Step | Hyp | Ref
| Expression |
1 | | mplsubglem.s |
. . 3
⊢ 𝑆 = (𝐼 mPwSer 𝑅) |
2 | | mplsubglem.i |
. . 3
⊢ (𝜑 → 𝐼 ∈ 𝑊) |
3 | | mpllsslem.r |
. . 3
⊢ (𝜑 → 𝑅 ∈ Ring) |
4 | 1, 2, 3 | psrsca 21158 |
. 2
⊢ (𝜑 → 𝑅 = (Scalar‘𝑆)) |
5 | | eqidd 2739 |
. 2
⊢ (𝜑 → (Base‘𝑅) = (Base‘𝑅)) |
6 | | mplsubglem.b |
. . 3
⊢ 𝐵 = (Base‘𝑆) |
7 | 6 | a1i 11 |
. 2
⊢ (𝜑 → 𝐵 = (Base‘𝑆)) |
8 | | eqidd 2739 |
. 2
⊢ (𝜑 → (+g‘𝑆) = (+g‘𝑆)) |
9 | | eqidd 2739 |
. 2
⊢ (𝜑 → (
·𝑠 ‘𝑆) = ( ·𝑠
‘𝑆)) |
10 | | eqidd 2739 |
. 2
⊢ (𝜑 → (LSubSp‘𝑆) = (LSubSp‘𝑆)) |
11 | | mplsubglem.z |
. . . 4
⊢ 0 =
(0g‘𝑅) |
12 | | mplsubglem.d |
. . . 4
⊢ 𝐷 = {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈
Fin} |
13 | | mplsubglem.0 |
. . . 4
⊢ (𝜑 → ∅ ∈ 𝐴) |
14 | | mplsubglem.a |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → (𝑥 ∪ 𝑦) ∈ 𝐴) |
15 | | mplsubglem.y |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ⊆ 𝑥)) → 𝑦 ∈ 𝐴) |
16 | | mplsubglem.u |
. . . 4
⊢ (𝜑 → 𝑈 = {𝑔 ∈ 𝐵 ∣ (𝑔 supp 0 ) ∈ 𝐴}) |
17 | | ringgrp 19788 |
. . . . 5
⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) |
18 | 3, 17 | syl 17 |
. . . 4
⊢ (𝜑 → 𝑅 ∈ Grp) |
19 | 1, 6, 11, 12, 2, 13, 14, 15, 16, 18 | mplsubglem 21205 |
. . 3
⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝑆)) |
20 | 6 | subgss 18756 |
. . 3
⊢ (𝑈 ∈ (SubGrp‘𝑆) → 𝑈 ⊆ 𝐵) |
21 | 19, 20 | syl 17 |
. 2
⊢ (𝜑 → 𝑈 ⊆ 𝐵) |
22 | | eqid 2738 |
. . . 4
⊢
(0g‘𝑆) = (0g‘𝑆) |
23 | 22 | subg0cl 18763 |
. . 3
⊢ (𝑈 ∈ (SubGrp‘𝑆) →
(0g‘𝑆)
∈ 𝑈) |
24 | | ne0i 4268 |
. . 3
⊢
((0g‘𝑆) ∈ 𝑈 → 𝑈 ≠ ∅) |
25 | 19, 23, 24 | 3syl 18 |
. 2
⊢ (𝜑 → 𝑈 ≠ ∅) |
26 | 19 | adantr 481 |
. . 3
⊢ ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣 ∈ 𝑈 ∧ 𝑤 ∈ 𝑈)) → 𝑈 ∈ (SubGrp‘𝑆)) |
27 | | eqid 2738 |
. . . . . 6
⊢ (
·𝑠 ‘𝑆) = ( ·𝑠
‘𝑆) |
28 | | eqid 2738 |
. . . . . 6
⊢
(Base‘𝑅) =
(Base‘𝑅) |
29 | 3 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣 ∈ 𝑈)) → 𝑅 ∈ Ring) |
30 | | simprl 768 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣 ∈ 𝑈)) → 𝑢 ∈ (Base‘𝑅)) |
31 | | simprr 770 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣 ∈ 𝑈)) → 𝑣 ∈ 𝑈) |
32 | 16 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣 ∈ 𝑈)) → 𝑈 = {𝑔 ∈ 𝐵 ∣ (𝑔 supp 0 ) ∈ 𝐴}) |
