MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ttukeylem1 Structured version   Visualization version   GIF version

Theorem ttukeylem1 10106
Description: Lemma for ttukey 10115. Expand out the property of being an element of a property of finite character. (Contributed by Mario Carneiro, 15-May-2015.)
Hypotheses
Ref Expression
ttukeylem.1 (𝜑𝐹:(card‘( 𝐴𝐵))–1-1-onto→( 𝐴𝐵))
ttukeylem.2 (𝜑𝐵𝐴)
ttukeylem.3 (𝜑 → ∀𝑥(𝑥𝐴 ↔ (𝒫 𝑥 ∩ Fin) ⊆ 𝐴))
Assertion
Ref Expression
ttukeylem1 (𝜑 → (𝐶𝐴 ↔ (𝒫 𝐶 ∩ Fin) ⊆ 𝐴))
Distinct variable groups:   𝑥,𝐶   𝑥,𝐴   𝑥,𝐵   𝑥,𝐹
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem ttukeylem1
StepHypRef Expression
1 elex 3419 . . 3 (𝐶𝐴𝐶 ∈ V)
21a1i 11 . 2 (𝜑 → (𝐶𝐴𝐶 ∈ V))
3 id 22 . . . . 5 ((𝒫 𝐶 ∩ Fin) ⊆ 𝐴 → (𝒫 𝐶 ∩ Fin) ⊆ 𝐴)
4 ssun1 4076 . . . . . . . 8 𝐴 ⊆ ( 𝐴𝐵)
5 undif1 4380 . . . . . . . 8 (( 𝐴𝐵) ∪ 𝐵) = ( 𝐴𝐵)
64, 5sseqtrri 3928 . . . . . . 7 𝐴 ⊆ (( 𝐴𝐵) ∪ 𝐵)
7 fvex 6719 . . . . . . . . 9 (card‘( 𝐴𝐵)) ∈ V
8 ttukeylem.1 . . . . . . . . . 10 (𝜑𝐹:(card‘( 𝐴𝐵))–1-1-onto→( 𝐴𝐵))
9 f1ofo 6657 . . . . . . . . . 10 (𝐹:(card‘( 𝐴𝐵))–1-1-onto→( 𝐴𝐵) → 𝐹:(card‘( 𝐴𝐵))–onto→( 𝐴𝐵))
108, 9syl 17 . . . . . . . . 9 (𝜑𝐹:(card‘( 𝐴𝐵))–onto→( 𝐴𝐵))
11 fornex 7718 . . . . . . . . 9 ((card‘( 𝐴𝐵)) ∈ V → (𝐹:(card‘( 𝐴𝐵))–onto→( 𝐴𝐵) → ( 𝐴𝐵) ∈ V))
127, 10, 11mpsyl 68 . . . . . . . 8 (𝜑 → ( 𝐴𝐵) ∈ V)
13 ttukeylem.2 . . . . . . . 8 (𝜑𝐵𝐴)
14 unexg 7523 . . . . . . . 8 ((( 𝐴𝐵) ∈ V ∧ 𝐵𝐴) → (( 𝐴𝐵) ∪ 𝐵) ∈ V)
1512, 13, 14syl2anc 587 . . . . . . 7 (𝜑 → (( 𝐴𝐵) ∪ 𝐵) ∈ V)
16 ssexg 5205 . . . . . . 7 (( 𝐴 ⊆ (( 𝐴𝐵) ∪ 𝐵) ∧ (( 𝐴𝐵) ∪ 𝐵) ∈ V) → 𝐴 ∈ V)
176, 15, 16sylancr 590 . . . . . 6 (𝜑 𝐴 ∈ V)
18 uniexb 7538 . . . . . 6 (𝐴 ∈ V ↔ 𝐴 ∈ V)
1917, 18sylibr 237 . . . . 5 (𝜑𝐴 ∈ V)
20 ssexg 5205 . . . . 5 (((𝒫 𝐶 ∩ Fin) ⊆ 𝐴𝐴 ∈ V) → (𝒫 𝐶 ∩ Fin) ∈ V)
213, 19, 20syl2anr 600 . . . 4 ((𝜑 ∧ (𝒫 𝐶 ∩ Fin) ⊆ 𝐴) → (𝒫 𝐶 ∩ Fin) ∈ V)
22 infpwfidom 9625 . . . 4 ((𝒫 𝐶 ∩ Fin) ∈ V → 𝐶 ≼ (𝒫 𝐶 ∩ Fin))
23 reldom 8621 . . . . 5 Rel ≼
2423brrelex1i 5594 . . . 4 (𝐶 ≼ (𝒫 𝐶 ∩ Fin) → 𝐶 ∈ V)
2521, 22, 243syl 18 . . 3 ((𝜑 ∧ (𝒫 𝐶 ∩ Fin) ⊆ 𝐴) → 𝐶 ∈ V)
