MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mpllsslem Structured version   Visualization version   GIF version

Theorem mpllsslem 21206
Description: If 𝐴 is an ideal of subsets (a nonempty collection closed under subset and binary union) of the set 𝐷 of finite bags (the primary applications being 𝐴 = Fin and 𝐴 = 𝒫 𝐵 for some 𝐵), then the set of all power series whose coefficient functions are supported on an element of 𝐴 is a linear subspace of the set of all power series. (Contributed by Mario Carneiro, 12-Jan-2015.) (Revised by AV, 16-Jul-2019.)
Hypotheses
Ref Expression
mplsubglem.s 𝑆 = (𝐼 mPwSer 𝑅)
mplsubglem.b 𝐵 = (Base‘𝑆)
mplsubglem.z 0 = (0g𝑅)
mplsubglem.d 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
mplsubglem.i (𝜑𝐼𝑊)
mplsubglem.0 (𝜑 → ∅ ∈ 𝐴)
mplsubglem.a ((𝜑 ∧ (𝑥𝐴𝑦𝐴)) → (𝑥𝑦) ∈ 𝐴)
mplsubglem.y ((𝜑 ∧ (𝑥𝐴𝑦𝑥)) → 𝑦𝐴)
mplsubglem.u (𝜑𝑈 = {𝑔𝐵 ∣ (𝑔 supp 0 ) ∈ 𝐴})
mpllsslem.r (𝜑𝑅 ∈ Ring)
Assertion
Ref Expression
mpllsslem (𝜑𝑈 ∈ (LSubSp‘𝑆))
Distinct variable groups:   𝑓,𝑔,𝑥,𝑦, 0   𝐴,𝑓,𝑔,𝑥,𝑦   𝐵,𝑓,𝑔   𝐷,𝑔   𝑓,𝐼   𝜑,𝑥,𝑦   𝑆,𝑓,𝑔,𝑦
Allowed substitution hints:   𝜑(𝑓,𝑔)   𝐵(𝑥,𝑦)   𝐷(𝑥,𝑦,𝑓)   𝑅(𝑥,𝑦,𝑓,𝑔)   𝑆(𝑥)   𝑈(𝑥,𝑦,𝑓,𝑔)   𝐼(𝑥,𝑦,𝑔)   𝑊(𝑥,𝑦,𝑓,𝑔)

Proof of Theorem mpllsslem
Dummy variables 𝑘 𝑢 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mplsubglem.s . . 3 𝑆 = (𝐼 mPwSer 𝑅)
2 mplsubglem.i . . 3 (𝜑𝐼𝑊)
3 mpllsslem.r . . 3 (𝜑𝑅 ∈ Ring)
41, 2, 3psrsca 21158 . 2 (𝜑𝑅 = (Scalar‘𝑆))
5 eqidd 2739 . 2 (𝜑 → (Base‘𝑅) = (Base‘𝑅))
6 mplsubglem.b . . 3 𝐵 = (Base‘𝑆)
76a1i 11 . 2 (𝜑𝐵 = (Base‘𝑆))
8 eqidd 2739 . 2 (𝜑 → (+g𝑆) = (+g𝑆))
9 eqidd 2739 . 2 (𝜑 → ( ·𝑠𝑆) = ( ·𝑠𝑆))
10 eqidd 2739 . 2 (𝜑 → (LSubSp‘𝑆) = (LSubSp‘𝑆))
11 mplsubglem.z . . . 4 0 = (0g𝑅)
12 mplsubglem.d . . . 4 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
13 mplsubglem.0 . . . 4 (𝜑 → ∅ ∈ 𝐴)
14 mplsubglem.a . . . 4 ((𝜑 ∧ (𝑥𝐴𝑦𝐴)) → (𝑥𝑦) ∈ 𝐴)
15 mplsubglem.y . . . 4 ((𝜑 ∧ (𝑥𝐴𝑦𝑥)) → 𝑦𝐴)
16 mplsubglem.u . . . 4 (𝜑𝑈 = {𝑔𝐵 ∣ (𝑔 supp 0 ) ∈ 𝐴})
17 ringgrp 19788 . . . . 5 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
183, 17syl 17 . . . 4 (𝜑𝑅 ∈ Grp)
191, 6, 11, 12, 2, 13, 14, 15, 16, 18mplsubglem 21205 . . 3 (𝜑𝑈 ∈ (SubGrp‘𝑆))
206subgss 18756 . . 3 (𝑈 ∈ (SubGrp‘𝑆) → 𝑈𝐵)
2119, 20syl 17 . 2 (𝜑𝑈𝐵)
22 eqid 2738 . . . 4 (0g𝑆) = (0g𝑆)
2322subg0cl 18763 . . 3 (𝑈 ∈ (SubGrp‘𝑆) → (0g𝑆) ∈ 𝑈)
24 ne0i 4268 . . 3 ((0g𝑆) ∈ 𝑈𝑈 ≠ ∅)
2519, 23, 243syl 18 . 2 (𝜑𝑈 ≠ ∅)
2619adantr 481 . . 3 ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣𝑈𝑤𝑈)) → 𝑈 ∈ (SubGrp‘𝑆))
