MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mpllsslem Structured version   Visualization version   GIF version

Theorem mpllsslem 20680
Description: If 𝐴 is an ideal of subsets (a nonempty collection closed under subset and binary union) of the set 𝐷 of finite bags (the primary applications being 𝐴 = Fin and 𝐴 = 𝒫 𝐵 for some 𝐵), then the set of all power series whose coefficient functions are supported on an element of 𝐴 is a linear subspace of the set of all power series. (Contributed by Mario Carneiro, 12-Jan-2015.) (Revised by AV, 16-Jul-2019.)
Hypotheses
Ref Expression
mplsubglem.s 𝑆 = (𝐼 mPwSer 𝑅)
mplsubglem.b 𝐵 = (Base‘𝑆)
mplsubglem.z 0 = (0g𝑅)
mplsubglem.d 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
mplsubglem.i (𝜑𝐼𝑊)
mplsubglem.0 (𝜑 → ∅ ∈ 𝐴)
mplsubglem.a ((𝜑 ∧ (𝑥𝐴𝑦𝐴)) → (𝑥𝑦) ∈ 𝐴)
mplsubglem.y ((𝜑 ∧ (𝑥𝐴𝑦𝑥)) → 𝑦𝐴)
mplsubglem.u (𝜑𝑈 = {𝑔𝐵 ∣ (𝑔 supp 0 ) ∈ 𝐴})
mpllsslem.r (𝜑𝑅 ∈ Ring)
Assertion
Ref Expression
mpllsslem (𝜑𝑈 ∈ (LSubSp‘𝑆))
Distinct variable groups:   𝑓,𝑔,𝑥,𝑦, 0   𝐴,𝑓,𝑔,𝑥,𝑦   𝐵,𝑓,𝑔   𝐷,𝑔   𝑓,𝐼   𝜑,𝑥,𝑦   𝑆,𝑓,𝑔,𝑦
Allowed substitution hints:   𝜑(𝑓,𝑔)   𝐵(𝑥,𝑦)   𝐷(𝑥,𝑦,𝑓)   𝑅(𝑥,𝑦,𝑓,𝑔)   𝑆(𝑥)   𝑈(𝑥,𝑦,𝑓,𝑔)   𝐼(𝑥,𝑦,𝑔)   𝑊(𝑥,𝑦,𝑓,𝑔)

Proof of Theorem mpllsslem
Dummy variables 𝑘 𝑢 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mplsubglem.s . . 3 𝑆 = (𝐼 mPwSer 𝑅)
2 mplsubglem.i . . 3 (𝜑𝐼𝑊)
3 mpllsslem.r . . 3 (𝜑𝑅 ∈ Ring)
41, 2, 3psrsca 20634 . 2 (𝜑𝑅 = (Scalar‘𝑆))
5 eqidd 2825 . 2 (𝜑 → (Base‘𝑅) = (Base‘𝑅))
6 mplsubglem.b . . 3 𝐵 = (Base‘𝑆)
76a1i 11 . 2 (𝜑𝐵 = (Base‘𝑆))
8 eqidd 2825 . 2 (𝜑 → (+g𝑆) = (+g𝑆))
9 eqidd 2825 . 2 (𝜑 → ( ·𝑠𝑆) = ( ·𝑠𝑆))
10 eqidd 2825 . 2 (𝜑 → (LSubSp‘𝑆) = (LSubSp‘𝑆))
11 mplsubglem.z . . . 4 0 = (0g𝑅)
12 mplsubglem.d . . . 4 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
13 mplsubglem.0 . . . 4 (𝜑 → ∅ ∈ 𝐴)
14 mplsubglem.a . . . 4 ((𝜑 ∧ (𝑥𝐴𝑦𝐴)) → (𝑥𝑦) ∈ 𝐴)
15 mplsubglem.y . . . 4 ((𝜑 ∧ (𝑥𝐴𝑦𝑥)) → 𝑦𝐴)
16 mplsubglem.u . . . 4 (𝜑𝑈 = {𝑔𝐵 ∣ (𝑔 supp 0 ) ∈ 𝐴})
17 ringgrp 19302 . . . . 5 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
183, 17syl 17 . . . 4 (𝜑𝑅 ∈ Grp)
191, 6, 11, 12, 2, 13, 14, 15, 16, 18mplsubglem 20679 . . 3 (𝜑𝑈 ∈ (SubGrp‘𝑆))
206subgss 18280 . . 3 (𝑈 ∈ (SubGrp‘𝑆) → 𝑈𝐵)
2119, 20syl 17 . 2 (𝜑𝑈𝐵)
22 eqid 2824 . . . 4 (0g𝑆) = (0g𝑆)
