MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rami Structured version   Visualization version   GIF version

Theorem rami 17049
Description: The defining property of a Ramsey number. (Contributed by Mario Carneiro, 22-Apr-2015.)
Hypotheses
Ref Expression
rami.c 𝐶 = (𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})
rami.m (𝜑𝑀 ∈ ℕ0)
rami.r (𝜑𝑅𝑉)
rami.f (𝜑𝐹:𝑅⟶ℕ0)
rami.x (𝜑 → (𝑀 Ramsey 𝐹) ∈ ℕ0)
rami.s (𝜑𝑆𝑊)
rami.l (𝜑 → (𝑀 Ramsey 𝐹) ≤ (♯‘𝑆))
rami.g (𝜑𝐺:(𝑆𝐶𝑀)⟶𝑅)
Assertion
Ref Expression
rami (𝜑 → ∃𝑐𝑅𝑥 ∈ 𝒫 𝑆((𝐹𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (𝐺 “ {𝑐})))
Distinct variable groups:   𝑥,𝑐,𝐶   𝐺,𝑐,𝑥   𝜑,𝑐,𝑥   𝑆,𝑐,𝑥   𝐹,𝑐,𝑥   𝑎,𝑏,𝑐,𝑖,𝑥,𝑀   𝑅,𝑐,𝑥   𝑉,𝑐,𝑥
Allowed substitution hints:   𝜑(𝑖,𝑎,𝑏)   𝐶(𝑖,𝑎,𝑏)   𝑅(𝑖,𝑎,𝑏)   𝑆(𝑖,𝑎,𝑏)   𝐹(𝑖,𝑎,𝑏)   𝐺(𝑖,𝑎,𝑏)   𝑉(𝑖,𝑎,𝑏)   𝑊(𝑥,𝑖,𝑎,𝑏,𝑐)

Proof of Theorem rami
Dummy variables 𝑓 𝑛 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnveq 5887 . . . . . 6 (𝑓 = 𝐺𝑓 = 𝐺)
21imaeq1d 6079 . . . . 5 (𝑓 = 𝐺 → (𝑓 “ {𝑐}) = (𝐺 “ {𝑐}))
32sseq2d 4028 . . . 4 (𝑓 = 𝐺 → ((𝑥𝐶𝑀) ⊆ (𝑓 “ {𝑐}) ↔ (𝑥𝐶𝑀) ⊆ (𝐺 “ {𝑐})))
43anbi2d 630 . . 3 (𝑓 = 𝐺 → (((𝐹𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (𝑓 “ {𝑐})) ↔ ((𝐹𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (𝐺 “ {𝑐}))))
542rexbidv 3220 . 2 (𝑓 = 𝐺 → (∃𝑐𝑅𝑥 ∈ 𝒫 𝑆((𝐹𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (𝑓 “ {𝑐})) ↔ ∃𝑐𝑅𝑥 ∈ 𝒫 𝑆((𝐹𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (𝐺 “ {𝑐}))))
6 rami.s . . 3 (𝜑𝑆𝑊)
7 rami.x . . . . 5 (𝜑 → (𝑀 Ramsey 𝐹) ∈ ℕ0)
8 rami.m . . . . . 6 (𝜑𝑀 ∈ ℕ0)
9 rami.r . . . . . 6 (𝜑𝑅𝑉)
10 rami.f . . . . . 6 (𝜑𝐹:𝑅⟶ℕ0)
11 rami.c . . . . . . . 8 𝐶 = (𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})
12 eqid 2735 . . . . . . . 8 {𝑛 ∈ ℕ0 ∣ ∀𝑠(𝑛 ≤ (♯‘𝑠) → ∀𝑓 ∈ (𝑅m (𝑠𝐶𝑀))∃𝑐𝑅𝑥 ∈ 𝒫 𝑠((𝐹𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (𝑓 “ {𝑐})))} = {𝑛 ∈ ℕ0 ∣ ∀𝑠(𝑛 ≤ (♯‘𝑠) → ∀𝑓 ∈ (𝑅m (𝑠𝐶𝑀))∃𝑐𝑅𝑥 ∈ 𝒫 𝑠((𝐹𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (𝑓 “ {𝑐})))}
