Step | Hyp | Ref
| Expression |
1 | | cnveq 5782 |
. . . . . 6
⊢ (𝑓 = 𝐺 → ◡𝑓 = ◡𝐺) |
2 | 1 | imaeq1d 5968 |
. . . . 5
⊢ (𝑓 = 𝐺 → (◡𝑓 “ {𝑐}) = (◡𝐺 “ {𝑐})) |
3 | 2 | sseq2d 3953 |
. . . 4
⊢ (𝑓 = 𝐺 → ((𝑥𝐶𝑀) ⊆ (◡𝑓 “ {𝑐}) ↔ (𝑥𝐶𝑀) ⊆ (◡𝐺 “ {𝑐}))) |
4 | 3 | anbi2d 629 |
. . 3
⊢ (𝑓 = 𝐺 → (((𝐹‘𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (◡𝑓 “ {𝑐})) ↔ ((𝐹‘𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (◡𝐺 “ {𝑐})))) |
5 | 4 | 2rexbidv 3229 |
. 2
⊢ (𝑓 = 𝐺 → (∃𝑐 ∈ 𝑅 ∃𝑥 ∈ 𝒫 𝑆((𝐹‘𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (◡𝑓 “ {𝑐})) ↔ ∃𝑐 ∈ 𝑅 ∃𝑥 ∈ 𝒫 𝑆((𝐹‘𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (◡𝐺 “ {𝑐})))) |
6 | | rami.s |
. . 3
⊢ (𝜑 → 𝑆 ∈ 𝑊) |
7 | | rami.x |
. . . . 5
⊢ (𝜑 → (𝑀 Ramsey 𝐹) ∈
ℕ0) |
8 | | rami.m |
. . . . . 6
⊢ (𝜑 → 𝑀 ∈
ℕ0) |
9 | | rami.r |
. . . . . 6
⊢ (𝜑 → 𝑅 ∈ 𝑉) |
10 | | rami.f |
. . . . . 6
⊢ (𝜑 → 𝐹:𝑅⟶ℕ0) |
11 | | rami.c |
. . . . . . . 8
⊢ 𝐶 = (𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖}) |
12 | | eqid 2738 |
. . . . . . . 8
⊢ {𝑛 ∈ ℕ0
∣ ∀𝑠(𝑛 ≤ (♯‘𝑠) → ∀𝑓 ∈ (𝑅 ↑m (𝑠𝐶𝑀))∃𝑐 ∈ 𝑅 ∃𝑥 ∈ 𝒫 𝑠((𝐹‘𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (◡𝑓 “ {𝑐})))} = {𝑛 ∈ ℕ0 ∣
∀𝑠(𝑛 ≤ (♯‘𝑠) → ∀𝑓 ∈ (𝑅 ↑m (𝑠𝐶𝑀))∃𝑐 ∈ 𝑅 ∃𝑥 ∈ 𝒫 𝑠((𝐹‘𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (◡𝑓 “ {𝑐})))} |
13 | 11, 12 | ramtcl2 16712 |
. . . . . . 7
⊢ ((𝑀 ∈ ℕ0
∧ 𝑅 ∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) → ((𝑀 Ramsey 𝐹) ∈ ℕ0 ↔ {𝑛 ∈ ℕ0
∣ ∀𝑠(𝑛 ≤ (♯‘𝑠) → ∀𝑓 ∈ (𝑅 ↑m (𝑠𝐶𝑀))∃𝑐 ∈ 𝑅 ∃𝑥 ∈ 𝒫 𝑠((𝐹‘𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (◡𝑓 “ {𝑐})))} ≠ ∅)) |
14 | 11, 12 | ramtcl 16711 |
. . . . . . 7
⊢ ((𝑀 ∈ ℕ0