33 | 32 | eleq2d 2824 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣 ∈ 𝑈)) → (𝑣 ∈ 𝑈 ↔ 𝑣 ∈ {𝑔 ∈ 𝐵 ∣ (𝑔 supp 0 ) ∈ 𝐴})) |
34 | | oveq1 7282 |
. . . . . . . . . . 11
⊢ (𝑔 = 𝑣 → (𝑔 supp 0 ) = (𝑣 supp 0 )) |
35 | 34 | eleq1d 2823 |
. . . . . . . . . 10
⊢ (𝑔 = 𝑣 → ((𝑔 supp 0 ) ∈ 𝐴 ↔ (𝑣 supp 0 ) ∈ 𝐴)) |
36 | 35 | elrab 3624 |
. . . . . . . . 9
⊢ (𝑣 ∈ {𝑔 ∈ 𝐵 ∣ (𝑔 supp 0 ) ∈ 𝐴} ↔ (𝑣 ∈ 𝐵 ∧ (𝑣 supp 0 ) ∈ 𝐴)) |
37 | 33, 36 | bitrdi 287 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣 ∈ 𝑈)) → (𝑣 ∈ 𝑈 ↔ (𝑣 ∈ 𝐵 ∧ (𝑣 supp 0 ) ∈ 𝐴))) |
38 | 31, 37 | mpbid 231 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣 ∈ 𝑈)) → (𝑣 ∈ 𝐵 ∧ (𝑣 supp 0 ) ∈ 𝐴)) |
39 | 38 | simpld 495 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣 ∈ 𝑈)) → 𝑣 ∈ 𝐵) |
40 | 1, 27, 28, 6, 29, 30, 39 | psrvscacl 21162 |
. . . . 5
⊢ ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣 ∈ 𝑈)) → (𝑢( ·𝑠
‘𝑆)𝑣) ∈ 𝐵) |
41 | | ovex 7308 |
. . . . . . 7
⊢ ((𝑢(
·𝑠 ‘𝑆)𝑣) supp 0 ) ∈
V |
42 | 41 | a1i 11 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣 ∈ 𝑈)) → ((𝑢( ·𝑠
‘𝑆)𝑣) supp 0 ) ∈
V) |
43 | | sseq2 3947 |
. . . . . . . . 9
⊢ (𝑥 = (𝑣 supp 0 ) → (𝑦 ⊆ 𝑥 ↔ 𝑦 ⊆ (𝑣 supp 0 ))) |
44 | 43 | imbi1d 342 |
. . . . . . . 8
⊢ (𝑥 = (𝑣 supp 0 ) → ((𝑦 ⊆ 𝑥 → 𝑦 ∈ 𝐴) ↔ (𝑦 ⊆ (𝑣 supp 0 ) → 𝑦 ∈ 𝐴))) |
45 | 44 | albidv 1923 |
. . . . . . 7
⊢ (𝑥 = (𝑣 supp 0 ) → (∀𝑦(𝑦 ⊆ 𝑥 → 𝑦 ∈ 𝐴) ↔ ∀𝑦(𝑦 ⊆ (𝑣 supp 0 ) → 𝑦 ∈ 𝐴))) |
46 | 15 | expr 457 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝑦 ⊆ 𝑥 → 𝑦 ∈ 𝐴)) |
47 | 46 | alrimiv 1930 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∀𝑦(𝑦 ⊆ 𝑥 → 𝑦 ∈ 𝐴)) |
48 | 47 | ralrimiva 3103 |
. . . . . . . 8
⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦(𝑦 ⊆ 𝑥 → 𝑦 ∈ 𝐴)) |
49 | 48 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣 ∈ 𝑈)) → ∀𝑥 ∈ 𝐴 ∀𝑦(𝑦 ⊆ 𝑥 → 𝑦 ∈ 𝐴)) |
50 | 38 | simprd 496 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣 ∈ 𝑈)) → (𝑣 supp 0 ) ∈ 𝐴) |
51 | 45, 49, 50 | rspcdva 3562 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣 ∈ 𝑈)) → ∀𝑦(𝑦 ⊆ (𝑣 supp 0 ) → 𝑦 ∈ 𝐴)) |
52 | 1, 28, 12, 6, 40 | psrelbas 21148 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣 ∈ 𝑈)) → (𝑢( ·𝑠
‘𝑆)𝑣):𝐷⟶(Base‘𝑅)) |
