MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rami Structured version   Visualization version   GIF version

Theorem rami 17062
Description: The defining property of a Ramsey number. (Contributed by Mario Carneiro, 22-Apr-2015.)
Hypotheses
Ref Expression
rami.c 𝐶 = (𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})
rami.m (𝜑𝑀 ∈ ℕ0)
rami.r (𝜑𝑅𝑉)
rami.f (𝜑𝐹:𝑅⟶ℕ0)
rami.x (𝜑 → (𝑀 Ramsey 𝐹) ∈ ℕ0)
rami.s (𝜑𝑆𝑊)
rami.l (𝜑 → (𝑀 Ramsey 𝐹) ≤ (♯‘𝑆))
rami.g (𝜑𝐺:(𝑆𝐶𝑀)⟶𝑅)
Assertion
Ref Expression
rami (𝜑 → ∃𝑐𝑅𝑥 ∈ 𝒫 𝑆((𝐹𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (𝐺 “ {𝑐})))
Distinct variable groups:   𝑥,𝑐,𝐶   𝐺,𝑐,𝑥   𝜑,𝑐,𝑥   𝑆,𝑐,𝑥   𝐹,𝑐,𝑥   𝑎,𝑏,𝑐,𝑖,𝑥,𝑀   𝑅,𝑐,𝑥   𝑉,𝑐,𝑥
Allowed substitution hints:   𝜑(𝑖,𝑎,𝑏)   𝐶(𝑖,𝑎,𝑏)   𝑅(𝑖,𝑎,𝑏)   𝑆(𝑖,𝑎,𝑏)   𝐹(𝑖,𝑎,𝑏)   𝐺(𝑖,𝑎,𝑏)   𝑉(𝑖,𝑎,𝑏)   𝑊(𝑥,𝑖,𝑎,𝑏,𝑐)

Proof of Theorem rami
Dummy variables 𝑓 𝑛 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnveq 5898 . . . . . 6 (𝑓 = 𝐺𝑓 = 𝐺)
21imaeq1d 6088 . . . . 5 (𝑓 = 𝐺 → (𝑓 “ {𝑐}) = (𝐺 “ {𝑐}))
32sseq2d 4041 . . . 4 (𝑓 = 𝐺 → ((𝑥𝐶𝑀) ⊆ (𝑓 “ {𝑐}) ↔ (𝑥𝐶𝑀) ⊆ (𝐺 “ {𝑐})))
43anbi2d 629 . . 3 (𝑓 = 𝐺 → (((𝐹𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (𝑓 “ {𝑐})) ↔ ((𝐹𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (𝐺 “ {𝑐}))))
542rexbidv 3228 . 2 (𝑓 = 𝐺 → (∃𝑐𝑅𝑥 ∈ 𝒫 𝑆((𝐹𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (𝑓 “ {𝑐})) ↔ ∃𝑐𝑅𝑥 ∈ 𝒫 𝑆((𝐹𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (𝐺 “ {𝑐}))))
6 rami.s . . 3 (𝜑𝑆𝑊)
7 rami.x . . . . 5 (𝜑 → (𝑀 Ramsey 𝐹) ∈ ℕ0)
8 rami.m . . . . . 6 (𝜑𝑀 ∈ ℕ0)
9 rami.r . . . . . 6 (𝜑𝑅𝑉)
10 rami.f . . . . . 6 (𝜑𝐹:𝑅⟶ℕ0)
11 rami.c . . . . . . . 8 𝐶 = (𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})