∧ 𝑅 ∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) → ((𝑀 Ramsey 𝐹) ∈ {𝑛 ∈ ℕ0 ∣
∀𝑠(𝑛 ≤ (♯‘𝑠) → ∀𝑓 ∈ (𝑅 ↑m (𝑠𝐶𝑀))∃𝑐 ∈ 𝑅 ∃𝑥 ∈ 𝒫 𝑠((𝐹‘𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (◡𝑓 “ {𝑐})))} ↔ {𝑛 ∈ ℕ0 ∣
∀𝑠(𝑛 ≤ (♯‘𝑠) → ∀𝑓 ∈ (𝑅 ↑m (𝑠𝐶𝑀))∃𝑐 ∈ 𝑅 ∃𝑥 ∈ 𝒫 𝑠((𝐹‘𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (◡𝑓 “ {𝑐})))} ≠ ∅)) |
15 | 13, 14 | bitr4d 281 |
. . . . . 6
⊢ ((𝑀 ∈ ℕ0
∧ 𝑅 ∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) → ((𝑀 Ramsey 𝐹) ∈ ℕ0 ↔ (𝑀 Ramsey 𝐹) ∈ {𝑛 ∈ ℕ0 ∣
∀𝑠(𝑛 ≤ (♯‘𝑠) → ∀𝑓 ∈ (𝑅 ↑m (𝑠𝐶𝑀))∃𝑐 ∈ 𝑅 ∃𝑥 ∈ 𝒫 𝑠((𝐹‘𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (◡𝑓 “ {𝑐})))})) |
16 | 8, 9, 10, 15 | syl3anc 1370 |
. . . . 5
⊢ (𝜑 → ((𝑀 Ramsey 𝐹) ∈ ℕ0 ↔ (𝑀 Ramsey 𝐹) ∈ {𝑛 ∈ ℕ0 ∣
∀𝑠(𝑛 ≤ (♯‘𝑠) → ∀𝑓 ∈ (𝑅 ↑m (𝑠𝐶𝑀))∃𝑐 ∈ 𝑅 ∃𝑥 ∈ 𝒫 𝑠((𝐹‘𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (◡𝑓 “ {𝑐})))})) |
17 | 7, 16 | mpbid 231 |
. . . 4
⊢ (𝜑 → (𝑀 Ramsey 𝐹) ∈ {𝑛 ∈ ℕ0 ∣
∀𝑠(𝑛 ≤ (♯‘𝑠) → ∀𝑓 ∈ (𝑅 ↑m (𝑠𝐶𝑀))∃𝑐 ∈ 𝑅 ∃𝑥 ∈ 𝒫 𝑠((𝐹‘𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (◡𝑓 “ {𝑐})))}) |
18 | | breq1 5077 |
. . . . . . . 8
⊢ (𝑛 = (𝑀 Ramsey 𝐹) → (𝑛 ≤ (♯‘𝑠) ↔ (𝑀 Ramsey 𝐹) ≤ (♯‘𝑠))) |
19 | 18 | imbi1d 342 |
. . . . . . 7
⊢ (𝑛 = (𝑀 Ramsey 𝐹) → ((𝑛 ≤ (♯‘𝑠) → ∀𝑓 ∈ (𝑅 ↑m (𝑠𝐶𝑀))∃𝑐 ∈ 𝑅 ∃𝑥 ∈ 𝒫 𝑠((𝐹‘𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (◡𝑓 “ {𝑐}))) ↔ ((𝑀 Ramsey 𝐹) ≤ (♯‘𝑠) → ∀𝑓 ∈ (𝑅 ↑m (𝑠𝐶𝑀))∃𝑐 ∈ 𝑅 ∃𝑥 ∈ 𝒫 𝑠((𝐹‘𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (◡𝑓 “ {𝑐}))))) |
20 | 19 | albidv 1923 |
. . . . . 6
⊢ (𝑛 = (𝑀 Ramsey 𝐹) → (∀𝑠(𝑛 ≤ (♯‘𝑠) → ∀𝑓 ∈ (𝑅 ↑m (𝑠𝐶𝑀))∃𝑐 ∈ 𝑅 ∃𝑥 ∈ 𝒫 𝑠((𝐹‘𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (◡𝑓 “ {𝑐}))) ↔ ∀𝑠((𝑀 Ramsey 𝐹) ≤ (♯‘𝑠) → ∀𝑓 ∈ (𝑅 ↑m (𝑠𝐶𝑀))∃𝑐 ∈ 𝑅 ∃𝑥 ∈ 𝒫 𝑠((𝐹‘𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (◡𝑓 “ {𝑐}))))) |