2322subg0cl 18287 . . 3 (𝑈 ∈ (SubGrp‘𝑆) → (0g𝑆) ∈ 𝑈)
24 ne0i 4283 . . 3 ((0g𝑆) ∈ 𝑈𝑈 ≠ ∅)
2519, 23, 243syl 18 . 2 (𝜑𝑈 ≠ ∅)
2619adantr 484 . . 3 ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣𝑈𝑤𝑈)) → 𝑈 ∈ (SubGrp‘𝑆))
27 eqid 2824 . . . . . 6 ( ·𝑠𝑆) = ( ·𝑠𝑆)
28 eqid 2824 . . . . . 6 (Base‘𝑅) = (Base‘𝑅)
293adantr 484 . . . . . 6 ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣𝑈)) → 𝑅 ∈ Ring)
30 simprl 770 . . . . . 6 ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣𝑈)) → 𝑢 ∈ (Base‘𝑅))
31 simprr 772 . . . . . . . 8 ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣𝑈)) → 𝑣𝑈)
3216adantr 484 . . . . . . . . . 10 ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣𝑈)) → 𝑈 = {𝑔𝐵 ∣ (𝑔 supp 0 ) ∈ 𝐴})
3332eleq2d 2901 . . . . . . . . 9 ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣𝑈)) → (𝑣𝑈𝑣 ∈ {𝑔𝐵 ∣ (𝑔 supp 0 ) ∈ 𝐴}))
34 oveq1 7156 . . . . . . . . . . 11 (𝑔 = 𝑣 → (𝑔 supp 0 ) = (𝑣 supp 0 ))
3534eleq1d 2900 . . . . . . . . . 10 (𝑔 = 𝑣 → ((𝑔 supp 0 ) ∈ 𝐴 ↔ (𝑣 supp 0 ) ∈ 𝐴))
3635elrab 3666 . . . . . . . . 9 (𝑣 ∈ {𝑔𝐵 ∣ (𝑔 supp 0 ) ∈ 𝐴} ↔ (𝑣𝐵 ∧ (𝑣 supp 0 ) ∈ 𝐴))
3733, 36syl6bb 290 . . . . . . . 8 ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣𝑈)) → (𝑣𝑈 ↔ (𝑣𝐵 ∧ (𝑣 supp 0 ) ∈ 𝐴)))
3831, 37mpbid 235 . . . . . . 7 ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣𝑈)) → (𝑣𝐵 ∧ (𝑣 supp 0 ) ∈ 𝐴))
3938simpld 498 . . . . . 6 ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣𝑈)) → 𝑣𝐵)
401, 27, 28, 6, 29, 30, 39psrvscacl 20638 . . . . 5 ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣𝑈)) → (𝑢( ·𝑠𝑆)𝑣) ∈ 𝐵)
41 ovex 7182 . . . . . . 7 ((𝑢( ·𝑠𝑆)𝑣) supp 0 ) ∈ V
4241a1i 11 . . . . . 6 ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣𝑈)) → ((𝑢( ·𝑠𝑆)𝑣) supp 0 ) ∈ V)
43 sseq2 3979 . . . . . . . . 9 (𝑥 = (𝑣 supp 0 ) → (𝑦𝑥𝑦 ⊆ (𝑣 supp 0 )))
4443imbi1d 345 . . . . . . . 8 (𝑥 = (𝑣 supp 0 ) → ((𝑦𝑥𝑦𝐴) ↔ (𝑦 ⊆ (𝑣 supp 0 ) → 𝑦𝐴)))
4544albidv 1922 . . . . . . 7 (𝑥 = (𝑣 supp 0 ) → (∀𝑦(𝑦𝑥𝑦𝐴) ↔ ∀𝑦(𝑦 ⊆ (𝑣 supp 0 ) → 𝑦𝐴)))
4615expr 460 . . . . . . . . . 10 ((𝜑𝑥𝐴) → (𝑦𝑥𝑦𝐴))
4746alrimiv 1929 . . . . . . . . 9 ((𝜑𝑥𝐴) → ∀𝑦(𝑦𝑥𝑦𝐴))
4847ralrimiva 3177 . . . . . . . 8 (𝜑 → ∀𝑥𝐴𝑦(𝑦𝑥𝑦𝐴))
4948adantr 484 . . . . . . 7 ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣𝑈)) → ∀𝑥𝐴𝑦(𝑦𝑥𝑦𝐴))
5038simprd 499 . . . . . . 7 ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣𝑈)) → (𝑣 supp 0 ) ∈ 𝐴)
