Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-isrvec Structured version   Visualization version   GIF version

Theorem bj-isrvec 35392
Description: The predicate "is a real vector space". Using df-sca 16904 instead of scaid 16951 would shorten the proof by two syntactic steps, but it is preferable not to rely on the precise definition df-sca 16904. (Contributed by BJ, 6-Jan-2024.)
Assertion
Ref Expression
bj-isrvec (𝑉 ∈ ℝ-Vec ↔ (𝑉 ∈ LMod ∧ (Scalar‘𝑉) = ℝfld))

Proof of Theorem bj-isrvec
StepHypRef Expression
1 df-bj-rvec 35391 . . 3 ℝ-Vec = (LMod ∩ (Scalar “ {ℝfld}))
21elin2 4127 . 2 (𝑉 ∈ ℝ-Vec ↔ (𝑉 ∈ LMod ∧ 𝑉 ∈ (Scalar “ {ℝfld})))
3 scaid 16951 . . . . . . . 8 Scalar = Slot (Scalar‘ndx)
43slotfn 16813 . . . . . . 7 Scalar Fn V
5 df-fn 6421 . . . . . . 7 (Scalar Fn V ↔ (Fun Scalar ∧ dom Scalar = V))
64, 5mpbi 229 . . . . . 6 (Fun Scalar ∧ dom Scalar = V)
7 elex 3440 . . . . . . . 8 (𝑉 ∈ LMod → 𝑉 ∈ V)
8 eleq2 2827 . . . . . . . 8 (dom Scalar = V → (𝑉 ∈ dom Scalar ↔ 𝑉 ∈ V))
97, 8syl5ibrcom 246 . . . . . . 7 (𝑉 ∈ LMod → (dom Scalar = V → 𝑉 ∈ dom Scalar))
109anim2d 611 . . . . . 6 (𝑉 ∈ LMod → ((Fun Scalar ∧ dom Scalar = V) → (Fun Scalar ∧ 𝑉 ∈ dom Scalar)))
116, 10mpi 20 . . . . 5 (𝑉 ∈ LMod → (Fun Scalar ∧ 𝑉 ∈ dom Scalar))
12 fvimacnv 6912 . . . . 5 ((Fun Scalar ∧ 𝑉 ∈ dom Scalar) → ((Scalar‘𝑉) ∈ {ℝfld} ↔ 𝑉 ∈ (Scalar “ {ℝfld})))
1311, 12syl 17 . . . 4 (𝑉 ∈ LMod → ((Scalar‘𝑉) ∈ {ℝfld} ↔ 𝑉 ∈ (Scalar “ {ℝfld})))
14 fvex 6769 . . . . 5 (Scalar‘𝑉) ∈ V
1514elsn 4573 . . . 4 ((Scalar‘𝑉) ∈ {ℝfld} ↔ (Scalar‘𝑉) = ℝfld)
1613, 15bitr3di 285 . . 3 (𝑉 ∈ LMod → (𝑉 ∈ (Scalar “ {ℝfld}) ↔ (Scalar‘𝑉) = ℝfld))
1716pm5.32i 574 . 2 ((𝑉 ∈ LMod ∧ 𝑉 ∈ (Scalar “ {ℝfld})) ↔ (𝑉 ∈ LMod ∧ (Scalar‘𝑉) = ℝfld))
182, 17bitri 274 1 (𝑉 ∈ ℝ-Vec ↔ (𝑉 ∈ LMod ∧ (Scalar‘𝑉) = ℝfld))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395   = wceq 1539  wcel 2108  Vcvv 3422  {csn 4558  ccnv 5579  dom cdm 5580  cima 5583  Fun wfun 6412   Fn wfn 6413  cfv 6418  ndxcnx 16822  Scalarcsca 16891  LModclmod 20038  fldcrefld 20721  ℝ-Veccrrvec 35390
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-1cn 10860  ax-addcl 10862
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-slot 16811  df-ndx 16823  df-sca 16904  df-bj-rvec 35391
This theorem is referenced by:  bj-rvecmod  35393  bj-rvecrr  35395  bj-isrvecd  35396
  Copyright terms: Public domain W3C validator