Step | Hyp | Ref
| Expression |
1 | | mplsubglem.s |
. . 3
β’ π = (πΌ mPwSer π
) |
2 | | mplsubglem.i |
. . 3
β’ (π β πΌ β π) |
3 | | mpllsslem.r |
. . 3
β’ (π β π
β Ring) |
4 | 1, 2, 3 | psrsca 21499 |
. 2
β’ (π β π
= (Scalarβπ)) |
5 | | eqidd 2733 |
. 2
β’ (π β (Baseβπ
) = (Baseβπ
)) |
6 | | mplsubglem.b |
. . 3
β’ π΅ = (Baseβπ) |
7 | 6 | a1i 11 |
. 2
β’ (π β π΅ = (Baseβπ)) |
8 | | eqidd 2733 |
. 2
β’ (π β (+gβπ) = (+gβπ)) |
9 | | eqidd 2733 |
. 2
β’ (π β (
Β·π βπ) = ( Β·π
βπ)) |
10 | | eqidd 2733 |
. 2
β’ (π β (LSubSpβπ) = (LSubSpβπ)) |
11 | | mplsubglem.z |
. . . 4
β’ 0 =
(0gβπ
) |
12 | | mplsubglem.d |
. . . 4
β’ π· = {π β (β0
βm πΌ)
β£ (β‘π β β) β
Fin} |
13 | | mplsubglem.0 |
. . . 4
β’ (π β β
β π΄) |
14 | | mplsubglem.a |
. . . 4
β’ ((π β§ (π₯ β π΄ β§ π¦ β π΄)) β (π₯ βͺ π¦) β π΄) |
15 | | mplsubglem.y |
. . . 4
β’ ((π β§ (π₯ β π΄ β§ π¦ β π₯)) β π¦ β π΄) |
16 | | mplsubglem.u |
. . . 4
β’ (π β π = {π β π΅ β£ (π supp 0 ) β π΄}) |
17 | | ringgrp 20054 |
. . . . 5
β’ (π
β Ring β π
β Grp) |
18 | 3, 17 | syl 17 |
. . . 4
β’ (π β π
β Grp) |
19 | 1, 6, 11, 12, 2, 13, 14, 15, 16, 18 | mplsubglem 21549 |
. . 3
β’ (π β π β (SubGrpβπ)) |
20 | 6 | subgss 19001 |
. . 3
β’ (π β (SubGrpβπ) β π β π΅) |
21 | 19, 20 | syl 17 |
. 2
β’ (π β π β π΅) |
22 | | eqid 2732 |
. . . 4
β’
(0gβπ) = (0gβπ) |
23 | 22 | subg0cl 19008 |
. . 3
β’ (π β (SubGrpβπ) β
(0gβπ)
β π) |
24 | | ne0i 4333 |
. . 3
β’
((0gβπ) β π β π β β
) |
25 | 19, 23, 24 | 3syl 18 |
. 2
β’ (π β π β β
) |
26 | 19 | adantr 481 |
. . 3
β’ ((π β§ (π’ β (Baseβπ
) β§ π£ β π β§ π€ β π)) β π β (SubGrpβπ)) |
27 | | eqid 2732 |
. . . . . 6
β’ (
Β·π βπ) = ( Β·π
βπ) |
28 | | eqid 2732 |
. . . . . 6
β’
(Baseβπ
) =
(Baseβπ
) |
29 | 3 | adantr 481 |
. . . . . 6
β’ ((π β§ (π’ β (Baseβπ
) β§ π£ β π)) β π
β Ring) |
30 | | simprl 769 |
. . . . . 6
β’ ((π β§ (π’ β (Baseβπ
) β§ π£ β π)) β π’ β (Baseβπ
)) |
31 | | simprr 771 |
. . . . . . . 8
β’ ((π β§ (π’ β (Baseβπ
) β§ π£ β π)) β π£ β π) |
32 | 16 | adantr 481 |
. . . . . . . . . 10
β’ ((π β§ (π’ β (Baseβπ
) β§ π£ β π)) β π = {π β π΅ β£ (π supp 0 ) β π΄}) |
33 | 32 | eleq2d 2819 |
. . . . . . . . 9
β’ ((π β§ (π’ β (Baseβπ
) β§ π£ β π)) β (π£ β π β π£ β {π β π΅ β£ (π supp 0 ) β π΄})) |
34 | | oveq1 7412 |
. . . . . . . . . . 11
β’ (π = π£ β (π supp 0 ) = (π£ supp 0 )) |
35 | 34 | eleq1d 2818 |
. . . . . . . . . 10
β’ (π = π£ β ((π supp 0 ) β π΄ β (π£ supp 0 ) β π΄)) |
36 | 35 | elrab 3682 |
. . . . . . . . 9
β’ (π£ β {π β π΅ β£ (π supp 0 ) β π΄} β (π£ β π΅ β§ (π£ supp 0 ) β π΄)) |