5145, 49, 50rspcdva 3611 . . . . . 6 ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣𝑈)) → ∀𝑦(𝑦 ⊆ (𝑣 supp 0 ) → 𝑦𝐴))
521, 28, 12, 6, 40psrelbas 20624 . . . . . . 7 ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣𝑈)) → (𝑢( ·𝑠𝑆)𝑣):𝐷⟶(Base‘𝑅))
53 eqid 2824 . . . . . . . . 9 (.r𝑅) = (.r𝑅)
5430adantr 484 . . . . . . . . 9 (((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣𝑈)) ∧ 𝑘 ∈ (𝐷 ∖ (𝑣 supp 0 ))) → 𝑢 ∈ (Base‘𝑅))
5539adantr 484 . . . . . . . . 9 (((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣𝑈)) ∧ 𝑘 ∈ (𝐷 ∖ (𝑣 supp 0 ))) → 𝑣𝐵)
56 eldifi 4089 . . . . . . . . . 10 (𝑘 ∈ (𝐷 ∖ (𝑣 supp 0 )) → 𝑘𝐷)
5756adantl 485 . . . . . . . . 9 (((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣𝑈)) ∧ 𝑘 ∈ (𝐷 ∖ (𝑣 supp 0 ))) → 𝑘𝐷)
581, 27, 28, 6, 53, 12, 54, 55, 57psrvscaval 20637 . . . . . . . 8 (((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣𝑈)) ∧ 𝑘 ∈ (𝐷 ∖ (𝑣 supp 0 ))) → ((𝑢( ·𝑠𝑆)𝑣)‘𝑘) = (𝑢(.r𝑅)(𝑣𝑘)))
591, 28, 12, 6, 39psrelbas 20624 . . . . . . . . . 10 ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣𝑈)) → 𝑣:𝐷⟶(Base‘𝑅))
60 ssidd 3976 . . . . . . . . . 10 ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣𝑈)) → (𝑣 supp 0 ) ⊆ (𝑣 supp 0 ))
61 ovex 7182 . . . . . . . . . . . 12 (ℕ0m 𝐼) ∈ V
6212, 61rabex2 5223 . . . . . . . . . . 11 𝐷 ∈ V
6362a1i 11 . . . . . . . . . 10 ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣𝑈)) → 𝐷 ∈ V)
6411fvexi 6675 . . . . . . . . . . 11 0 ∈ V
6564a1i 11 . . . . . . . . . 10 ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣𝑈)) → 0 ∈ V)
6659, 60, 63, 65suppssr 7857 . . . . . . . . 9 (((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣𝑈)) ∧ 𝑘 ∈ (𝐷 ∖ (𝑣 supp 0 ))) → (𝑣𝑘) = 0 )
6766oveq2d 7165 . . . . . . . 8 (((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣𝑈)) ∧ 𝑘 ∈ (𝐷 ∖ (𝑣 supp 0 ))) → (𝑢(.r𝑅)(𝑣𝑘)) = (𝑢(.r𝑅) 0 ))
6828, 53, 11ringrz 19341 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝑢 ∈ (Base‘𝑅)) → (𝑢(.r𝑅) 0 ) = 0 )
693, 30, 68syl2an2r 684 . . . . . . . . 9 ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣𝑈)) → (𝑢(.r𝑅) 0 ) = 0 )
7069adantr 484 . . . . . . . 8 (((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣𝑈)) ∧ 𝑘 ∈ (𝐷 ∖ (𝑣 supp 0 ))) → (𝑢(.r𝑅) 0 ) = 0 )
