MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ttukeylem1 Structured version   Visualization version   GIF version

Theorem ttukeylem1 9933
Description: Lemma for ttukey 9942. Expand out the property of being an element of a property of finite character. (Contributed by Mario Carneiro, 15-May-2015.)
Hypotheses
Ref Expression
ttukeylem.1 (𝜑𝐹:(card‘( 𝐴𝐵))–1-1-onto→( 𝐴𝐵))
ttukeylem.2 (𝜑𝐵𝐴)
ttukeylem.3 (𝜑 → ∀𝑥(𝑥𝐴 ↔ (𝒫 𝑥 ∩ Fin) ⊆ 𝐴))
Assertion
Ref Expression
ttukeylem1 (𝜑 → (𝐶𝐴 ↔ (𝒫 𝐶 ∩ Fin) ⊆ 𝐴))
Distinct variable groups:   𝑥,𝐶   𝑥,𝐴   𝑥,𝐵   𝑥,𝐹
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem ttukeylem1
StepHypRef Expression
1 elex 3514 . . 3 (𝐶𝐴𝐶 ∈ V)
21a1i 11 . 2 (𝜑 → (𝐶𝐴𝐶 ∈ V))
3 id 22 . . . . 5 ((𝒫 𝐶 ∩ Fin) ⊆ 𝐴 → (𝒫 𝐶 ∩ Fin) ⊆ 𝐴)
4 ssun1 4150 . . . . . . . 8 𝐴 ⊆ ( 𝐴𝐵)
5 undif1 4426 . . . . . . . 8 (( 𝐴𝐵) ∪ 𝐵) = ( 𝐴𝐵)
64, 5sseqtrri 4006 . . . . . . 7 𝐴 ⊆ (( 𝐴𝐵) ∪ 𝐵)
7 fvex 6685 . . . . . . . . 9 (card‘( 𝐴𝐵)) ∈ V
8 ttukeylem.1 . . . . . . . . . 10 (𝜑𝐹:(card‘( 𝐴𝐵))–1-1-onto→( 𝐴𝐵))
9 f1ofo 6624 . . . . . . . . . 10 (𝐹:(card‘( 𝐴𝐵))–1-1-onto→( 𝐴𝐵) → 𝐹:(card‘( 𝐴𝐵))–onto→( 𝐴𝐵))
108, 9syl 17 . . . . . . . . 9 (𝜑𝐹:(card‘( 𝐴𝐵))–onto→( 𝐴𝐵))
11 fornex 7659 . . . . . . . . 9 ((card‘( 𝐴𝐵)) ∈ V → (𝐹:(card‘( 𝐴𝐵))–onto→( 𝐴𝐵) → ( 𝐴𝐵) ∈ V))
127, 10, 11mpsyl 68 . . . . . . . 8 (𝜑 → ( 𝐴𝐵) ∈ V)
13 ttukeylem.2 . . . . . . . 8 (𝜑𝐵𝐴)
14 unexg 7474 . . . . . . . 8 ((( 𝐴𝐵) ∈ V ∧ 𝐵𝐴) → (( 𝐴𝐵) ∪ 𝐵) ∈ V)
1512, 13, 14syl2anc 586 . . . . . . 7 (𝜑 → (( 𝐴𝐵) ∪ 𝐵) ∈ V)
16 ssexg 5229 . . . . . . 7 (( 𝐴 ⊆ (( 𝐴𝐵) ∪ 𝐵) ∧ (( 𝐴𝐵) ∪ 𝐵) ∈ V) → 𝐴 ∈ V)
176, 15, 16sylancr 589 . . . . . 6 (𝜑 𝐴 ∈ V)
18 uniexb 7488 . . . . . 6 (𝐴 ∈ V ↔ 𝐴 ∈ V)
1917, 18sylibr 236 . . . . 5 (𝜑𝐴 ∈ V)
20 ssexg 5229 . . . . 5 (((𝒫 𝐶 ∩ Fin) ⊆ 𝐴𝐴 ∈ V) → (𝒫 𝐶 ∩ Fin) ∈ V)
213, 19, 20syl2anr 598 . . . 4 ((𝜑 ∧ (𝒫 𝐶 ∩ Fin) ⊆ 𝐴) → (𝒫 𝐶 ∩ Fin) ∈ V)
22 infpwfidom 9456 . . . 4 ((𝒫 𝐶 ∩ Fin) ∈ V → 𝐶 ≼ (𝒫 𝐶 ∩ Fin))
23 reldom 8517 . . . . 5 Rel ≼
2423brrelex1i 5610 . . . 4 (𝐶 ≼ (𝒫 𝐶 ∩ Fin) → 𝐶 ∈ V)
2521, 22, 243syl 18 . . 3 ((𝜑 ∧ (𝒫 𝐶 ∩ Fin) ⊆ 𝐴) → 𝐶 ∈ V)
2625ex 415 . 2 (𝜑 → ((𝒫 𝐶 ∩ Fin) ⊆ 𝐴𝐶 ∈ V))
27 ttukeylem.3 . . 3 (𝜑 → ∀𝑥(𝑥𝐴 ↔ (𝒫 𝑥 ∩ Fin) ⊆ 𝐴))
28 eleq1 2902 . . . . 5 (𝑥 = 𝐶 → (𝑥𝐴𝐶𝐴))
29 pweq 4557 . . . . . . 7 (𝑥 = 𝐶 → 𝒫 𝑥 = 𝒫 𝐶)
3029ineq1d 4190 . . . . . 6 (𝑥 = 𝐶 → (𝒫 𝑥 ∩ Fin) = (𝒫 𝐶 ∩ Fin))
3130sseq1d 4000 . . . . 5 (𝑥 = 𝐶 → ((𝒫 𝑥 ∩ Fin) ⊆ 𝐴 ↔ (𝒫 𝐶 ∩ Fin) ⊆ 𝐴))
3228, 31bibi12d 348 . . . 4 (𝑥 = 𝐶 → ((𝑥𝐴 ↔ (𝒫 𝑥 ∩ Fin) ⊆ 𝐴) ↔ (𝐶𝐴 ↔ (𝒫 𝐶 ∩ Fin) ⊆ 𝐴)))
3332spcgv 3597 . . 3 (𝐶 ∈ V → (∀𝑥(𝑥𝐴 ↔ (𝒫 𝑥 ∩ Fin) ⊆ 𝐴) → (𝐶𝐴 ↔ (𝒫 𝐶 ∩ Fin) ⊆ 𝐴)))
3427, 33syl5com 31 . 2 (𝜑 → (𝐶 ∈ V → (𝐶𝐴 ↔ (𝒫 𝐶 ∩ Fin) ⊆ 𝐴)))
352, 26, 34pm5.21ndd 383 1 (𝜑 → (𝐶𝐴 ↔ (𝒫 𝐶 ∩ Fin) ⊆ 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  wal 1535   = wceq 1537  wcel 2114  Vcvv 3496  cdif 3935  cun 3936  cin 3937  wss 3938  𝒫 cpw 4541   cuni 4840   class class class wbr 5068  ontowfo 6355  1-1-ontowf1o 6356  cfv 6357  cdom 8509  Fincfn 8511  cardccrd 9366
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-reu 3147  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-om 7583  df-1o 8104  df-en 8512  df-dom 8513  df-fin 8515
This theorem is referenced by:  ttukeylem2  9934  ttukeylem6  9938
  Copyright terms: Public domain W3C validator