MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ttukeylem1 Structured version   Visualization version   GIF version

Theorem ttukeylem1 10462
Description: Lemma for ttukey 10471. Expand out the property of being an element of a property of finite character. (Contributed by Mario Carneiro, 15-May-2015.)
Hypotheses
Ref Expression
ttukeylem.1 (𝜑𝐹:(card‘( 𝐴𝐵))–1-1-onto→( 𝐴𝐵))
ttukeylem.2 (𝜑𝐵𝐴)
ttukeylem.3 (𝜑 → ∀𝑥(𝑥𝐴 ↔ (𝒫 𝑥 ∩ Fin) ⊆ 𝐴))
Assertion
Ref Expression
ttukeylem1 (𝜑 → (𝐶𝐴 ↔ (𝒫 𝐶 ∩ Fin) ⊆ 𝐴))
Distinct variable groups:   𝑥,𝐶   𝑥,𝐴   𝑥,𝐵   𝑥,𝐹
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem ttukeylem1
StepHypRef Expression
1 elex 3468 . . 3 (𝐶𝐴𝐶 ∈ V)
21a1i 11 . 2 (𝜑 → (𝐶𝐴𝐶 ∈ V))
3 id 22 . . . . 5 ((𝒫 𝐶 ∩ Fin) ⊆ 𝐴 → (𝒫 𝐶 ∩ Fin) ⊆ 𝐴)
4 ssun1 4141 . . . . . . . 8 𝐴 ⊆ ( 𝐴𝐵)
5 undif1 4439 . . . . . . . 8 (( 𝐴𝐵) ∪ 𝐵) = ( 𝐴𝐵)
64, 5sseqtrri 3996 . . . . . . 7 𝐴 ⊆ (( 𝐴𝐵) ∪ 𝐵)
7 fvex 6871 . . . . . . . . 9 (card‘( 𝐴𝐵)) ∈ V
8 ttukeylem.1 . . . . . . . . . 10 (𝜑𝐹:(card‘( 𝐴𝐵))–1-1-onto→( 𝐴𝐵))
9 f1ofo 6807 . . . . . . . . . 10 (𝐹:(card‘( 𝐴𝐵))–1-1-onto→( 𝐴𝐵) → 𝐹:(card‘( 𝐴𝐵))–onto→( 𝐴𝐵))
108, 9syl 17 . . . . . . . . 9 (𝜑𝐹:(card‘( 𝐴𝐵))–onto→( 𝐴𝐵))
11 focdmex 7934 . . . . . . . . 9 ((card‘( 𝐴𝐵)) ∈ V → (𝐹:(card‘( 𝐴𝐵))–onto→( 𝐴𝐵) → ( 𝐴𝐵) ∈ V))
127, 10, 11mpsyl 68 . . . . . . . 8 (𝜑 → ( 𝐴𝐵) ∈ V)
13 ttukeylem.2 . . . . . . . 8 (𝜑𝐵𝐴)
14 unexg 7719 . . . . . . . 8 ((( 𝐴𝐵) ∈ V ∧ 𝐵𝐴) → (( 𝐴𝐵) ∪ 𝐵) ∈ V)
1512, 13, 14syl2anc 584 . . . . . . 7 (𝜑 → (( 𝐴𝐵) ∪ 𝐵) ∈ V)
16 ssexg 5278 . . . . . . 7 (( 𝐴 ⊆ (( 𝐴𝐵) ∪ 𝐵) ∧ (( 𝐴𝐵) ∪ 𝐵) ∈ V) → 𝐴 ∈ V)
176, 15, 16sylancr 587 . . . . . 6 (𝜑 𝐴 ∈ V)
18 uniexb 7740 . . . . . 6 (𝐴 ∈ V ↔ 𝐴 ∈ V)
1917, 18sylibr 234 . . . . 5 (𝜑𝐴 ∈ V)
20 ssexg 5278 . . . . 5 (((𝒫 𝐶 ∩ Fin) ⊆ 𝐴𝐴 ∈ V) → (𝒫 𝐶 ∩ Fin) ∈ V)
213, 19, 20syl2anr 597 . . . 4 ((𝜑 ∧ (𝒫 𝐶 ∩ Fin) ⊆ 𝐴) → (𝒫 𝐶 ∩ Fin) ∈ V)
22 infpwfidom 9981 . . . 4 ((𝒫 𝐶 ∩ Fin) ∈ V → 𝐶 ≼ (𝒫 𝐶 ∩ Fin))
23 reldom 8924 . . . . 5 Rel ≼
2423brrelex1i 5694 . . . 4 (𝐶 ≼ (𝒫 𝐶 ∩ Fin) → 𝐶 ∈ V)
2521, 22, 243syl 18 . . 3 ((𝜑 ∧ (𝒫 𝐶 ∩ Fin) ⊆ 𝐴) → 𝐶 ∈ V)
2625ex 412 . 2 (𝜑 → ((𝒫 𝐶 ∩ Fin) ⊆ 𝐴𝐶 ∈ V))
27 ttukeylem.3 . . 3 (𝜑 → ∀𝑥(𝑥𝐴 ↔ (𝒫 𝑥 ∩ Fin) ⊆ 𝐴))
28 eleq1 2816 . . . . 5 (𝑥 = 𝐶 → (𝑥𝐴𝐶𝐴))
29 pweq 4577 . . . . . . 7 (𝑥 = 𝐶 → 𝒫 𝑥 = 𝒫 𝐶)
3029ineq1d 4182 . . . . . 6 (𝑥 = 𝐶 → (𝒫 𝑥 ∩ Fin) = (𝒫 𝐶 ∩ Fin))
3130sseq1d 3978 . . . . 5 (𝑥 = 𝐶 → ((𝒫 𝑥 ∩ Fin) ⊆ 𝐴 ↔ (𝒫 𝐶 ∩ Fin) ⊆ 𝐴))
3228, 31bibi12d 345 . . . 4 (𝑥 = 𝐶 → ((𝑥𝐴 ↔ (𝒫 𝑥 ∩ Fin) ⊆ 𝐴) ↔ (𝐶𝐴 ↔ (𝒫 𝐶 ∩ Fin) ⊆ 𝐴)))
3332spcgv 3562 . . 3 (𝐶 ∈ V → (∀𝑥(𝑥𝐴 ↔ (𝒫 𝑥 ∩ Fin) ⊆ 𝐴) → (𝐶𝐴 ↔ (𝒫 𝐶 ∩ Fin) ⊆ 𝐴)))
3427, 33syl5com 31 . 2 (𝜑 → (𝐶 ∈ V → (𝐶𝐴 ↔ (𝒫 𝐶 ∩ Fin) ⊆ 𝐴)))
352, 26, 34pm5.21ndd 379 1 (𝜑 → (𝐶𝐴 ↔ (𝒫 𝐶 ∩ Fin) ⊆ 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1538   = wceq 1540  wcel 2109  Vcvv 3447  cdif 3911  cun 3912  cin 3913  wss 3914  𝒫 cpw 4563   cuni 4871   class class class wbr 5107  ontowfo 6509  1-1-ontowf1o 6510  cfv 6511  cdom 8916  Fincfn 8918  cardccrd 9888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-om 7843  df-1o 8434  df-en 8919  df-dom 8920  df-fin 8922
This theorem is referenced by:  ttukeylem2  10463  ttukeylem6  10467
  Copyright terms: Public domain W3C validator