![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-isrvec | Structured version Visualization version GIF version |
Description: The predicate "is a real vector space". Using df-sca 17149 instead of scaid 17196 would shorten the proof by two syntactic steps, but it is preferable not to rely on the precise definition df-sca 17149. (Contributed by BJ, 6-Jan-2024.) |
Ref | Expression |
---|---|
bj-isrvec | ⊢ (𝑉 ∈ ℝ-Vec ↔ (𝑉 ∈ LMod ∧ (Scalar‘𝑉) = ℝfld)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-bj-rvec 35764 | . . 3 ⊢ ℝ-Vec = (LMod ∩ (◡Scalar “ {ℝfld})) | |
2 | 1 | elin2 4157 | . 2 ⊢ (𝑉 ∈ ℝ-Vec ↔ (𝑉 ∈ LMod ∧ 𝑉 ∈ (◡Scalar “ {ℝfld}))) |
3 | scaid 17196 | . . . . . . . 8 ⊢ Scalar = Slot (Scalar‘ndx) | |
4 | 3 | slotfn 17056 | . . . . . . 7 ⊢ Scalar Fn V |
5 | df-fn 6499 | . . . . . . 7 ⊢ (Scalar Fn V ↔ (Fun Scalar ∧ dom Scalar = V)) | |
6 | 4, 5 | mpbi 229 | . . . . . 6 ⊢ (Fun Scalar ∧ dom Scalar = V) |
7 | elex 3463 | . . . . . . . 8 ⊢ (𝑉 ∈ LMod → 𝑉 ∈ V) | |
8 | eleq2 2826 | . . . . . . . 8 ⊢ (dom Scalar = V → (𝑉 ∈ dom Scalar ↔ 𝑉 ∈ V)) | |
9 | 7, 8 | syl5ibrcom 246 | . . . . . . 7 ⊢ (𝑉 ∈ LMod → (dom Scalar = V → 𝑉 ∈ dom Scalar)) |
10 | 9 | anim2d 612 | . . . . . 6 ⊢ (𝑉 ∈ LMod → ((Fun Scalar ∧ dom Scalar = V) → (Fun Scalar ∧ 𝑉 ∈ dom Scalar))) |
11 | 6, 10 | mpi 20 | . . . . 5 ⊢ (𝑉 ∈ LMod → (Fun Scalar ∧ 𝑉 ∈ dom Scalar)) |
12 | fvimacnv 7003 | . . . . 5 ⊢ ((Fun Scalar ∧ 𝑉 ∈ dom Scalar) → ((Scalar‘𝑉) ∈ {ℝfld} ↔ 𝑉 ∈ (◡Scalar “ {ℝfld}))) | |
13 | 11, 12 | syl 17 | . . . 4 ⊢ (𝑉 ∈ LMod → ((Scalar‘𝑉) ∈ {ℝfld} ↔ 𝑉 ∈ (◡Scalar “ {ℝfld}))) |
14 | fvex 6855 | . . . . 5 ⊢ (Scalar‘𝑉) ∈ V | |
15 | 14 | elsn 4601 | . . . 4 ⊢ ((Scalar‘𝑉) ∈ {ℝfld} ↔ (Scalar‘𝑉) = ℝfld) |
16 | 13, 15 | bitr3di 285 | . . 3 ⊢ (𝑉 ∈ LMod → (𝑉 ∈ (◡Scalar “ {ℝfld}) ↔ (Scalar‘𝑉) = ℝfld)) |
17 | 16 | pm5.32i 575 | . 2 ⊢ ((𝑉 ∈ LMod ∧ 𝑉 ∈ (◡Scalar “ {ℝfld})) ↔ (𝑉 ∈ LMod ∧ (Scalar‘𝑉) = ℝfld)) |
18 | 2, 17 | bitri 274 | 1 ⊢ (𝑉 ∈ ℝ-Vec ↔ (𝑉 ∈ LMod ∧ (Scalar‘𝑉) = ℝfld)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 = wceq 1541 ∈ wcel 2106 Vcvv 3445 {csn 4586 ◡ccnv 5632 dom cdm 5633 “ cima 5636 Fun wfun 6490 Fn wfn 6491 ‘cfv 6496 ndxcnx 17065 Scalarcsca 17136 LModclmod 20322 ℝfldcrefld 21008 ℝ-Veccrrvec 35763 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2707 ax-sep 5256 ax-nul 5263 ax-pow 5320 ax-pr 5384 ax-un 7672 ax-cnex 11107 ax-1cn 11109 ax-addcl 11111 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2889 df-ne 2944 df-ral 3065 df-rex 3074 df-reu 3354 df-rab 3408 df-v 3447 df-sbc 3740 df-csb 3856 df-dif 3913 df-un 3915 df-in 3917 df-ss 3927 df-pss 3929 df-nul 4283 df-if 4487 df-pw 4562 df-sn 4587 df-pr 4589 df-op 4593 df-uni 4866 df-iun 4956 df-br 5106 df-opab 5168 df-mpt 5189 df-tr 5223 df-id 5531 df-eprel 5537 df-po 5545 df-so 5546 df-fr 5588 df-we 5590 df-xp 5639 df-rel 5640 df-cnv 5641 df-co 5642 df-dm 5643 df-rn 5644 df-res 5645 df-ima 5646 df-pred 6253 df-ord 6320 df-on 6321 df-lim 6322 df-suc 6323 df-iota 6448 df-fun 6498 df-fn 6499 df-f 6500 df-f1 6501 df-fo 6502 df-f1o 6503 df-fv 6504 df-ov 7360 df-om 7803 df-2nd 7922 df-frecs 8212 df-wrecs 8243 df-recs 8317 df-rdg 8356 df-nn 12154 df-2 12216 df-3 12217 df-4 12218 df-5 12219 df-slot 17054 df-ndx 17066 df-sca 17149 df-bj-rvec 35764 |
This theorem is referenced by: bj-rvecmod 35766 bj-rvecrr 35768 bj-isrvecd 35769 |
Copyright terms: Public domain | W3C validator |