27 eqid 2738 . . . . . 6 ( ·𝑠𝑆) = ( ·𝑠𝑆)
28 eqid 2738 . . . . . 6 (Base‘𝑅) = (Base‘𝑅)
293adantr 481 . . . . . 6 ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣𝑈)) → 𝑅 ∈ Ring)
30 simprl 768 . . . . . 6 ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣𝑈)) → 𝑢 ∈ (Base‘𝑅))
31 simprr 770 . . . . . . . 8 ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣𝑈)) → 𝑣𝑈)
3216adantr 481 . . . . . . . . . 10 ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣𝑈)) → 𝑈 = {𝑔𝐵 ∣ (𝑔 supp 0 ) ∈ 𝐴})
3332eleq2d 2824 . . . . . . . . 9 ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣𝑈)) → (𝑣𝑈𝑣 ∈ {𝑔𝐵 ∣ (𝑔 supp 0 ) ∈ 𝐴}))
34 oveq1 7282 . . . . . . . . . . 11 (𝑔 = 𝑣 → (𝑔 supp 0 ) = (𝑣 supp 0 ))
3534eleq1d 2823 . . . . . . . . . 10 (𝑔 = 𝑣 → ((𝑔 supp 0 ) ∈ 𝐴 ↔ (𝑣 supp 0 ) ∈ 𝐴))
3635elrab 3624 . . . . . . . . 9 (𝑣 ∈ {𝑔𝐵 ∣ (𝑔 supp 0 ) ∈ 𝐴} ↔ (𝑣𝐵 ∧ (𝑣 supp 0 ) ∈ 𝐴))
3733, 36bitrdi 287 . . . . . . . 8 ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣𝑈)) → (𝑣𝑈 ↔ (𝑣𝐵 ∧ (𝑣 supp 0 ) ∈ 𝐴)))
3831, 37mpbid 231 . . . . . . 7 ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣𝑈)) → (𝑣𝐵 ∧ (𝑣 supp 0 ) ∈ 𝐴))
3938simpld 495 . . . . . 6 ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣𝑈)) → 𝑣𝐵)
401, 27, 28, 6, 29, 30, 39psrvscacl 21162 . . . . 5 ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣𝑈)) → (𝑢( ·𝑠𝑆)𝑣) ∈ 𝐵)
41 ovex 7308 . . . . . . 7 ((𝑢( ·𝑠𝑆)𝑣) supp 0 ) ∈ V
4241a1i 11 . . . . . 6 ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣𝑈)) → ((𝑢( ·𝑠𝑆)𝑣) supp 0 ) ∈ V)
43 sseq2 3947 . . . . . . . . 9 (𝑥 = (𝑣 supp 0 ) → (𝑦𝑥𝑦 ⊆ (𝑣 supp 0 )))
4443imbi1d 342 . . . . . . . 8 (𝑥 = (𝑣 supp 0 ) → ((𝑦𝑥𝑦𝐴) ↔ (𝑦 ⊆ (𝑣 supp 0 ) → 𝑦𝐴)))
4544albidv 1923 . . . . . . 7 (𝑥 = (𝑣 supp 0 ) → (∀𝑦(𝑦𝑥𝑦𝐴) ↔ ∀𝑦(𝑦 ⊆ (𝑣 supp 0 ) → 𝑦𝐴)))
4615expr 457 . . . . . . . . . 10 ((𝜑𝑥𝐴) → (𝑦𝑥𝑦𝐴))
4746alrimiv 1930 . . . . . . . . 9 ((𝜑𝑥𝐴) → ∀𝑦(𝑦𝑥𝑦𝐴))
4847ralrimiva 3103 . . . . . . . 8 (𝜑 → ∀𝑥𝐴𝑦(𝑦𝑥𝑦𝐴))
4948adantr 481 . . . . . . 7 ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣𝑈)) → ∀𝑥𝐴𝑦(𝑦𝑥𝑦𝐴))
5038simprd 496 . . . . . . 7 ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣𝑈)) → (𝑣 supp 0 ) ∈ 𝐴)
5145, 49, 50rspcdva 3562 . . . . . 6 ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣𝑈)) → ∀𝑦(𝑦 ⊆ (𝑣 supp 0 ) → 𝑦𝐴))
521, 28, 12, 6, 40psrelbas 21148 . . . . . . 7 ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣𝑈)) → (𝑢( ·𝑠𝑆)𝑣):𝐷⟶(Base‘𝑅))
53 eqid 2738 . . . . . . . . 9 (.r𝑅) = (.r𝑅)
5430adantr 481 . . . . . . . . 9 (((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣𝑈)) ∧ 𝑘 ∈ (𝐷 ∖ (𝑣 supp 0 ))) → 𝑢 ∈ (Base‘𝑅))