12 eqid 2740 . . . . . . . 8 {𝑛 ∈ ℕ0 ∣ ∀𝑠(𝑛 ≤ (♯‘𝑠) → ∀𝑓 ∈ (𝑅m (𝑠𝐶𝑀))∃𝑐𝑅𝑥 ∈ 𝒫 𝑠((𝐹𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (𝑓 “ {𝑐})))} = {𝑛 ∈ ℕ0 ∣ ∀𝑠(𝑛 ≤ (♯‘𝑠) → ∀𝑓 ∈ (𝑅m (𝑠𝐶𝑀))∃𝑐𝑅𝑥 ∈ 𝒫 𝑠((𝐹𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (𝑓 “ {𝑐})))}
1311, 12ramtcl2 17058 . . . . . . 7 ((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) → ((𝑀 Ramsey 𝐹) ∈ ℕ0 ↔ {𝑛 ∈ ℕ0 ∣ ∀𝑠(𝑛 ≤ (♯‘𝑠) → ∀𝑓 ∈ (𝑅m (𝑠𝐶𝑀))∃𝑐𝑅𝑥 ∈ 𝒫 𝑠((𝐹𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (𝑓 “ {𝑐})))} ≠ ∅))
1411, 12ramtcl 17057 . . . . . . 7 ((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) → ((𝑀 Ramsey 𝐹) ∈ {𝑛 ∈ ℕ0 ∣ ∀𝑠(𝑛 ≤ (♯‘𝑠) → ∀𝑓 ∈ (𝑅m (𝑠𝐶𝑀))∃𝑐𝑅𝑥 ∈ 𝒫 𝑠((𝐹𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (𝑓 “ {𝑐})))} ↔ {𝑛 ∈ ℕ0 ∣ ∀𝑠(𝑛 ≤ (♯‘𝑠) → ∀𝑓 ∈ (𝑅m (𝑠𝐶𝑀))∃𝑐𝑅𝑥 ∈ 𝒫 𝑠((𝐹𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (𝑓 “ {𝑐})))} ≠ ∅))
1513, 14bitr4d 282 . . . . . 6 ((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) → ((𝑀 Ramsey 𝐹) ∈ ℕ0 ↔ (𝑀 Ramsey 𝐹) ∈ {𝑛 ∈ ℕ0 ∣ ∀𝑠(𝑛 ≤ (♯‘𝑠) → ∀𝑓 ∈ (𝑅m (𝑠𝐶𝑀))∃𝑐𝑅𝑥 ∈ 𝒫 𝑠((𝐹𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (𝑓 “ {𝑐})))}))
168, 9, 10, 15syl3anc 1371 . . . . 5 (𝜑 → ((𝑀 Ramsey 𝐹) ∈ ℕ0 ↔ (𝑀 Ramsey 𝐹) ∈ {𝑛 ∈ ℕ0 ∣ ∀𝑠(𝑛 ≤ (♯‘𝑠) → ∀𝑓 ∈ (𝑅m (𝑠𝐶𝑀))∃𝑐𝑅𝑥 ∈ 𝒫 𝑠((𝐹𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (𝑓 “ {𝑐})))}))
177, 16mpbid 232 . . . 4 (𝜑 → (𝑀 Ramsey 𝐹) ∈ {𝑛 ∈ ℕ0 ∣ ∀𝑠(𝑛 ≤ (♯‘𝑠) → ∀𝑓 ∈ (𝑅m (𝑠𝐶𝑀))∃𝑐𝑅𝑥 ∈ 𝒫 𝑠((𝐹𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (𝑓 “ {𝑐})))})
18 breq1 5169 . . . . . . . 8 (𝑛 = (𝑀 Ramsey 𝐹) → (𝑛 ≤ (♯‘𝑠) ↔ (𝑀 Ramsey 𝐹) ≤ (♯‘𝑠)))
1918imbi1d 341 . . . . . . 7 (𝑛 = (𝑀 Ramsey 𝐹) → ((𝑛 ≤ (♯‘𝑠) → ∀𝑓 ∈ (𝑅m (𝑠𝐶𝑀))∃𝑐𝑅𝑥 ∈ 𝒫 𝑠((𝐹𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (𝑓 “ {𝑐}))) ↔ ((𝑀 Ramsey 𝐹) ≤ (♯‘𝑠) → ∀𝑓 ∈ (𝑅m (𝑠𝐶𝑀))∃𝑐𝑅𝑥 ∈ 𝒫 𝑠((𝐹𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (𝑓 “ {𝑐})))))
