| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-isrvec | Structured version Visualization version GIF version | ||
| Description: The predicate "is a real vector space". Using df-sca 17177 instead of scaid 17219 would shorten the proof by two syntactic steps, but it is preferable not to rely on the precise definition df-sca 17177. (Contributed by BJ, 6-Jan-2024.) |
| Ref | Expression |
|---|---|
| bj-isrvec | ⊢ (𝑉 ∈ ℝ-Vec ↔ (𝑉 ∈ LMod ∧ (Scalar‘𝑉) = ℝfld)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-bj-rvec 37333 | . . 3 ⊢ ℝ-Vec = (LMod ∩ (◡Scalar “ {ℝfld})) | |
| 2 | 1 | elin2 4153 | . 2 ⊢ (𝑉 ∈ ℝ-Vec ↔ (𝑉 ∈ LMod ∧ 𝑉 ∈ (◡Scalar “ {ℝfld}))) |
| 3 | scaid 17219 | . . . . . . . 8 ⊢ Scalar = Slot (Scalar‘ndx) | |
| 4 | 3 | slotfn 17095 | . . . . . . 7 ⊢ Scalar Fn V |
| 5 | df-fn 6484 | . . . . . . 7 ⊢ (Scalar Fn V ↔ (Fun Scalar ∧ dom Scalar = V)) | |
| 6 | 4, 5 | mpbi 230 | . . . . . 6 ⊢ (Fun Scalar ∧ dom Scalar = V) |
| 7 | elex 3457 | . . . . . . . 8 ⊢ (𝑉 ∈ LMod → 𝑉 ∈ V) | |
| 8 | eleq2 2820 | . . . . . . . 8 ⊢ (dom Scalar = V → (𝑉 ∈ dom Scalar ↔ 𝑉 ∈ V)) | |
| 9 | 7, 8 | syl5ibrcom 247 | . . . . . . 7 ⊢ (𝑉 ∈ LMod → (dom Scalar = V → 𝑉 ∈ dom Scalar)) |
| 10 | 9 | anim2d 612 | . . . . . 6 ⊢ (𝑉 ∈ LMod → ((Fun Scalar ∧ dom Scalar = V) → (Fun Scalar ∧ 𝑉 ∈ dom Scalar))) |
| 11 | 6, 10 | mpi 20 | . . . . 5 ⊢ (𝑉 ∈ LMod → (Fun Scalar ∧ 𝑉 ∈ dom Scalar)) |
| 12 | fvimacnv 6986 | . . . . 5 ⊢ ((Fun Scalar ∧ 𝑉 ∈ dom Scalar) → ((Scalar‘𝑉) ∈ {ℝfld} ↔ 𝑉 ∈ (◡Scalar “ {ℝfld}))) | |
| 13 | 11, 12 | syl 17 | . . . 4 ⊢ (𝑉 ∈ LMod → ((Scalar‘𝑉) ∈ {ℝfld} ↔ 𝑉 ∈ (◡Scalar “ {ℝfld}))) |
| 14 | fvex 6835 | . . . . 5 ⊢ (Scalar‘𝑉) ∈ V | |
| 15 | 14 | elsn 4591 | . . . 4 ⊢ ((Scalar‘𝑉) ∈ {ℝfld} ↔ (Scalar‘𝑉) = ℝfld) |
| 16 | 13, 15 | bitr3di 286 | . . 3 ⊢ (𝑉 ∈ LMod → (𝑉 ∈ (◡Scalar “ {ℝfld}) ↔ (Scalar‘𝑉) = ℝfld)) |
| 17 | 16 | pm5.32i 574 | . 2 ⊢ ((𝑉 ∈ LMod ∧ 𝑉 ∈ (◡Scalar “ {ℝfld})) ↔ (𝑉 ∈ LMod ∧ (Scalar‘𝑉) = ℝfld)) |
| 18 | 2, 17 | bitri 275 | 1 ⊢ (𝑉 ∈ ℝ-Vec ↔ (𝑉 ∈ LMod ∧ (Scalar‘𝑉) = ℝfld)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 Vcvv 3436 {csn 4576 ◡ccnv 5615 dom cdm 5616 “ cima 5619 Fun wfun 6475 Fn wfn 6476 ‘cfv 6481 ndxcnx 17104 Scalarcsca 17164 LModclmod 20794 ℝfldcrefld 21542 ℝ-Veccrrvec 37332 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11062 ax-1cn 11064 ax-addcl 11066 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-slot 17093 df-ndx 17105 df-sca 17177 df-bj-rvec 37333 |
| This theorem is referenced by: bj-rvecmod 37335 bj-rvecrr 37337 bj-isrvecd 37338 |
| Copyright terms: Public domain | W3C validator |