Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-isrvec Structured version   Visualization version   GIF version

Theorem bj-isrvec 37260
Description: The predicate "is a real vector space". Using df-sca 17327 instead of scaid 17374 would shorten the proof by two syntactic steps, but it is preferable not to rely on the precise definition df-sca 17327. (Contributed by BJ, 6-Jan-2024.)
Assertion
Ref Expression
bj-isrvec (𝑉 ∈ ℝ-Vec ↔ (𝑉 ∈ LMod ∧ (Scalar‘𝑉) = ℝfld))

Proof of Theorem bj-isrvec
StepHypRef Expression
1 df-bj-rvec 37259 . . 3 ℝ-Vec = (LMod ∩ (Scalar “ {ℝfld}))
21elin2 4226 . 2 (𝑉 ∈ ℝ-Vec ↔ (𝑉 ∈ LMod ∧ 𝑉 ∈ (Scalar “ {ℝfld})))
3 scaid 17374 . . . . . . . 8 Scalar = Slot (Scalar‘ndx)
43slotfn 17231 . . . . . . 7 Scalar Fn V
5 df-fn 6576 . . . . . . 7 (Scalar Fn V ↔ (Fun Scalar ∧ dom Scalar = V))
64, 5mpbi 230 . . . . . 6 (Fun Scalar ∧ dom Scalar = V)
7 elex 3509 . . . . . . . 8 (𝑉 ∈ LMod → 𝑉 ∈ V)
8 eleq2 2833 . . . . . . . 8 (dom Scalar = V → (𝑉 ∈ dom Scalar ↔ 𝑉 ∈ V))
97, 8syl5ibrcom 247 . . . . . . 7 (𝑉 ∈ LMod → (dom Scalar = V → 𝑉 ∈ dom Scalar))
109anim2d 611 . . . . . 6 (𝑉 ∈ LMod → ((Fun Scalar ∧ dom Scalar = V) → (Fun Scalar ∧ 𝑉 ∈ dom Scalar)))
116, 10mpi 20 . . . . 5 (𝑉 ∈ LMod → (Fun Scalar ∧ 𝑉 ∈ dom Scalar))
12 fvimacnv 7086 . . . . 5 ((Fun Scalar ∧ 𝑉 ∈ dom Scalar) → ((Scalar‘𝑉) ∈ {ℝfld} ↔ 𝑉 ∈ (Scalar “ {ℝfld})))
1311, 12syl 17 . . . 4 (𝑉 ∈ LMod → ((Scalar‘𝑉) ∈ {ℝfld} ↔ 𝑉 ∈ (Scalar “ {ℝfld})))
14 fvex 6933 . . . . 5 (Scalar‘𝑉) ∈ V
1514elsn 4663 . . . 4 ((Scalar‘𝑉) ∈ {ℝfld} ↔ (Scalar‘𝑉) = ℝfld)
1613, 15bitr3di 286 . . 3 (𝑉 ∈ LMod → (𝑉 ∈ (Scalar “ {ℝfld}) ↔ (Scalar‘𝑉) = ℝfld))
1716pm5.32i 574 . 2 ((𝑉 ∈ LMod ∧ 𝑉 ∈ (Scalar “ {ℝfld})) ↔ (𝑉 ∈ LMod ∧ (Scalar‘𝑉) = ℝfld))
182, 17bitri 275 1 (𝑉 ∈ ℝ-Vec ↔ (𝑉 ∈ LMod ∧ (Scalar‘𝑉) = ℝfld))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1537  wcel 2108  Vcvv 3488  {csn 4648  ccnv 5699  dom cdm 5700  cima 5703  Fun wfun 6567   Fn wfn 6568  cfv 6573  ndxcnx 17240  Scalarcsca 17314  LModclmod 20880  fldcrefld 21645  ℝ-Veccrrvec 37258
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-1cn 11242  ax-addcl 11244
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-slot 17229  df-ndx 17241  df-sca 17327  df-bj-rvec 37259
This theorem is referenced by:  bj-rvecmod  37261  bj-rvecrr  37263  bj-isrvecd  37264
  Copyright terms: Public domain W3C validator