2019albidv 1919 . . . . . 6 (𝑛 = (𝑀 Ramsey 𝐹) → (∀𝑠(𝑛 ≤ (♯‘𝑠) → ∀𝑓 ∈ (𝑅m (𝑠𝐶𝑀))∃𝑐𝑅𝑥 ∈ 𝒫 𝑠((𝐹𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (𝑓 “ {𝑐}))) ↔ ∀𝑠((𝑀 Ramsey 𝐹) ≤ (♯‘𝑠) → ∀𝑓 ∈ (𝑅m (𝑠𝐶𝑀))∃𝑐𝑅𝑥 ∈ 𝒫 𝑠((𝐹𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (𝑓 “ {𝑐})))))
2120elrab 3708 . . . . 5 ((𝑀 Ramsey 𝐹) ∈ {𝑛 ∈ ℕ0 ∣ ∀𝑠(𝑛 ≤ (♯‘𝑠) → ∀𝑓 ∈ (𝑅m (𝑠𝐶𝑀))∃𝑐𝑅𝑥 ∈ 𝒫 𝑠((𝐹𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (𝑓 “ {𝑐})))} ↔ ((𝑀 Ramsey 𝐹) ∈ ℕ0 ∧ ∀𝑠((𝑀 Ramsey 𝐹) ≤ (♯‘𝑠) → ∀𝑓 ∈ (𝑅m (𝑠𝐶𝑀))∃𝑐𝑅𝑥 ∈ 𝒫 𝑠((𝐹𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (𝑓 “ {𝑐})))))
2221simprbi 496 . . . 4 ((𝑀 Ramsey 𝐹) ∈ {𝑛 ∈ ℕ0 ∣ ∀𝑠(𝑛 ≤ (♯‘𝑠) → ∀𝑓 ∈ (𝑅m (𝑠𝐶𝑀))∃𝑐𝑅𝑥 ∈ 𝒫 𝑠((𝐹𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (𝑓 “ {𝑐})))} → ∀𝑠((𝑀 Ramsey 𝐹) ≤ (♯‘𝑠) → ∀𝑓 ∈ (𝑅m (𝑠𝐶𝑀))∃𝑐𝑅𝑥 ∈ 𝒫 𝑠((𝐹𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (𝑓 “ {𝑐}))))
2317, 22syl 17 . . 3 (𝜑 → ∀𝑠((𝑀 Ramsey 𝐹) ≤ (♯‘𝑠) → ∀𝑓 ∈ (𝑅m (𝑠𝐶𝑀))∃𝑐𝑅𝑥 ∈ 𝒫 𝑠((𝐹𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (𝑓 “ {𝑐}))))
24 rami.l . . 3 (𝜑 → (𝑀 Ramsey 𝐹) ≤ (♯‘𝑆))
25 fveq2 6920 . . . . . 6 (𝑠 = 𝑆 → (♯‘𝑠) = (♯‘𝑆))
2625breq2d 5178 . . . . 5 (𝑠 = 𝑆 → ((𝑀 Ramsey 𝐹) ≤ (♯‘𝑠) ↔ (𝑀 Ramsey 𝐹) ≤ (♯‘𝑆)))
27 oveq1 7455 . . . . . . 7 (𝑠 = 𝑆 → (𝑠𝐶𝑀) = (𝑆𝐶𝑀))
2827oveq2d 7464 . . . . . 6 (𝑠 = 𝑆 → (𝑅m (𝑠𝐶𝑀)) = (𝑅m (𝑆𝐶𝑀)))
29 pweq 4636 . . . . . . . 8 (𝑠 = 𝑆 → 𝒫 𝑠 = 𝒫 𝑆)
3029rexeqdv 3335 . . . . . . 7 (𝑠 = 𝑆 → (∃𝑥 ∈ 𝒫 𝑠((𝐹𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (𝑓 “ {𝑐})) ↔ ∃𝑥 ∈ 𝒫 𝑆((𝐹𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (𝑓 “ {𝑐}))))
3130rexbidv 3185 . . . . . 6 (𝑠 = 𝑆 → (∃𝑐𝑅𝑥 ∈ 𝒫 𝑠((𝐹𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (𝑓 “ {𝑐})) ↔ ∃𝑐𝑅𝑥 ∈ 𝒫 𝑆((𝐹𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (𝑓 “ {𝑐}))))