2625ex 416 . 2 (𝜑 → ((𝒫 𝐶 ∩ Fin) ⊆ 𝐴𝐶 ∈ V))
27 ttukeylem.3 . . 3 (𝜑 → ∀𝑥(𝑥𝐴 ↔ (𝒫 𝑥 ∩ Fin) ⊆ 𝐴))
28 eleq1 2821 . . . . 5 (𝑥 = 𝐶 → (𝑥𝐴𝐶𝐴))
29 pweq 4519 . . . . . . 7 (𝑥 = 𝐶 → 𝒫 𝑥 = 𝒫 𝐶)
3029ineq1d 4116 . . . . . 6 (𝑥 = 𝐶 → (𝒫 𝑥 ∩ Fin) = (𝒫 𝐶 ∩ Fin))
3130sseq1d 3922 . . . . 5 (𝑥 = 𝐶 → ((𝒫 𝑥 ∩ Fin) ⊆ 𝐴 ↔ (𝒫 𝐶 ∩ Fin) ⊆ 𝐴))
3228, 31bibi12d 349 . . . 4 (𝑥 = 𝐶 → ((𝑥𝐴 ↔ (𝒫 𝑥 ∩ Fin) ⊆ 𝐴) ↔ (𝐶𝐴 ↔ (𝒫 𝐶 ∩ Fin) ⊆ 𝐴)))
3332spcgv 3504 . . 3 (𝐶 ∈ V → (∀𝑥(𝑥𝐴 ↔ (𝒫 𝑥 ∩ Fin) ⊆ 𝐴) → (𝐶𝐴 ↔ (𝒫 𝐶 ∩ Fin) ⊆ 𝐴)))
3427, 33syl5com 31 . 2 (𝜑 → (𝐶 ∈ V → (𝐶𝐴 ↔ (𝒫 𝐶 ∩ Fin) ⊆ 𝐴)))
352, 26, 34pm5.21ndd 384 1 (𝜑 → (𝐶𝐴 ↔ (𝒫 𝐶 ∩ Fin) ⊆ 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  wal 1541   = wceq 1543  wcel 2110  Vcvv 3401  cdif 3854  cun 3855  cin 3856  wss 3857  𝒫 cpw 4503   cuni 4809   class class class wbr 5043  ontowfo 6367  1-1-ontowf1o 6368  cfv 6369  cdom 8613  Fincfn 8615  cardccrd 9534
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2706  ax-rep 5168  ax-sep 5181  ax-nul 5188  ax-pow 5247  ax-pr 5311  ax-un 7512
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2537  df-eu 2566  df-clab 2713  df-cleq 2726  df-clel 2812  df-nfc 2882  df-ne 2936  df-ral 3059  df-rex 3060  df-reu 3061  df-rab 3063  df-v 3403  df-sbc 3688  df-csb 3803  df-dif 3860  df-un 3862  df-in 3864  df-ss 3874  df-pss 3876  df-nul 4228  df-if 4430  df-pw 4505  df-sn 4532  df-pr 4534  df-tp 4536  df-op 4538  df-uni 4810  df-iun 4896  df-br 5044  df-opab 5106  df-mpt 5125  df-tr 5151  df-id 5444  df-eprel 5449  df-po 5457  df-so 5458  df-fr 5498  df-we 5500  df-xp 5546  df-rel 5547  df-cnv 5548  df-co 5549  df-dm 5550  df-rn 5551  df-res 5552  df-ima 5553  df-ord 6205  df-on 6206  df-lim 6207  df-suc 6208  df-iota 6327  df-fun 6371  df-fn 6372  df-f 6373  df-f1 6374  df-fo 6375  df-f1o 6376  df-fv 6377  df-om 7634  df-1o 8191  df-en 8616  df-dom 8617  df-fin 8619
This theorem is referenced by:  ttukeylem2  10107  ttukeylem6  10111
  Copyright terms: Public domain W3C validator