1311, 12ramtcl2 17045 . . . . . . 7 ((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) → ((𝑀 Ramsey 𝐹) ∈ ℕ0 ↔ {𝑛 ∈ ℕ0 ∣ ∀𝑠(𝑛 ≤ (♯‘𝑠) → ∀𝑓 ∈ (𝑅m (𝑠𝐶𝑀))∃𝑐𝑅𝑥 ∈ 𝒫 𝑠((𝐹𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (𝑓 “ {𝑐})))} ≠ ∅))
1411, 12ramtcl 17044 . . . . . . 7 ((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) → ((𝑀 Ramsey 𝐹) ∈ {𝑛 ∈ ℕ0 ∣ ∀𝑠(𝑛 ≤ (♯‘𝑠) → ∀𝑓 ∈ (𝑅m (𝑠𝐶𝑀))∃𝑐𝑅𝑥 ∈ 𝒫 𝑠((𝐹𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (𝑓 “ {𝑐})))} ↔ {𝑛 ∈ ℕ0 ∣ ∀𝑠(𝑛 ≤ (♯‘𝑠) → ∀𝑓 ∈ (𝑅m (𝑠𝐶𝑀))∃𝑐𝑅𝑥 ∈ 𝒫 𝑠((𝐹𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (𝑓 “ {𝑐})))} ≠ ∅))
1513, 14bitr4d 282 . . . . . 6 ((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) → ((𝑀 Ramsey 𝐹) ∈ ℕ0 ↔ (𝑀 Ramsey 𝐹) ∈ {𝑛 ∈ ℕ0 ∣ ∀𝑠(𝑛 ≤ (♯‘𝑠) → ∀𝑓 ∈ (𝑅m (𝑠𝐶𝑀))∃𝑐𝑅𝑥 ∈ 𝒫 𝑠((𝐹𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (𝑓 “ {𝑐})))}))
168, 9, 10, 15syl3anc 1370 . . . . 5 (𝜑 → ((𝑀 Ramsey 𝐹) ∈ ℕ0 ↔ (𝑀 Ramsey 𝐹) ∈ {𝑛 ∈ ℕ0 ∣ ∀𝑠(𝑛 ≤ (♯‘𝑠) → ∀𝑓 ∈ (𝑅m (𝑠𝐶𝑀))∃𝑐𝑅𝑥 ∈ 𝒫 𝑠((𝐹𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (𝑓 “ {𝑐})))}))
177, 16mpbid 232 . . . 4 (𝜑 → (𝑀 Ramsey 𝐹) ∈ {𝑛 ∈ ℕ0 ∣ ∀𝑠(𝑛 ≤ (♯‘𝑠) → ∀𝑓 ∈ (𝑅m (𝑠𝐶𝑀))∃𝑐𝑅𝑥 ∈ 𝒫 𝑠((𝐹𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (𝑓 “ {𝑐})))})
18 breq1 5151 . . . . . . . 8 (𝑛 = (𝑀 Ramsey 𝐹) → (𝑛 ≤ (♯‘𝑠) ↔ (𝑀 Ramsey 𝐹) ≤ (♯‘𝑠)))
1918imbi1d 341 . . . . . . 7 (𝑛 = (𝑀 Ramsey 𝐹) → ((𝑛 ≤ (♯‘𝑠) → ∀𝑓 ∈ (𝑅m (𝑠𝐶𝑀))∃𝑐𝑅𝑥 ∈ 𝒫 𝑠((𝐹𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (𝑓 “ {𝑐}))) ↔ ((𝑀 Ramsey 𝐹) ≤ (♯‘𝑠) → ∀𝑓 ∈ (𝑅m (𝑠𝐶𝑀))∃𝑐𝑅𝑥 ∈ 𝒫 𝑠((𝐹𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (𝑓 “ {𝑐})))))