3228, 31raleqbidv 3354 . . . . 5 (𝑠 = 𝑆 → (∀𝑓 ∈ (𝑅m (𝑠𝐶𝑀))∃𝑐𝑅𝑥 ∈ 𝒫 𝑠((𝐹𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (𝑓 “ {𝑐})) ↔ ∀𝑓 ∈ (𝑅m (𝑆𝐶𝑀))∃𝑐𝑅𝑥 ∈ 𝒫 𝑆((𝐹𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (𝑓 “ {𝑐}))))
3326, 32imbi12d 344 . . . 4 (𝑠 = 𝑆 → (((𝑀 Ramsey 𝐹) ≤ (♯‘𝑠) → ∀𝑓 ∈ (𝑅m (𝑠𝐶𝑀))∃𝑐𝑅𝑥 ∈ 𝒫 𝑠((𝐹𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (𝑓 “ {𝑐}))) ↔ ((𝑀 Ramsey 𝐹) ≤ (♯‘𝑆) → ∀𝑓 ∈ (𝑅m (𝑆𝐶𝑀))∃𝑐𝑅𝑥 ∈ 𝒫 𝑆((𝐹𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (𝑓 “ {𝑐})))))
3433spcgv 3609 . . 3 (𝑆𝑊 → (∀𝑠((𝑀 Ramsey 𝐹) ≤ (♯‘𝑠) → ∀𝑓 ∈ (𝑅m (𝑠𝐶𝑀))∃𝑐𝑅𝑥 ∈ 𝒫 𝑠((𝐹𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (𝑓 “ {𝑐}))) → ((𝑀 Ramsey 𝐹) ≤ (♯‘𝑆) → ∀𝑓 ∈ (𝑅m (𝑆𝐶𝑀))∃𝑐𝑅𝑥 ∈ 𝒫 𝑆((𝐹𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (𝑓 “ {𝑐})))))
356, 23, 24, 34syl3c 66 . 2 (𝜑 → ∀𝑓 ∈ (𝑅m (𝑆𝐶𝑀))∃𝑐𝑅𝑥 ∈ 𝒫 𝑆((𝐹𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (𝑓 “ {𝑐})))
36 rami.g . . 3 (𝜑𝐺:(𝑆𝐶𝑀)⟶𝑅)
37 ovex 7481 . . . 4 (𝑆𝐶𝑀) ∈ V
38 elmapg 8897 . . . 4 ((𝑅𝑉 ∧ (𝑆𝐶𝑀) ∈ V) → (𝐺 ∈ (𝑅m (𝑆𝐶𝑀)) ↔ 𝐺:(𝑆𝐶𝑀)⟶𝑅))
399, 37, 38sylancl 585 . . 3 (𝜑 → (𝐺 ∈ (𝑅m (𝑆𝐶𝑀)) ↔ 𝐺:(𝑆𝐶𝑀)⟶𝑅))
4036, 39mpbird 257 . 2 (𝜑𝐺 ∈ (𝑅m (𝑆𝐶𝑀)))
415, 35, 40rspcdva 3636 1 (𝜑 → ∃𝑐𝑅𝑥 ∈ 𝒫 𝑆((𝐹𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (𝐺 “ {𝑐})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087  wal 1535   = wceq 1537  wcel 2108  wne 2946  wral 3067  wrex 3076  {crab 3443  Vcvv 3488  wss 3976  c0 4352  𝒫 cpw 4622  {csn 4648   class class class wbr 5166  ccnv 5699  cima 5703  wf 6569  cfv 6573  (class class class)co 7448  cmpo 7450  m cmap 8884  cle 11325  0cn0 12553  chash 14379   Ramsey cram 17046
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-sup 9511  df-inf 9512  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-n0 12554  df-z 12640  df-uz 12904  df-ram 17048
This theorem is referenced by:  ramlb  17066  ramub1lem2  17074
  Copyright terms: Public domain W3C validator