37 | 33, 36 | bitrdi 286 |
. . . . . . . 8
β’ ((π β§ (π’ β (Baseβπ
) β§ π£ β π)) β (π£ β π β (π£ β π΅ β§ (π£ supp 0 ) β π΄))) |
38 | 31, 37 | mpbid 231 |
. . . . . . 7
β’ ((π β§ (π’ β (Baseβπ
) β§ π£ β π)) β (π£ β π΅ β§ (π£ supp 0 ) β π΄)) |
39 | 38 | simpld 495 |
. . . . . 6
β’ ((π β§ (π’ β (Baseβπ
) β§ π£ β π)) β π£ β π΅) |
40 | 1, 27, 28, 6, 29, 30, 39 | psrvscacl 21503 |
. . . . 5
β’ ((π β§ (π’ β (Baseβπ
) β§ π£ β π)) β (π’( Β·π
βπ)π£) β π΅) |
41 | | ovex 7438 |
. . . . . . 7
β’ ((π’(
Β·π βπ)π£) supp 0 ) β
V |
42 | 41 | a1i 11 |
. . . . . 6
β’ ((π β§ (π’ β (Baseβπ
) β§ π£ β π)) β ((π’( Β·π
βπ)π£) supp 0 ) β
V) |
43 | | sseq2 4007 |
. . . . . . . . 9
β’ (π₯ = (π£ supp 0 ) β (π¦ β π₯ β π¦ β (π£ supp 0 ))) |
44 | 43 | imbi1d 341 |
. . . . . . . 8
β’ (π₯ = (π£ supp 0 ) β ((π¦ β π₯ β π¦ β π΄) β (π¦ β (π£ supp 0 ) β π¦ β π΄))) |
45 | 44 | albidv 1923 |
. . . . . . 7
β’ (π₯ = (π£ supp 0 ) β (βπ¦(π¦ β π₯ β π¦ β π΄) β βπ¦(π¦ β (π£ supp 0 ) β π¦ β π΄))) |
46 | 15 | expr 457 |
. . . . . . . . . 10
β’ ((π β§ π₯ β π΄) β (π¦ β π₯ β π¦ β π΄)) |
47 | 46 | alrimiv 1930 |
. . . . . . . . 9
β’ ((π β§ π₯ β π΄) β βπ¦(π¦ β π₯ β π¦ β π΄)) |
48 | 47 | ralrimiva 3146 |
. . . . . . . 8
β’ (π β βπ₯ β π΄ βπ¦(π¦ β π₯ β π¦ β π΄)) |
49 | 48 | adantr 481 |
. . . . . . 7
β’ ((π β§ (π’ β (Baseβπ
) β§ π£ β π)) β βπ₯ β π΄ βπ¦(π¦ β π₯ β π¦ β π΄)) |
50 | 38 | simprd 496 |
. . . . . . 7
β’ ((π β§ (π’ β (Baseβπ
) β§ π£ β π)) β (π£ supp 0 ) β π΄) |
51 | 45, 49, 50 | rspcdva 3613 |
. . . . . 6
β’ ((π β§ (π’ β (Baseβπ
) β§ π£ β π)) β βπ¦(π¦ β (π£ supp 0 ) β π¦ β π΄)) |
52 | 1, 28, 12, 6, 40 | psrelbas 21489 |
. . . . . . 7
β’ ((π β§ (π’ β (Baseβπ
) β§ π£ β π)) β (π’( Β·π
βπ)π£):π·βΆ(Baseβπ
)) |
53 | | eqid 2732 |
. . . . . . . . 9
β’
(.rβπ
) = (.rβπ
) |
54 | 30 | adantr 481 |
. . . . . . . . 9
β’ (((π β§ (π’ β (Baseβπ
) β§ π£ β π)) β§ π β (π· β (π£ supp 0 ))) β π’ β (Baseβπ
)) |
55 | 39 | adantr 481 |
. . . . . . . . 9
β’ (((π β§ (π’ β (Baseβπ
) β§ π£ β π)) β§ π β (π· β (π£ supp 0 ))) β π£ β π΅) |
56 | | eldifi 4125 |
. . . . . . . . . 10
β’ (π β (π· β (π£ supp 0 )) β π β π·) |
57 | 56 | adantl 482 |
. . . . . . . . 9
β’ (((π β§ (π’ β (Baseβπ
) β§ π£ β π)) β§ π β (π· β (π£ supp 0 ))) β π β π·) |
58 | 1, 27, 28, 6, 53, 12, 54, 55, 57 | psrvscaval 21502 |
. . . . . . . 8
β’ (((π β§ (π’ β (Baseβπ
) β§ π£ β π)) β§ π β (π· β (π£ supp 0 ))) β ((π’(
Β·π βπ)π£)βπ) = (π’(.rβπ
)(π£βπ))) |
59 | 1, 28, 12, 6, 39 | psrelbas 21489 |
. . . . . . . . . 10
β’ ((π β§ (π’ β (Baseβπ