2019albidv 1918 . . . . . 6 (𝑛 = (𝑀 Ramsey 𝐹) → (∀𝑠(𝑛 ≤ (♯‘𝑠) → ∀𝑓 ∈ (𝑅m (𝑠𝐶𝑀))∃𝑐𝑅𝑥 ∈ 𝒫 𝑠((𝐹𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (𝑓 “ {𝑐}))) ↔ ∀𝑠((𝑀 Ramsey 𝐹) ≤ (♯‘𝑠) → ∀𝑓 ∈ (𝑅m (𝑠𝐶𝑀))∃𝑐𝑅𝑥 ∈ 𝒫 𝑠((𝐹𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (𝑓 “ {𝑐})))))
2120elrab 3695 . . . . 5 ((𝑀 Ramsey 𝐹) ∈ {𝑛 ∈ ℕ0 ∣ ∀𝑠(𝑛 ≤ (♯‘𝑠) → ∀𝑓 ∈ (𝑅m (𝑠𝐶𝑀))∃𝑐𝑅𝑥 ∈ 𝒫 𝑠((𝐹𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (𝑓 “ {𝑐})))} ↔ ((𝑀 Ramsey 𝐹) ∈ ℕ0 ∧ ∀𝑠((𝑀 Ramsey 𝐹) ≤ (♯‘𝑠) → ∀𝑓 ∈ (𝑅m (𝑠𝐶𝑀))∃𝑐𝑅𝑥 ∈ 𝒫 𝑠((𝐹𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (𝑓 “ {𝑐})))))
2221simprbi 496 . . . 4 ((𝑀 Ramsey 𝐹) ∈ {𝑛 ∈ ℕ0 ∣ ∀𝑠(𝑛 ≤ (♯‘𝑠) → ∀𝑓 ∈ (𝑅m (𝑠𝐶𝑀))∃𝑐𝑅𝑥 ∈ 𝒫 𝑠((𝐹𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (𝑓 “ {𝑐})))} → ∀𝑠((𝑀 Ramsey 𝐹) ≤ (♯‘𝑠) → ∀𝑓 ∈ (𝑅m (𝑠𝐶𝑀))∃𝑐𝑅𝑥 ∈ 𝒫 𝑠((𝐹𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (𝑓 “ {𝑐}))))
2317, 22syl 17 . . 3 (𝜑 → ∀𝑠((𝑀 Ramsey 𝐹) ≤ (♯‘𝑠) → ∀𝑓 ∈ (𝑅m (𝑠𝐶𝑀))∃𝑐𝑅𝑥 ∈ 𝒫 𝑠((𝐹𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (𝑓 “ {𝑐}))))
24 rami.l . . 3 (𝜑 → (𝑀 Ramsey 𝐹) ≤ (♯‘𝑆))
25 fveq2 6907 . . . . . 6 (𝑠 = 𝑆 → (♯‘𝑠) = (♯‘𝑆))
2625breq2d 5160 . . . . 5 (𝑠 = 𝑆 → ((𝑀 Ramsey 𝐹) ≤ (♯‘𝑠) ↔ (𝑀 Ramsey 𝐹) ≤ (♯‘𝑆)))
27 oveq1 7438 . . . . . . 7 (𝑠 = 𝑆 → (𝑠𝐶𝑀) = (𝑆𝐶𝑀))
2827oveq2d 7447 . . . . . 6 (𝑠 = 𝑆 → (𝑅m (𝑠𝐶𝑀)) = (𝑅m (𝑆𝐶𝑀)))
29 pweq 4619 . . . . . . . 8 (𝑠 = 𝑆 → 𝒫 𝑠 = 𝒫 𝑆)
3029rexeqdv 3325 . . . . . . 7 (𝑠 = 𝑆 → (∃𝑥 ∈ 𝒫 𝑠((𝐹𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (𝑓 “ {𝑐})) ↔ ∃𝑥 ∈ 𝒫 𝑆((𝐹𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (𝑓 “ {𝑐}))))
3130rexbidv 3177 . . . . . 6 (𝑠 = 𝑆 → (∃𝑐𝑅𝑥 ∈ 𝒫 𝑠((𝐹𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (𝑓 “ {𝑐})) ↔ ∃𝑐𝑅𝑥 ∈ 𝒫 𝑆((𝐹𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (𝑓 “ {𝑐}))))
3228, 31raleqbidv 3344 . . . . 5 (𝑠 = 𝑆 → (∀𝑓 ∈ (𝑅m (𝑠𝐶𝑀))∃𝑐𝑅𝑥 ∈ 𝒫 𝑠((𝐹𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (𝑓 “ {𝑐})) ↔ ∀𝑓 ∈ (𝑅m (𝑆𝐶𝑀))∃𝑐𝑅𝑥 ∈ 𝒫 𝑆((𝐹𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (𝑓 “ {𝑐}))))