7158, 67, 703eqtrd 2863 . . . . . . 7 (((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣𝑈)) ∧ 𝑘 ∈ (𝐷 ∖ (𝑣 supp 0 ))) → ((𝑢( ·𝑠𝑆)𝑣)‘𝑘) = 0 )
7252, 71suppss 7856 . . . . . 6 ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣𝑈)) → ((𝑢( ·𝑠𝑆)𝑣) supp 0 ) ⊆ (𝑣 supp 0 ))
73 sseq1 3978 . . . . . . . 8 (𝑦 = ((𝑢( ·𝑠𝑆)𝑣) supp 0 ) → (𝑦 ⊆ (𝑣 supp 0 ) ↔ ((𝑢( ·𝑠𝑆)𝑣) supp 0 ) ⊆ (𝑣 supp 0 )))
74 eleq1 2903 . . . . . . . 8 (𝑦 = ((𝑢( ·𝑠𝑆)𝑣) supp 0 ) → (𝑦𝐴 ↔ ((𝑢( ·𝑠𝑆)𝑣) supp 0 ) ∈ 𝐴))
7573, 74imbi12d 348 . . . . . . 7 (𝑦 = ((𝑢( ·𝑠𝑆)𝑣) supp 0 ) → ((𝑦 ⊆ (𝑣 supp 0 ) → 𝑦𝐴) ↔ (((𝑢( ·𝑠𝑆)𝑣) supp 0 ) ⊆ (𝑣 supp 0 ) → ((𝑢( ·𝑠𝑆)𝑣) supp 0 ) ∈ 𝐴)))
7675spcgv 3581 . . . . . 6 (((𝑢( ·𝑠𝑆)𝑣) supp 0 ) ∈ V → (∀𝑦(𝑦 ⊆ (𝑣 supp 0 ) → 𝑦𝐴) → (((𝑢( ·𝑠𝑆)𝑣) supp 0 ) ⊆ (𝑣 supp 0 ) → ((𝑢( ·𝑠𝑆)𝑣) supp 0 ) ∈ 𝐴)))
7742, 51, 72, 76syl3c 66 . . . . 5 ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣𝑈)) → ((𝑢( ·𝑠𝑆)𝑣) supp 0 ) ∈ 𝐴)
7832eleq2d 2901 . . . . . 6 ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣𝑈)) → ((𝑢( ·𝑠𝑆)𝑣) ∈ 𝑈 ↔ (𝑢( ·𝑠𝑆)𝑣) ∈ {𝑔𝐵 ∣ (𝑔 supp 0 ) ∈ 𝐴}))
79 oveq1 7156 . . . . . . . 8 (𝑔 = (𝑢( ·𝑠𝑆)𝑣) → (𝑔 supp 0 ) = ((𝑢( ·𝑠𝑆)𝑣) supp 0 ))
8079eleq1d 2900 . . . . . . 7 (𝑔 = (𝑢( ·𝑠𝑆)𝑣) → ((𝑔 supp 0 ) ∈ 𝐴 ↔ ((𝑢( ·𝑠𝑆)𝑣) supp 0 ) ∈ 𝐴))
8180elrab 3666 . . . . . 6 ((𝑢( ·𝑠𝑆)𝑣) ∈ {𝑔𝐵 ∣ (𝑔 supp 0 ) ∈ 𝐴} ↔ ((𝑢( ·𝑠𝑆)𝑣) ∈ 𝐵 ∧ ((𝑢( ·𝑠𝑆)𝑣) supp 0 ) ∈ 𝐴))
8278, 81syl6bb 290 . . . . 5 ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣𝑈)) → ((𝑢( ·𝑠𝑆)𝑣) ∈ 𝑈 ↔ ((𝑢( ·𝑠𝑆)𝑣) ∈ 𝐵 ∧ ((𝑢( ·𝑠𝑆)𝑣) supp 0 ) ∈ 𝐴)))
8340, 77, 82mpbir2and 712 . . . 4 ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣𝑈)) → (𝑢( ·𝑠𝑆)𝑣) ∈ 𝑈)
84833adantr3 1168 . . 3 ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣𝑈𝑤𝑈)) → (𝑢( ·𝑠𝑆)𝑣) ∈ 𝑈)
85 simpr3 1193 . . 3 ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣𝑈𝑤𝑈)) → 𝑤𝑈)
86 eqid 2824 . . . 4 (+g𝑆) = (+g𝑆)
8786subgcl 18289 . . 3 ((𝑈 ∈ (SubGrp‘𝑆) ∧ (𝑢( ·𝑠𝑆)𝑣) ∈ 𝑈𝑤𝑈) → ((𝑢( ·𝑠𝑆)𝑣)(+g𝑆)𝑤) ∈ 𝑈)
8826, 84, 85, 87syl3anc 1368 . 2 ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣𝑈𝑤𝑈)) → ((𝑢( ·𝑠𝑆)𝑣)(+g𝑆)𝑤) ∈ 𝑈)