53 | | eqid 2738 |
. . . . . . . . 9
⊢
(.r‘𝑅) = (.r‘𝑅) |
54 | 30 | adantr 481 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣 ∈ 𝑈)) ∧ 𝑘 ∈ (𝐷 ∖ (𝑣 supp 0 ))) → 𝑢 ∈ (Base‘𝑅)) |
55 | 39 | adantr 481 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣 ∈ 𝑈)) ∧ 𝑘 ∈ (𝐷 ∖ (𝑣 supp 0 ))) → 𝑣 ∈ 𝐵) |
56 | | eldifi 4061 |
. . . . . . . . . 10
⊢ (𝑘 ∈ (𝐷 ∖ (𝑣 supp 0 )) → 𝑘 ∈ 𝐷) |
57 | 56 | adantl 482 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣 ∈ 𝑈)) ∧ 𝑘 ∈ (𝐷 ∖ (𝑣 supp 0 ))) → 𝑘 ∈ 𝐷) |
58 | 1, 27, 28, 6, 53, 12, 54, 55, 57 | psrvscaval 21161 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣 ∈ 𝑈)) ∧ 𝑘 ∈ (𝐷 ∖ (𝑣 supp 0 ))) → ((𝑢(
·𝑠 ‘𝑆)𝑣)‘𝑘) = (𝑢(.r‘𝑅)(𝑣‘𝑘))) |
59 | 1, 28, 12, 6, 39 | psrelbas 21148 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣 ∈ 𝑈)) → 𝑣:𝐷⟶(Base‘𝑅)) |
60 | | ssidd 3944 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣 ∈ 𝑈)) → (𝑣 supp 0 ) ⊆ (𝑣 supp 0 )) |
61 | | ovex 7308 |
. . . . . . . . . . . 12
⊢
(ℕ0 ↑m 𝐼) ∈ V |
62 | 12, 61 | rabex2 5258 |
. . . . . . . . . . 11
⊢ 𝐷 ∈ V |
63 | 62 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣 ∈ 𝑈)) → 𝐷 ∈ V) |
64 | 11 | fvexi 6788 |
. . . . . . . . . . 11
⊢ 0 ∈
V |
65 | 64 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣 ∈ 𝑈)) → 0 ∈ V) |
66 | 59, 60, 63, 65 | suppssr 8012 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣 ∈ 𝑈)) ∧ 𝑘 ∈ (𝐷 ∖ (𝑣 supp 0 ))) → (𝑣‘𝑘) = 0 ) |
67 | 66 | oveq2d 7291 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣 ∈ 𝑈)) ∧ 𝑘 ∈ (𝐷 ∖ (𝑣 supp 0 ))) → (𝑢(.r‘𝑅)(𝑣‘𝑘)) = (𝑢(.r‘𝑅) 0 )) |
68 | 28, 53, 11 | ringrz 19827 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ Ring ∧ 𝑢 ∈ (Base‘𝑅)) → (𝑢(.r‘𝑅) 0 ) = 0 ) |
69 | 3, 30, 68 | syl2an2r 682 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣 ∈ 𝑈)) → (𝑢(.r‘𝑅) 0 ) = 0 ) |
70 | 69 | adantr 481 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣 ∈ 𝑈)) ∧ 𝑘 ∈ (𝐷 ∖ (𝑣 supp 0 ))) → (𝑢(.r‘𝑅) 0 ) = 0 ) |
71 | 58, 67, 70 | 3eqtrd 2782 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣 ∈ 𝑈)) ∧ 𝑘 ∈ (𝐷 ∖ (𝑣 supp 0 ))) → ((𝑢(
·𝑠 ‘𝑆)𝑣)‘𝑘) = 0 ) |
72 | 52, 71 | suppss 8010 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣 ∈ 𝑈)) → ((𝑢( ·𝑠
