MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ttukeylem1 Structured version   Visualization version   GIF version

Theorem ttukeylem1 10422
Description: Lemma for ttukey 10431. Expand out the property of being an element of a property of finite character. (Contributed by Mario Carneiro, 15-May-2015.)
Hypotheses
Ref Expression
ttukeylem.1 (𝜑𝐹:(card‘( 𝐴𝐵))–1-1-onto→( 𝐴𝐵))
ttukeylem.2 (𝜑𝐵𝐴)
ttukeylem.3 (𝜑 → ∀𝑥(𝑥𝐴 ↔ (𝒫 𝑥 ∩ Fin) ⊆ 𝐴))
Assertion
Ref Expression
ttukeylem1 (𝜑 → (𝐶𝐴 ↔ (𝒫 𝐶 ∩ Fin) ⊆ 𝐴))
Distinct variable groups:   𝑥,𝐶   𝑥,𝐴   𝑥,𝐵   𝑥,𝐹
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem ttukeylem1
StepHypRef Expression
1 elex 3459 . . 3 (𝐶𝐴𝐶 ∈ V)
21a1i 11 . 2 (𝜑 → (𝐶𝐴𝐶 ∈ V))
3 id 22 . . . . 5 ((𝒫 𝐶 ∩ Fin) ⊆ 𝐴 → (𝒫 𝐶 ∩ Fin) ⊆ 𝐴)
4 ssun1 4131 . . . . . . . 8 𝐴 ⊆ ( 𝐴𝐵)
5 undif1 4429 . . . . . . . 8 (( 𝐴𝐵) ∪ 𝐵) = ( 𝐴𝐵)
64, 5sseqtrri 3987 . . . . . . 7 𝐴 ⊆ (( 𝐴𝐵) ∪ 𝐵)
7 fvex 6839 . . . . . . . . 9 (card‘( 𝐴𝐵)) ∈ V
8 ttukeylem.1 . . . . . . . . . 10 (𝜑𝐹:(card‘( 𝐴𝐵))–1-1-onto→( 𝐴𝐵))
9 f1ofo 6775 . . . . . . . . . 10 (𝐹:(card‘( 𝐴𝐵))–1-1-onto→( 𝐴𝐵) → 𝐹:(card‘( 𝐴𝐵))–onto→( 𝐴𝐵))
108, 9syl 17 . . . . . . . . 9 (𝜑𝐹:(card‘( 𝐴𝐵))–onto→( 𝐴𝐵))
11 focdmex 7898 . . . . . . . . 9 ((card‘( 𝐴𝐵)) ∈ V → (𝐹:(card‘( 𝐴𝐵))–onto→( 𝐴𝐵) → ( 𝐴𝐵) ∈ V))
127, 10, 11mpsyl 68 . . . . . . . 8 (𝜑 → ( 𝐴𝐵) ∈ V)
13 ttukeylem.2 . . . . . . . 8 (𝜑𝐵𝐴)
14 unexg 7683 . . . . . . . 8 ((( 𝐴𝐵) ∈ V ∧ 𝐵𝐴) → (( 𝐴𝐵) ∪ 𝐵) ∈ V)
1512, 13, 14syl2anc 584 . . . . . . 7 (𝜑 → (( 𝐴𝐵) ∪ 𝐵) ∈ V)
16 ssexg 5265 . . . . . . 7 (( 𝐴 ⊆ (( 𝐴𝐵) ∪ 𝐵) ∧ (( 𝐴𝐵) ∪ 𝐵) ∈ V) → 𝐴 ∈ V)
176, 15, 16sylancr 587 . . . . . 6 (𝜑 𝐴 ∈ V)
18 uniexb 7704 . . . . . 6 (𝐴 ∈ V ↔ 𝐴 ∈ V)
1917, 18sylibr 234 . . . . 5 (𝜑𝐴 ∈ V)
20 ssexg 5265 . . . . 5 (((𝒫 𝐶 ∩ Fin) ⊆ 𝐴𝐴 ∈ V) → (𝒫 𝐶 ∩ Fin) ∈ V)
213, 19, 20syl2anr 597 . . . 4 ((𝜑 ∧ (𝒫 𝐶 ∩ Fin) ⊆ 𝐴) → (𝒫 𝐶 ∩ Fin) ∈ V)
22 infpwfidom 9941 . . . 4 ((𝒫 𝐶 ∩ Fin) ∈ V → 𝐶 ≼ (𝒫 𝐶 ∩ Fin))
23 reldom 8885 . . . . 5 Rel ≼
2423brrelex1i 5679 . . . 4 (𝐶 ≼ (𝒫 𝐶 ∩ Fin) → 𝐶 ∈ V)
2521, 22, 243syl 18 . . 3 ((𝜑 ∧ (𝒫 𝐶 ∩ Fin) ⊆ 𝐴) → 𝐶 ∈ V)
2625ex 412 . 2 (𝜑 → ((𝒫 𝐶 ∩ Fin) ⊆ 𝐴𝐶 ∈ V))
27 ttukeylem.3 . . 3 (𝜑 → ∀𝑥(𝑥𝐴 ↔ (𝒫 𝑥 ∩ Fin) ⊆ 𝐴))
28 eleq1 2816 . . . . 5 (𝑥 = 𝐶 → (𝑥𝐴𝐶𝐴))
29 pweq 4567 . . . . . . 7 (𝑥 = 𝐶 → 𝒫 𝑥 = 𝒫 𝐶)
3029ineq1d 4172 . . . . . 6 (𝑥 = 𝐶 → (𝒫 𝑥 ∩ Fin) = (𝒫 𝐶 ∩ Fin))
3130sseq1d 3969 . . . . 5 (𝑥 = 𝐶 → ((𝒫 𝑥 ∩ Fin) ⊆ 𝐴 ↔ (𝒫 𝐶 ∩ Fin) ⊆ 𝐴))
3228, 31bibi12d 345 . . . 4 (𝑥 = 𝐶 → ((𝑥𝐴 ↔ (𝒫 𝑥 ∩ Fin) ⊆ 𝐴) ↔ (𝐶𝐴 ↔ (𝒫 𝐶 ∩ Fin) ⊆ 𝐴)))
3332spcgv 3553 . . 3 (𝐶 ∈ V → (∀𝑥(𝑥𝐴 ↔ (𝒫 𝑥 ∩ Fin) ⊆ 𝐴) → (𝐶𝐴 ↔ (𝒫 𝐶 ∩ Fin) ⊆ 𝐴)))
3427, 33syl5com 31 . 2 (𝜑 → (𝐶 ∈ V → (𝐶𝐴 ↔ (𝒫 𝐶 ∩ Fin) ⊆ 𝐴)))
352, 26, 34pm5.21ndd 379 1 (𝜑 → (𝐶𝐴 ↔ (𝒫 𝐶 ∩ Fin) ⊆ 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1538   = wceq 1540  wcel 2109  Vcvv 3438  cdif 3902  cun 3903  cin 3904  wss 3905  𝒫 cpw 4553   cuni 4861   class class class wbr 5095  ontowfo 6484  1-1-ontowf1o 6485  cfv 6486  cdom 8877  Fincfn 8879  cardccrd 9850
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-om 7807  df-1o 8395  df-en 8880  df-dom 8881  df-fin 8883
This theorem is referenced by:  ttukeylem2  10423  ttukeylem6  10427
  Copyright terms: Public domain W3C validator