Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-isrvec | Structured version Visualization version GIF version |
Description: The predicate "is a real vector space". Using df-sca 16904 instead of scaid 16951 would shorten the proof by two syntactic steps, but it is preferable not to rely on the precise definition df-sca 16904. (Contributed by BJ, 6-Jan-2024.) |
Ref | Expression |
---|---|
bj-isrvec | ⊢ (𝑉 ∈ ℝ-Vec ↔ (𝑉 ∈ LMod ∧ (Scalar‘𝑉) = ℝfld)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-bj-rvec 35391 | . . 3 ⊢ ℝ-Vec = (LMod ∩ (◡Scalar “ {ℝfld})) | |
2 | 1 | elin2 4127 | . 2 ⊢ (𝑉 ∈ ℝ-Vec ↔ (𝑉 ∈ LMod ∧ 𝑉 ∈ (◡Scalar “ {ℝfld}))) |
3 | scaid 16951 | . . . . . . . 8 ⊢ Scalar = Slot (Scalar‘ndx) | |
4 | 3 | slotfn 16813 | . . . . . . 7 ⊢ Scalar Fn V |
5 | df-fn 6421 | . . . . . . 7 ⊢ (Scalar Fn V ↔ (Fun Scalar ∧ dom Scalar = V)) | |
6 | 4, 5 | mpbi 229 | . . . . . 6 ⊢ (Fun Scalar ∧ dom Scalar = V) |
7 | elex 3440 | . . . . . . . 8 ⊢ (𝑉 ∈ LMod → 𝑉 ∈ V) | |
8 | eleq2 2827 | . . . . . . . 8 ⊢ (dom Scalar = V → (𝑉 ∈ dom Scalar ↔ 𝑉 ∈ V)) | |
9 | 7, 8 | syl5ibrcom 246 | . . . . . . 7 ⊢ (𝑉 ∈ LMod → (dom Scalar = V → 𝑉 ∈ dom Scalar)) |
10 | 9 | anim2d 611 | . . . . . 6 ⊢ (𝑉 ∈ LMod → ((Fun Scalar ∧ dom Scalar = V) → (Fun Scalar ∧ 𝑉 ∈ dom Scalar))) |
11 | 6, 10 | mpi 20 | . . . . 5 ⊢ (𝑉 ∈ LMod → (Fun Scalar ∧ 𝑉 ∈ dom Scalar)) |
12 | fvimacnv 6912 | . . . . 5 ⊢ ((Fun Scalar ∧ 𝑉 ∈ dom Scalar) → ((Scalar‘𝑉) ∈ {ℝfld} ↔ 𝑉 ∈ (◡Scalar “ {ℝfld}))) | |
13 | 11, 12 | syl 17 | . . . 4 ⊢ (𝑉 ∈ LMod → ((Scalar‘𝑉) ∈ {ℝfld} ↔ 𝑉 ∈ (◡Scalar “ {ℝfld}))) |
14 | fvex 6769 | . . . . 5 ⊢ (Scalar‘𝑉) ∈ V | |
15 | 14 | elsn 4573 | . . . 4 ⊢ ((Scalar‘𝑉) ∈ {ℝfld} ↔ (Scalar‘𝑉) = ℝfld) |
16 | 13, 15 | bitr3di 285 | . . 3 ⊢ (𝑉 ∈ LMod → (𝑉 ∈ (◡Scalar “ {ℝfld}) ↔ (Scalar‘𝑉) = ℝfld)) |
17 | 16 | pm5.32i 574 | . 2 ⊢ ((𝑉 ∈ LMod ∧ 𝑉 ∈ (◡Scalar “ {ℝfld})) ↔ (𝑉 ∈ LMod ∧ (Scalar‘𝑉) = ℝfld)) |
18 | 2, 17 | bitri 274 | 1 ⊢ (𝑉 ∈ ℝ-Vec ↔ (𝑉 ∈ LMod ∧ (Scalar‘𝑉) = ℝfld)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 Vcvv 3422 {csn 4558 ◡ccnv 5579 dom cdm 5580 “ cima 5583 Fun wfun 6412 Fn wfn 6413 ‘cfv 6418 ndxcnx 16822 Scalarcsca 16891 LModclmod 20038 ℝfldcrefld 20721 ℝ-Veccrrvec 35390 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-1cn 10860 ax-addcl 10862 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-om 7688 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-slot 16811 df-ndx 16823 df-sca 16904 df-bj-rvec 35391 |
This theorem is referenced by: bj-rvecmod 35393 bj-rvecrr 35395 bj-isrvecd 35396 |
Copyright terms: Public domain | W3C validator |