‘𝑆)𝑣) supp 0 ) ⊆ (𝑣 supp 0 )) |
73 | | sseq1 3946 |
. . . . . . . 8
⊢ (𝑦 = ((𝑢( ·𝑠
‘𝑆)𝑣) supp 0 ) → (𝑦 ⊆ (𝑣 supp 0 ) ↔ ((𝑢(
·𝑠 ‘𝑆)𝑣) supp 0 ) ⊆ (𝑣 supp 0 ))) |
74 | | eleq1 2826 |
. . . . . . . 8
⊢ (𝑦 = ((𝑢( ·𝑠
‘𝑆)𝑣) supp 0 ) → (𝑦 ∈ 𝐴 ↔ ((𝑢( ·𝑠
‘𝑆)𝑣) supp 0 ) ∈ 𝐴)) |
75 | 73, 74 | imbi12d 345 |
. . . . . . 7
⊢ (𝑦 = ((𝑢( ·𝑠
‘𝑆)𝑣) supp 0 ) → ((𝑦 ⊆ (𝑣 supp 0 ) → 𝑦 ∈ 𝐴) ↔ (((𝑢( ·𝑠
‘𝑆)𝑣) supp 0 ) ⊆ (𝑣 supp 0 ) → ((𝑢(
·𝑠 ‘𝑆)𝑣) supp 0 ) ∈ 𝐴))) |
76 | 75 | spcgv 3535 |
. . . . . 6
⊢ (((𝑢(
·𝑠 ‘𝑆)𝑣) supp 0 ) ∈ V →
(∀𝑦(𝑦 ⊆ (𝑣 supp 0 ) → 𝑦 ∈ 𝐴) → (((𝑢( ·𝑠
‘𝑆)𝑣) supp 0 ) ⊆ (𝑣 supp 0 ) → ((𝑢(
·𝑠 ‘𝑆)𝑣) supp 0 ) ∈ 𝐴))) |
77 | 42, 51, 72, 76 | syl3c 66 |
. . . . 5
⊢ ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣 ∈ 𝑈)) → ((𝑢( ·𝑠
‘𝑆)𝑣) supp 0 ) ∈ 𝐴) |
78 | 32 | eleq2d 2824 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣 ∈ 𝑈)) → ((𝑢( ·𝑠
‘𝑆)𝑣) ∈ 𝑈 ↔ (𝑢( ·𝑠
‘𝑆)𝑣) ∈ {𝑔 ∈ 𝐵 ∣ (𝑔 supp 0 ) ∈ 𝐴})) |
79 | | oveq1 7282 |
. . . . . . . 8
⊢ (𝑔 = (𝑢( ·𝑠
‘𝑆)𝑣) → (𝑔 supp 0 ) = ((𝑢( ·𝑠
‘𝑆)𝑣) supp 0 )) |
80 | 79 | eleq1d 2823 |
. . . . . . 7
⊢ (𝑔 = (𝑢( ·𝑠
‘𝑆)𝑣) → ((𝑔 supp 0 ) ∈ 𝐴 ↔ ((𝑢( ·𝑠
‘𝑆)𝑣) supp 0 ) ∈ 𝐴)) |
81 | 80 | elrab 3624 |
. . . . . 6
⊢ ((𝑢(
·𝑠 ‘𝑆)𝑣) ∈ {𝑔 ∈ 𝐵 ∣ (𝑔 supp 0 ) ∈ 𝐴} ↔ ((𝑢( ·𝑠
‘𝑆)𝑣) ∈ 𝐵 ∧ ((𝑢( ·𝑠
‘𝑆)𝑣) supp 0 ) ∈ 𝐴)) |
82 | 78, 81 | bitrdi 287 |
. . . . 5
⊢ ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣 ∈ 𝑈)) → ((𝑢( ·𝑠
‘𝑆)𝑣) ∈ 𝑈 ↔ ((𝑢( ·𝑠
‘𝑆)𝑣) ∈ 𝐵 ∧ ((𝑢( ·𝑠
‘𝑆)𝑣) supp 0 ) ∈ 𝐴))) |
83 | 40, 77, 82 | mpbir2and 710 |
. . . 4
⊢ ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣 ∈ 𝑈)) → (𝑢( ·𝑠
‘𝑆)𝑣) ∈ 𝑈) |
84 | 83 | 3adantr3 1170 |
. . 3
⊢ ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣 ∈ 𝑈 ∧ 𝑤 ∈ 𝑈)) → (𝑢( ·𝑠
‘𝑆)𝑣) ∈ 𝑈) |
85 | | simpr3 1195 |
. . 3
⊢ ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣 ∈ 𝑈 ∧ 𝑤 ∈ 𝑈)) → 𝑤 ∈ 𝑈) |
86 | | eqid 2738 |
. . . 4
⊢
(+g‘𝑆) = (+g‘𝑆) |
87 | 86 | subgcl 18765 |
. . 3
⊢ ((𝑈 ∈ (SubGrp‘𝑆) ∧ (𝑢( ·𝑠
‘𝑆)𝑣) ∈ 𝑈 ∧ 𝑤 ∈ 𝑈) → ((𝑢( ·𝑠
‘𝑆)𝑣)(+g‘𝑆)𝑤) ∈ 𝑈) |
88 | 26, 84, 85, 87 | syl3anc 1370 |
. 2
⊢ ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣 ∈ 𝑈 ∧ 𝑤 ∈ 𝑈)) → ((𝑢( ·𝑠
‘𝑆)𝑣)(+g‘𝑆)𝑤) ∈ 𝑈) |
89 | 4, 5, 7, 8, 9, 10,
21, 25, 88 | islssd 20197 |
1
⊢ (𝜑 → 𝑈 ∈ (LSubSp‘𝑆)) |