MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ttukeylem1 Structured version   Visualization version   GIF version

Theorem ttukeylem1 10534
Description: Lemma for ttukey 10543. Expand out the property of being an element of a property of finite character. (Contributed by Mario Carneiro, 15-May-2015.)
Hypotheses
Ref Expression
ttukeylem.1 (𝜑𝐹:(card‘( 𝐴𝐵))–1-1-onto→( 𝐴𝐵))
ttukeylem.2 (𝜑𝐵𝐴)
ttukeylem.3 (𝜑 → ∀𝑥(𝑥𝐴 ↔ (𝒫 𝑥 ∩ Fin) ⊆ 𝐴))
Assertion
Ref Expression
ttukeylem1 (𝜑 → (𝐶𝐴 ↔ (𝒫 𝐶 ∩ Fin) ⊆ 𝐴))
Distinct variable groups:   𝑥,𝐶   𝑥,𝐴   𝑥,𝐵   𝑥,𝐹
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem ttukeylem1
StepHypRef Expression
1 elex 3480 . . 3 (𝐶𝐴𝐶 ∈ V)
21a1i 11 . 2 (𝜑 → (𝐶𝐴𝐶 ∈ V))
3 id 22 . . . . 5 ((𝒫 𝐶 ∩ Fin) ⊆ 𝐴 → (𝒫 𝐶 ∩ Fin) ⊆ 𝐴)
4 ssun1 4170 . . . . . . . 8 𝐴 ⊆ ( 𝐴𝐵)
5 undif1 4477 . . . . . . . 8 (( 𝐴𝐵) ∪ 𝐵) = ( 𝐴𝐵)
64, 5sseqtrri 4014 . . . . . . 7 𝐴 ⊆ (( 𝐴𝐵) ∪ 𝐵)
7 fvex 6909 . . . . . . . . 9 (card‘( 𝐴𝐵)) ∈ V
8 ttukeylem.1 . . . . . . . . . 10 (𝜑𝐹:(card‘( 𝐴𝐵))–1-1-onto→( 𝐴𝐵))
9 f1ofo 6845 . . . . . . . . . 10 (𝐹:(card‘( 𝐴𝐵))–1-1-onto→( 𝐴𝐵) → 𝐹:(card‘( 𝐴𝐵))–onto→( 𝐴𝐵))
108, 9syl 17 . . . . . . . . 9 (𝜑𝐹:(card‘( 𝐴𝐵))–onto→( 𝐴𝐵))
11 focdmex 7960 . . . . . . . . 9 ((card‘( 𝐴𝐵)) ∈ V → (𝐹:(card‘( 𝐴𝐵))–onto→( 𝐴𝐵) → ( 𝐴𝐵) ∈ V))
127, 10, 11mpsyl 68 . . . . . . . 8 (𝜑 → ( 𝐴𝐵) ∈ V)
13 ttukeylem.2 . . . . . . . 8 (𝜑𝐵𝐴)
14 unexg 7752 . . . . . . . 8 ((( 𝐴𝐵) ∈ V ∧ 𝐵𝐴) → (( 𝐴𝐵) ∪ 𝐵) ∈ V)
1512, 13, 14syl2anc 582 . . . . . . 7 (𝜑 → (( 𝐴𝐵) ∪ 𝐵) ∈ V)
16 ssexg 5324 . . . . . . 7 (( 𝐴 ⊆ (( 𝐴𝐵) ∪ 𝐵) ∧ (( 𝐴𝐵) ∪ 𝐵) ∈ V) → 𝐴 ∈ V)
176, 15, 16sylancr 585 . . . . . 6 (𝜑 𝐴 ∈ V)
18 uniexb 7767 . . . . . 6 (𝐴 ∈ V ↔ 𝐴 ∈ V)
1917, 18sylibr 233 . . . . 5 (𝜑𝐴 ∈ V)
20 ssexg 5324 . . . . 5 (((𝒫 𝐶 ∩ Fin) ⊆ 𝐴𝐴 ∈ V) → (𝒫 𝐶 ∩ Fin) ∈ V)
213, 19, 20syl2anr 595 . . . 4 ((𝜑 ∧ (𝒫 𝐶 ∩ Fin) ⊆ 𝐴) → (𝒫 𝐶 ∩ Fin) ∈ V)
22 infpwfidom 10053 . . . 4 ((𝒫 𝐶 ∩ Fin) ∈ V → 𝐶 ≼ (𝒫 𝐶 ∩ Fin))
23 reldom 8970 . . . . 5 Rel ≼
2423brrelex1i 5734 . . . 4 (𝐶 ≼ (𝒫 𝐶 ∩ Fin) → 𝐶 ∈ V)
2521, 22, 243syl 18 . . 3 ((𝜑 ∧ (𝒫 𝐶 ∩ Fin) ⊆ 𝐴) → 𝐶 ∈ V)
2625ex 411 . 2 (𝜑 → ((𝒫 𝐶 ∩ Fin) ⊆ 𝐴𝐶 ∈ V))
27 ttukeylem.3 . . 3 (𝜑 → ∀𝑥(𝑥𝐴 ↔ (𝒫 𝑥 ∩ Fin) ⊆ 𝐴))
28 eleq1 2813 . . . . 5 (𝑥 = 𝐶 → (𝑥𝐴𝐶𝐴))
29 pweq 4618 . . . . . . 7 (𝑥 = 𝐶 → 𝒫 𝑥 = 𝒫 𝐶)
3029ineq1d 4209 . . . . . 6 (𝑥 = 𝐶 → (𝒫 𝑥 ∩ Fin) = (𝒫 𝐶 ∩ Fin))
3130sseq1d 4008 . . . . 5 (𝑥 = 𝐶 → ((𝒫 𝑥 ∩ Fin) ⊆ 𝐴 ↔ (𝒫 𝐶 ∩ Fin) ⊆ 𝐴))
3228, 31bibi12d 344 . . . 4 (𝑥 = 𝐶 → ((𝑥𝐴 ↔ (𝒫 𝑥 ∩ Fin) ⊆ 𝐴) ↔ (𝐶𝐴 ↔ (𝒫 𝐶 ∩ Fin) ⊆ 𝐴)))
3332spcgv 3580 . . 3 (𝐶 ∈ V → (∀𝑥(𝑥𝐴 ↔ (𝒫 𝑥 ∩ Fin) ⊆ 𝐴) → (𝐶𝐴 ↔ (𝒫 𝐶 ∩ Fin) ⊆ 𝐴)))
3427, 33syl5com 31 . 2 (𝜑 → (𝐶 ∈ V → (𝐶𝐴 ↔ (𝒫 𝐶 ∩ Fin) ⊆ 𝐴)))
352, 26, 34pm5.21ndd 378 1 (𝜑 → (𝐶𝐴 ↔ (𝒫 𝐶 ∩ Fin) ⊆ 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  wal 1531   = wceq 1533  wcel 2098  Vcvv 3461  cdif 3941  cun 3942  cin 3943  wss 3944  𝒫 cpw 4604   cuni 4909   class class class wbr 5149  ontowfo 6547  1-1-ontowf1o 6548  cfv 6549  cdom 8962  Fincfn 8964  cardccrd 9960
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-om 7872  df-1o 8487  df-en 8965  df-dom 8966  df-fin 8968
This theorem is referenced by:  ttukeylem2  10535  ttukeylem6  10539
  Copyright terms: Public domain W3C validator