21 | 20 | elrab 3624 |
. . . . 5
⊢ ((𝑀 Ramsey 𝐹) ∈ {𝑛 ∈ ℕ0 ∣
∀𝑠(𝑛 ≤ (♯‘𝑠) → ∀𝑓 ∈ (𝑅 ↑m (𝑠𝐶𝑀))∃𝑐 ∈ 𝑅 ∃𝑥 ∈ 𝒫 𝑠((𝐹‘𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (◡𝑓 “ {𝑐})))} ↔ ((𝑀 Ramsey 𝐹) ∈ ℕ0 ∧
∀𝑠((𝑀 Ramsey 𝐹) ≤ (♯‘𝑠) → ∀𝑓 ∈ (𝑅 ↑m (𝑠𝐶𝑀))∃𝑐 ∈ 𝑅 ∃𝑥 ∈ 𝒫 𝑠((𝐹‘𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (◡𝑓 “ {𝑐}))))) |
22 | 21 | simprbi 497 |
. . . 4
⊢ ((𝑀 Ramsey 𝐹) ∈ {𝑛 ∈ ℕ0 ∣
∀𝑠(𝑛 ≤ (♯‘𝑠) → ∀𝑓 ∈ (𝑅 ↑m (𝑠𝐶𝑀))∃𝑐 ∈ 𝑅 ∃𝑥 ∈ 𝒫 𝑠((𝐹‘𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (◡𝑓 “ {𝑐})))} → ∀𝑠((𝑀 Ramsey 𝐹) ≤ (♯‘𝑠) → ∀𝑓 ∈ (𝑅 ↑m (𝑠𝐶𝑀))∃𝑐 ∈ 𝑅 ∃𝑥 ∈ 𝒫 𝑠((𝐹‘𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (◡𝑓 “ {𝑐})))) |
23 | 17, 22 | syl 17 |
. . 3
⊢ (𝜑 → ∀𝑠((𝑀 Ramsey 𝐹) ≤ (♯‘𝑠) → ∀𝑓 ∈ (𝑅 ↑m (𝑠𝐶𝑀))∃𝑐 ∈ 𝑅 ∃𝑥 ∈ 𝒫 𝑠((𝐹‘𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (◡𝑓 “ {𝑐})))) |
24 | | rami.l |
. . 3
⊢ (𝜑 → (𝑀 Ramsey 𝐹) ≤ (♯‘𝑆)) |
25 | | fveq2 6774 |
. . . . . 6
⊢ (𝑠 = 𝑆 → (♯‘𝑠) = (♯‘𝑆)) |
26 | 25 | breq2d 5086 |
. . . . 5
⊢ (𝑠 = 𝑆 → ((𝑀 Ramsey 𝐹) ≤ (♯‘𝑠) ↔ (𝑀 Ramsey 𝐹) ≤ (♯‘𝑆))) |
27 | | oveq1 7282 |
. . . . . . 7
⊢ (𝑠 = 𝑆 → (𝑠𝐶𝑀) = (𝑆𝐶𝑀)) |
28 | 27 | oveq2d 7291 |
. . . . . 6
⊢ (𝑠 = 𝑆 → (𝑅 ↑m (𝑠𝐶𝑀)) = (𝑅 ↑m (𝑆𝐶𝑀))) |
29 | | pweq 4549 |
. . . . . . . 8
⊢ (𝑠 = 𝑆 → 𝒫 𝑠 = 𝒫 𝑆) |
30 | 29 | rexeqdv 3349 |
. . . . . . 7
⊢ (𝑠 = 𝑆 → (∃𝑥 ∈ 𝒫 𝑠((𝐹‘𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (◡𝑓 “ {𝑐})) ↔ ∃𝑥 ∈ 𝒫 𝑆((𝐹‘𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (◡𝑓 “ {𝑐})))) |
31 | 30 | rexbidv 3226 |
. . . . . 6
