626 LModclmod 19702 ℝfldcrefld 20369 ℝ-Veccrrvec 34986 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5169 ax-nul 5176 ax-pow 5234 ax-pr 5298 ax-un 7459 ax-cnex 10631 ax-resscn 10632 ax-1cn 10633 ax-icn 10634 ax-addcl 10635 ax-addrcl 10636 ax-mulcl 10637 ax-mulrcl 10638 ax-mulcom 10639 ax-addass 10640 ax-mulass 10641 ax-distr 10642 ax-i2m1 10643 ax-1ne0 10644 ax-1rid 10645 ax-rnegex 10646 ax-rrecex 10647 ax-cnre 10648 ax-pre-lttri 10649 ax-pre-lttrn 10650 ax-pre-ltadd 10651 ax-pre-mulgt0 10652 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rab 3079 df-v 3411 df-sbc 3697 df-csb 3806 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-pss 3877 df-nul 4226 df-if 4421 df-pw 4496 df-sn 4523 df-pr 4525 df-tp 4527 df-op 4529 df-uni 4799 df-iun 4885 df-br 5033 df-opab 5095 df-mpt 5113 df-tr 5139 df-id 5430 df-eprel 5435 df-po 5443 df-so 5444 df-fr 5483 df-we 5485 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-res 5536 df-ima 5537 df-pred 6126 df-ord 6172 df-on 6173 df-lim 6174 df-suc 6175 df-iota 6294 df-fun 6337 df-fn 6338 df-f 6339 df-f1 6340 df-fo 6341 df-f1o 6342 df-fv 6343 df-riota 7108 df-ov 7153 df-oprab 7154 df-mpo 7155 df-om 7580 df-1st 7693 df-2nd 7694 df-wrecs 7957 df-recs 8018 df-rdg 8056 df-1o 8112 df-er 8299 df-en 8528 df-dom 8529 df-sdom 8530 df-fin 8531 df-pnf 10715 df-mnf 10716 df-xr 10717 df-ltxr 10718 df-le 10719 df-sub 10910 df-neg 10911 df-nn 11675 df-2 11737 df-3 11738 df-4 11739 df-5 11740 df-6 11741 df-7 11742 df-8 11743 df-9 11744 df-n0 11935 df-z 12021 df-dec 12138 df-uz 12283 df-fz 12940 df-struct 16543 df-ndx 16544 df-slot 16545 df-base 16547 df-sets 16548 df-ress 16549 df-plusg 16636 df-mulr 16637 df-starv 16638 df-sca 16639 df-tset 16642 df-ple 16643 df-ds 16645 df-unif 16646 df-cnfld 20167 df-refld 20370 df-bj-rvec 34987 |
This theorem is referenced by: bj-rvecmod 34989 bj-rvecrr 34991 bj-isrvecd 34992 |
Copyright terms: Public domain | W3C validator |