3326, 32imbi12d 344 . . . 4 (𝑠 = 𝑆 → (((𝑀 Ramsey 𝐹) ≤ (♯‘𝑠) → ∀𝑓 ∈ (𝑅m (𝑠𝐶𝑀))∃𝑐𝑅𝑥 ∈ 𝒫 𝑠((𝐹𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (𝑓 “ {𝑐}))) ↔ ((𝑀 Ramsey 𝐹) ≤ (♯‘𝑆) → ∀𝑓 ∈ (𝑅m (𝑆𝐶𝑀))∃𝑐𝑅𝑥 ∈ 𝒫 𝑆((𝐹𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (𝑓 “ {𝑐})))))
3433spcgv 3596 . . 3 (𝑆𝑊 → (∀𝑠((𝑀 Ramsey 𝐹) ≤ (♯‘𝑠) → ∀𝑓 ∈ (𝑅m (𝑠𝐶𝑀))∃𝑐𝑅𝑥 ∈ 𝒫 𝑠((𝐹𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (𝑓 “ {𝑐}))) → ((𝑀 Ramsey 𝐹) ≤ (♯‘𝑆) → ∀𝑓 ∈ (𝑅m (𝑆𝐶𝑀))∃𝑐𝑅𝑥 ∈ 𝒫 𝑆((𝐹𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (𝑓 “ {𝑐})))))
356, 23, 24, 34syl3c 66 . 2 (𝜑 → ∀𝑓 ∈ (𝑅m (𝑆𝐶𝑀))∃𝑐𝑅𝑥 ∈ 𝒫 𝑆((𝐹𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (𝑓 “ {𝑐})))
36 rami.g . . 3 (𝜑𝐺:(𝑆𝐶𝑀)⟶𝑅)
37 ovex 7464 . . . 4 (𝑆𝐶𝑀) ∈ V
38 elmapg 8878 . . . 4 ((𝑅𝑉 ∧ (𝑆𝐶𝑀) ∈ V) → (𝐺 ∈ (𝑅m (𝑆𝐶𝑀)) ↔ 𝐺:(𝑆𝐶𝑀)⟶𝑅))
399, 37, 38sylancl 586 . . 3 (𝜑 → (𝐺 ∈ (𝑅m (𝑆𝐶𝑀)) ↔ 𝐺:(𝑆𝐶𝑀)⟶𝑅))
4036, 39mpbird 257 . 2 (𝜑𝐺 ∈ (𝑅m (𝑆𝐶𝑀)))
415, 35, 40rspcdva 3623 1 (𝜑 → ∃𝑐𝑅𝑥 ∈ 𝒫 𝑆((𝐹𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (𝐺 “ {𝑐})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086  wal 1535   = wceq 1537  wcel 2106  wne 2938  wral 3059  wrex 3068  {crab 3433  Vcvv 3478  wss 3963  c0 4339  𝒫 cpw 4605  {csn 4631   class class class wbr 5148  ccnv 5688  cima 5692  wf 6559  cfv 6563  (class class class)co 7431  cmpo 7433  m cmap 8865  cle 11294  0cn0 12524  chash 14366   Ramsey cram 17033
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-map 8867  df-en 8985  df-dom 8986  df-sdom 8987  df-sup 9480  df-inf 9481  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-n0 12525  df-z 12612  df-uz 12877  df-ram 17035
This theorem is referenced by:  ramlb  17053  ramub1lem2  17061
  Copyright terms: Public domain W3C validator