894, 5, 7, 8, 9, 10, 21, 25, 88islssd 19707 1 (𝜑𝑈 ∈ (LSubSp‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084  wal 1536   = wceq 1538  wcel 2115  wne 3014  wral 3133  {crab 3137  Vcvv 3480  cdif 3916  cun 3917  wss 3919  c0 4276  ccnv 5541  cima 5545  cfv 6343  (class class class)co 7149   supp csupp 7826  m cmap 8402  Fincfn 8505  cn 11634  0cn0 11894  Basecbs 16483  +gcplusg 16565  .rcmulr 16566   ·𝑠 cvsca 16569  0gc0g 16713  Grpcgrp 18103  SubGrpcsubg 18273  Ringcrg 19297  LSubSpclss 19703   mPwSer cmps 20596
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5176  ax-sep 5189  ax-nul 5196  ax-pow 5253  ax-pr 5317  ax-un 7455  ax-cnex 10591  ax-resscn 10592  ax-1cn 10593  ax-icn 10594  ax-addcl 10595  ax-addrcl 10596  ax-mulcl 10597  ax-mulrcl 10598  ax-mulcom 10599  ax-addass 10600  ax-mulass 10601  ax-distr 10602  ax-i2m1 10603  ax-1ne0 10604  ax-1rid 10605  ax-rnegex 10606  ax-rrecex 10607  ax-cnre 10608  ax-pre-lttri 10609  ax-pre-lttrn 10610  ax-pre-ltadd 10611  ax-pre-mulgt0 10612
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rmo 3141  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-tp 4555  df-op 4557  df-uni 4825  df-int 4863  df-iun 4907  df-br 5053  df-opab 5115  df-mpt 5133  df-tr 5159  df-id 5447  df-eprel 5452  df-po 5461  df-so 5462  df-fr 5501  df-we 5503  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-rn 5553  df-res 5554  df-ima 5555  df-pred 6135  df-ord 6181  df-on 6182  df-lim 6183  df-suc 6184  df-iota 6302  df-fun 6345  df-fn 6346  df-f 6347  df-f1 6348  df-fo 6349  df-f1o 6350  df-fv 6351  df-riota 7107  df-ov 7152  df-oprab 7153  df-mpo 7154  df-of 7403  df-om 7575  df-1st 7684  df-2nd 7685  df-supp 7827  df-wrecs 7943  df-recs 8004  df-rdg 8042  df-1o 8098  df-oadd 8102  df-er 8285  df-map 8404  df-en 8506  df-dom 8507  df-sdom 8508  df-fin 8509  df-fsupp 8831  df-pnf 10675  df-mnf 10676  df-xr 10677  df-ltxr 10678  df-le 10679  df-sub 10870  df-neg 10871  df-nn 11635  df-2 11697  df-3 11698  df-4 11699  df-5 11700  df-6 11701  df-7 11702  df-8 11703  df-9 11704  df-n0 11895  df-z 11979  df-uz 12241  df-fz 12895  df-struct 16485  df-ndx 16486  df-slot 16487  df-base 16489  df-sets 16490  df-ress 16491  df-plusg 16578  df-mulr 16579  df-sca 16581  df-vsca 16582  df-tset 16584  df-0g 16715  df-mgm 17852  df-sgrp 17901  df-mnd 17912  df-grp 18106  df-minusg 18107  df-subg 18276  df-mgp 19240  df-ring 19299  df-lss 19704  df-psr 20601
This theorem is referenced by:  mpllss  20683
  Copyright terms: Public domain W3C validator