| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-isrvec | Structured version Visualization version GIF version | ||
| Description: The predicate "is a real vector space". Using df-sca 17236 instead of scaid 17278 would shorten the proof by two syntactic steps, but it is preferable not to rely on the precise definition df-sca 17236. (Contributed by BJ, 6-Jan-2024.) |
| Ref | Expression |
|---|---|
| bj-isrvec | ⊢ (𝑉 ∈ ℝ-Vec ↔ (𝑉 ∈ LMod ∧ (Scalar‘𝑉) = ℝfld)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-bj-rvec 37281 | . . 3 ⊢ ℝ-Vec = (LMod ∩ (◡Scalar “ {ℝfld})) | |
| 2 | 1 | elin2 4166 | . 2 ⊢ (𝑉 ∈ ℝ-Vec ↔ (𝑉 ∈ LMod ∧ 𝑉 ∈ (◡Scalar “ {ℝfld}))) |
| 3 | scaid 17278 | . . . . . . . 8 ⊢ Scalar = Slot (Scalar‘ndx) | |
| 4 | 3 | slotfn 17154 | . . . . . . 7 ⊢ Scalar Fn V |
| 5 | df-fn 6514 | . . . . . . 7 ⊢ (Scalar Fn V ↔ (Fun Scalar ∧ dom Scalar = V)) | |
| 6 | 4, 5 | mpbi 230 | . . . . . 6 ⊢ (Fun Scalar ∧ dom Scalar = V) |
| 7 | elex 3468 | . . . . . . . 8 ⊢ (𝑉 ∈ LMod → 𝑉 ∈ V) | |
| 8 | eleq2 2817 | . . . . . . . 8 ⊢ (dom Scalar = V → (𝑉 ∈ dom Scalar ↔ 𝑉 ∈ V)) | |
| 9 | 7, 8 | syl5ibrcom 247 | . . . . . . 7 ⊢ (𝑉 ∈ LMod → (dom Scalar = V → 𝑉 ∈ dom Scalar)) |
| 10 | 9 | anim2d 612 | . . . . . 6 ⊢ (𝑉 ∈ LMod → ((Fun Scalar ∧ dom Scalar = V) → (Fun Scalar ∧ 𝑉 ∈ dom Scalar))) |
| 11 | 6, 10 | mpi 20 | . . . . 5 ⊢ (𝑉 ∈ LMod → (Fun Scalar ∧ 𝑉 ∈ dom Scalar)) |
| 12 | fvimacnv 7025 | . . . . 5 ⊢ ((Fun Scalar ∧ 𝑉 ∈ dom Scalar) → ((Scalar‘𝑉) ∈ {ℝfld} ↔ 𝑉 ∈ (◡Scalar “ {ℝfld}))) | |
| 13 | 11, 12 | syl 17 | . . . 4 ⊢ (𝑉 ∈ LMod → ((Scalar‘𝑉) ∈ {ℝfld} ↔ 𝑉 ∈ (◡Scalar “ {ℝfld}))) |
| 14 | fvex 6871 | . . . . 5 ⊢ (Scalar‘𝑉) ∈ V | |
| 15 | 14 | elsn 4604 | . . . 4 ⊢ ((Scalar‘𝑉) ∈ {ℝfld} ↔ (Scalar‘𝑉) = ℝfld) |
| 16 | 13, 15 | bitr3di 286 | . . 3 ⊢ (𝑉 ∈ LMod → (𝑉 ∈ (◡Scalar “ {ℝfld}) ↔ (Scalar‘𝑉) = ℝfld)) |
| 17 | 16 | pm5.32i 574 | . 2 ⊢ ((𝑉 ∈ LMod ∧ 𝑉 ∈ (◡Scalar “ {ℝfld})) ↔ (𝑉 ∈ LMod ∧ (Scalar‘𝑉) = ℝfld)) |
| 18 | 2, 17 | bitri 275 | 1 ⊢ (𝑉 ∈ ℝ-Vec ↔ (𝑉 ∈ LMod ∧ (Scalar‘𝑉) = ℝfld)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3447 {csn 4589 ◡ccnv 5637 dom cdm 5638 “ cima 5641 Fun wfun 6505 Fn wfn 6506 ‘cfv 6511 ndxcnx 17163 Scalarcsca 17223 LModclmod 20766 ℝfldcrefld 21513 ℝ-Veccrrvec 37280 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-1cn 11126 ax-addcl 11128 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-om 7843 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-slot 17152 df-ndx 17164 df-sca 17236 df-bj-rvec 37281 |
| This theorem is referenced by: bj-rvecmod 37283 bj-rvecrr 37285 bj-isrvecd 37286 |
| Copyright terms: Public domain | W3C validator |