5539adantr 481 . . . . . . . . 9 (((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣𝑈)) ∧ 𝑘 ∈ (𝐷 ∖ (𝑣 supp 0 ))) → 𝑣𝐵)
56 eldifi 4061 . . . . . . . . . 10 (𝑘 ∈ (𝐷 ∖ (𝑣 supp 0 )) → 𝑘𝐷)
5756adantl 482 . . . . . . . . 9 (((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣𝑈)) ∧ 𝑘 ∈ (𝐷 ∖ (𝑣 supp 0 ))) → 𝑘𝐷)
581, 27, 28, 6, 53, 12, 54, 55, 57psrvscaval 21161 . . . . . . . 8 (((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣𝑈)) ∧ 𝑘 ∈ (𝐷 ∖ (𝑣 supp 0 ))) → ((𝑢( ·𝑠𝑆)𝑣)‘𝑘) = (𝑢(.r𝑅)(𝑣𝑘)))
591, 28, 12, 6, 39psrelbas 21148 . . . . . . . . . 10 ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣𝑈)) → 𝑣:𝐷⟶(Base‘𝑅))
60 ssidd 3944 . . . . . . . . . 10 ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣𝑈)) → (𝑣 supp 0 ) ⊆ (𝑣 supp 0 ))
61 ovex 7308 . . . . . . . . . . . 12 (ℕ0m 𝐼) ∈ V
6212, 61rabex2 5258 . . . . . . . . . . 11 𝐷 ∈ V
6362a1i 11 . . . . . . . . . 10 ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣𝑈)) → 𝐷 ∈ V)
6411fvexi 6788 . . . . . . . . . . 11 0 ∈ V
6564a1i 11 . . . . . . . . . 10 ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣𝑈)) → 0 ∈ V)
6659, 60, 63, 65suppssr 8012 . . . . . . . . 9 (((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣𝑈)) ∧ 𝑘 ∈ (𝐷 ∖ (𝑣 supp 0 ))) → (𝑣𝑘) = 0 )
6766oveq2d 7291 . . . . . . . 8 (((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣𝑈)) ∧ 𝑘 ∈ (𝐷 ∖ (𝑣 supp 0 ))) → (𝑢(.r𝑅)(𝑣𝑘)) = (𝑢(.r𝑅) 0 ))
6828, 53, 11ringrz 19827 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝑢 ∈ (Base‘𝑅)) → (𝑢(.r𝑅) 0 ) = 0 )
693, 30, 68syl2an2r 682 . . . . . . . . 9 ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣𝑈)) → (𝑢(.r𝑅) 0 ) = 0 )
7069adantr 481 . . . . . . . 8 (((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣𝑈)) ∧ 𝑘 ∈ (𝐷 ∖ (𝑣 supp 0 ))) → (𝑢(.r𝑅) 0 ) = 0 )
7158, 67, 703eqtrd 2782 . . . . . . 7 (((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣𝑈)) ∧ 𝑘 ∈ (𝐷 ∖ (𝑣 supp 0 ))) → ((𝑢( ·𝑠𝑆)𝑣)‘𝑘) = 0 )
7252, 71suppss 8010 . . . . . 6 ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣𝑈)) → ((𝑢( ·𝑠𝑆)𝑣) supp 0 ) ⊆ (𝑣 supp 0 ))
73 sseq1 3946 . . . . . . . 8 (𝑦 = ((𝑢( ·𝑠𝑆)𝑣) supp 0 ) → (𝑦 ⊆ (𝑣 supp 0 ) ↔ ((𝑢( ·𝑠𝑆)𝑣) supp 0 ) ⊆ (𝑣 supp 0 )))
74 eleq1 2826 . . . . . . . 8 (𝑦 = ((𝑢( ·𝑠𝑆)𝑣) supp 0 ) → (𝑦𝐴 ↔ ((𝑢( ·𝑠𝑆)𝑣) supp 0 ) ∈ 𝐴))
7573, 74imbi12d 345 . . . . . . 7 (𝑦 = ((𝑢( ·𝑠𝑆)𝑣) supp 0 ) → ((𝑦 ⊆ (𝑣 supp 0 ) → 𝑦𝐴) ↔ (((𝑢( ·𝑠𝑆)𝑣) supp 0 ) ⊆ (𝑣 supp 0 ) → ((𝑢( ·𝑠𝑆)𝑣) supp 0 ) ∈ 𝐴)))