⊢ (𝑠 = 𝑆 → (∃𝑐 ∈ 𝑅 ∃𝑥 ∈ 𝒫 𝑠((𝐹‘𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (◡𝑓 “ {𝑐})) ↔ ∃𝑐 ∈ 𝑅 ∃𝑥 ∈ 𝒫 𝑆((𝐹‘𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (◡𝑓 “ {𝑐})))) |
32 | 28, 31 | raleqbidv 3336 |
. . . . 5
⊢ (𝑠 = 𝑆 → (∀𝑓 ∈ (𝑅 ↑m (𝑠𝐶𝑀))∃𝑐 ∈ 𝑅 ∃𝑥 ∈ 𝒫 𝑠((𝐹‘𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (◡𝑓 “ {𝑐})) ↔ ∀𝑓 ∈ (𝑅 ↑m (𝑆𝐶𝑀))∃𝑐 ∈ 𝑅 ∃𝑥 ∈ 𝒫 𝑆((𝐹‘𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (◡𝑓 “ {𝑐})))) |
33 | 26, 32 | imbi12d 345 |
. . . 4
⊢ (𝑠 = 𝑆 → (((𝑀 Ramsey 𝐹) ≤ (♯‘𝑠) → ∀𝑓 ∈ (𝑅 ↑m (𝑠𝐶𝑀))∃𝑐 ∈ 𝑅 ∃𝑥 ∈ 𝒫 𝑠((𝐹‘𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (◡𝑓 “ {𝑐}))) ↔ ((𝑀 Ramsey 𝐹) ≤ (♯‘𝑆) → ∀𝑓 ∈ (𝑅 ↑m (𝑆𝐶𝑀))∃𝑐 ∈ 𝑅 ∃𝑥 ∈ 𝒫 𝑆((𝐹‘𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (◡𝑓 “ {𝑐}))))) |
34 | 33 | spcgv 3535 |
. . 3
⊢ (𝑆 ∈ 𝑊 → (∀𝑠((𝑀 Ramsey 𝐹) ≤ (♯‘𝑠) → ∀𝑓 ∈ (𝑅 ↑m (𝑠𝐶𝑀))∃𝑐 ∈ 𝑅 ∃𝑥 ∈ 𝒫 𝑠((𝐹‘𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (◡𝑓 “ {𝑐}))) → ((𝑀 Ramsey 𝐹) ≤ (♯‘𝑆) → ∀𝑓 ∈ (𝑅 ↑m (𝑆𝐶𝑀))∃𝑐 ∈ 𝑅 ∃𝑥 ∈ 𝒫 𝑆((𝐹‘𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (◡𝑓 “ {𝑐}))))) |
35 | 6, 23, 24, 34 | syl3c 66 |
. 2
⊢ (𝜑 → ∀𝑓 ∈ (𝑅 ↑m (𝑆𝐶𝑀))∃𝑐 ∈ 𝑅 ∃𝑥 ∈ 𝒫 𝑆((𝐹‘𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (◡𝑓 “ {𝑐}))) |
36 | | rami.g |
. . 3
⊢ (𝜑 → 𝐺:(𝑆𝐶𝑀)⟶𝑅) |
37 | | ovex 7308 |
. . . 4
⊢ (𝑆𝐶𝑀) ∈ V |
38 | | elmapg 8628 |
. . . 4
⊢ ((𝑅 ∈ 𝑉 ∧ (𝑆𝐶𝑀) ∈ V) → (𝐺 ∈ (𝑅 ↑m (𝑆𝐶𝑀)) ↔ 𝐺:(𝑆𝐶𝑀)⟶𝑅)) |
39 | 9, 37, 38 | sylancl 586 |
. . 3
⊢ (𝜑 → (𝐺 ∈ (𝑅 ↑m (𝑆𝐶𝑀)) ↔ 𝐺:(𝑆𝐶𝑀)⟶𝑅)) |
40 | 36, 39 | mpbird 256 |
. 2
⊢ (𝜑 → 𝐺 ∈ (𝑅 ↑m (𝑆𝐶𝑀))) |
41 | 5, 35, 40 | rspcdva 3562 |
1
⊢ (𝜑 → ∃𝑐 ∈ 𝑅 ∃𝑥 ∈ 𝒫 𝑆((𝐹‘𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (◡𝐺 “ {𝑐}))) |