7675spcgv 3535 . . . . . 6 (((𝑢( ·𝑠𝑆)𝑣) supp 0 ) ∈ V → (∀𝑦(𝑦 ⊆ (𝑣 supp 0 ) → 𝑦𝐴) → (((𝑢( ·𝑠𝑆)𝑣) supp 0 ) ⊆ (𝑣 supp 0 ) → ((𝑢( ·𝑠𝑆)𝑣) supp 0 ) ∈ 𝐴)))
7742, 51, 72, 76syl3c 66 . . . . 5 ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣𝑈)) → ((𝑢( ·𝑠𝑆)𝑣) supp 0 ) ∈ 𝐴)
7832eleq2d 2824 . . . . . 6 ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣𝑈)) → ((𝑢( ·𝑠𝑆)𝑣) ∈ 𝑈 ↔ (𝑢( ·𝑠𝑆)𝑣) ∈ {𝑔𝐵 ∣ (𝑔 supp 0 ) ∈ 𝐴}))
79 oveq1 7282 . . . . . . . 8 (𝑔 = (𝑢( ·𝑠𝑆)𝑣) → (𝑔 supp 0 ) = ((𝑢( ·𝑠𝑆)𝑣) supp 0 ))
8079eleq1d 2823 . . . . . . 7 (𝑔 = (𝑢( ·𝑠𝑆)𝑣) → ((𝑔 supp 0 ) ∈ 𝐴 ↔ ((𝑢( ·𝑠𝑆)𝑣) supp 0 ) ∈ 𝐴))
8180elrab 3624 . . . . . 6 ((𝑢( ·𝑠𝑆)𝑣) ∈ {𝑔𝐵 ∣ (𝑔 supp 0 ) ∈ 𝐴} ↔ ((𝑢( ·𝑠𝑆)𝑣) ∈ 𝐵 ∧ ((𝑢( ·𝑠𝑆)𝑣) supp 0 ) ∈ 𝐴))
8278, 81bitrdi 287 . . . . 5 ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣𝑈)) → ((𝑢( ·𝑠𝑆)𝑣) ∈ 𝑈 ↔ ((𝑢( ·𝑠𝑆)𝑣) ∈ 𝐵 ∧ ((𝑢( ·𝑠𝑆)𝑣) supp 0 ) ∈ 𝐴)))
8340, 77, 82mpbir2and 710 . . . 4 ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣𝑈)) → (𝑢( ·𝑠𝑆)𝑣) ∈ 𝑈)
84833adantr3 1170 . . 3 ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣𝑈𝑤𝑈)) → (𝑢( ·𝑠𝑆)𝑣) ∈ 𝑈)
85 simpr3 1195 . . 3 ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣𝑈𝑤𝑈)) → 𝑤𝑈)
86 eqid 2738 . . . 4 (+g𝑆) = (+g𝑆)
8786subgcl 18765 . . 3 ((𝑈 ∈ (SubGrp‘𝑆) ∧ (𝑢( ·𝑠𝑆)𝑣) ∈ 𝑈𝑤𝑈) → ((𝑢( ·𝑠𝑆)𝑣)(+g𝑆)𝑤) ∈ 𝑈)
8826, 84, 85, 87syl3anc 1370 . 2 ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣𝑈𝑤𝑈)) → ((𝑢( ·𝑠𝑆)𝑣)(+g𝑆)𝑤) ∈ 𝑈)
894, 5, 7, 8, 9, 10, 21, 25, 88islssd 20197 1 (𝜑𝑈 ∈ (LSubSp‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086  wal 1537   = wceq 1539  wcel 2106  wne 2943  wral 3064  {crab 3068  Vcvv 3432  cdif 3884  cun 3885  wss 3887  c0 4256  ccnv 5588  cima 5592  cfv 6433  (class class class)co 7275   supp csupp 7977  m cmap 8615  Fincfn 8733  cn 11973  0cn0 12233  Basecbs 16912  +gcplusg 16962  .rcmulr 16963   ·𝑠 cvsca 16966  0gc0g 17150  Grpcgrp 18577  SubGrpcsubg 18749  Ringcrg 19783  LSubSpclss 20193   mPwSer cmps 21107
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-om 7713  df-1st 7831  df-2nd 7832  df-supp 7978  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fsupp 9129  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-uz 12583  df-fz 13240  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-sca 16978  df-vsca 16979  df-tset 16981  df-0g 17152  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-grp 18580  df-minusg 18581  df-subg 18752  df-mgp 19721  df-ring 19785  df-lss 20194  df-psr 21112
This theorem is referenced by:  mpllss  21209
  Copyright terms: Public domain W3C validator