) β§ π£ β π)) β π£:π·βΆ(Baseβπ
)) |
60 | | ssidd 4004 |
. . . . . . . . . 10
β’ ((π β§ (π’ β (Baseβπ
) β§ π£ β π)) β (π£ supp 0 ) β (π£ supp 0 )) |
61 | | ovex 7438 |
. . . . . . . . . . . 12
β’
(β0 βm πΌ) β V |
62 | 12, 61 | rabex2 5333 |
. . . . . . . . . . 11
β’ π· β V |
63 | 62 | a1i 11 |
. . . . . . . . . 10
β’ ((π β§ (π’ β (Baseβπ
) β§ π£ β π)) β π· β V) |
64 | 11 | fvexi 6902 |
. . . . . . . . . . 11
β’ 0 β
V |
65 | 64 | a1i 11 |
. . . . . . . . . 10
β’ ((π β§ (π’ β (Baseβπ
) β§ π£ β π)) β 0 β V) |
66 | 59, 60, 63, 65 | suppssr 8177 |
. . . . . . . . 9
β’ (((π β§ (π’ β (Baseβπ
) β§ π£ β π)) β§ π β (π· β (π£ supp 0 ))) β (π£βπ) = 0 ) |
67 | 66 | oveq2d 7421 |
. . . . . . . 8
β’ (((π β§ (π’ β (Baseβπ
) β§ π£ β π)) β§ π β (π· β (π£ supp 0 ))) β (π’(.rβπ
)(π£βπ)) = (π’(.rβπ
) 0 )) |
68 | 28, 53, 11 | ringrz 20101 |
. . . . . . . . . 10
β’ ((π
β Ring β§ π’ β (Baseβπ
)) β (π’(.rβπ
) 0 ) = 0 ) |
69 | 3, 30, 68 | syl2an2r 683 |
. . . . . . . . 9
β’ ((π β§ (π’ β (Baseβπ
) β§ π£ β π)) β (π’(.rβπ
) 0 ) = 0 ) |
70 | 69 | adantr 481 |
. . . . . . . 8
β’ (((π β§ (π’ β (Baseβπ
) β§ π£ β π)) β§ π β (π· β (π£ supp 0 ))) β (π’(.rβπ
) 0 ) = 0 ) |
71 | 58, 67, 70 | 3eqtrd 2776 |
. . . . . . 7
β’ (((π β§ (π’ β (Baseβπ
) β§ π£ β π)) β§ π β (π· β (π£ supp 0 ))) β ((π’(
Β·π βπ)π£)βπ) = 0 ) |
72 | 52, 71 | suppss 8175 |
. . . . . 6
β’ ((π β§ (π’ β (Baseβπ
) β§ π£ β π)) β ((π’( Β·π
βπ)π£) supp 0 ) β (π£ supp 0 )) |
73 | | sseq1 4006 |
. . . . . . . 8
β’ (π¦ = ((π’( Β·π
βπ)π£) supp 0 ) β (π¦ β (π£ supp 0 ) β ((π’(
Β·π βπ)π£) supp 0 ) β (π£ supp 0 ))) |
74 | | eleq1 2821 |
. . . . . . . 8
β’ (π¦ = ((π’( Β·π
βπ)π£) supp 0 ) β (π¦ β π΄ β ((π’( Β·π
βπ)π£) supp 0 ) β π΄)) |
75 | 73, 74 | imbi12d 344 |
. . . . . . 7
β’ (π¦ = ((π’( Β·π
βπ)π£) supp 0 ) β ((π¦ β (π£ supp 0 ) β π¦ β π΄) β (((π’( Β·π
βπ)π£) supp 0 ) β (π£ supp 0 ) β ((π’(
Β·π βπ)π£) supp 0 ) β π΄))) |
76 | 75 | spcgv 3586 |
. . . . . 6
β’ (((π’(
Β·π βπ)π£) supp 0 ) β V β
(βπ¦(π¦ β (π£ supp 0 ) β π¦ β π΄) β (((π’( Β·π
βπ)π£) supp 0 ) β (π£ supp 0 ) β ((π’(
Β·π βπ)π£) supp 0 ) β π΄))) |
77 | 42, 51, 72, 76 | syl3c 66 |
. . . . 5
β’ ((π β§ (π’ β (Baseβπ
) β§ π£ β π)) β ((π’( Β·π
βπ)π£) supp 0 ) β π΄) |
78 | 32 | eleq2d 2819 |
. . . . . 6
β’ ((π β§ (π’ β (Baseβπ
) β§ π£ β π)) β ((π’( Β·π
βπ)π£) β π β (π’( Β·π
βπ)π£) β {π β π΅ β£ (π supp 0 ) β π΄})) |
79 | | oveq1 7412 |
. . . . . . . 8
β’ (π = (π’( Β·π
βπ)π£) β (π supp 0 ) = ((π’( Β·π
βπ)π£) supp 0 )) |
80 | 79 | eleq1d 2818 |
. . . . . . 7
β’ (π = (π’( Β·π
βπ)π£) β ((π supp 0 ) β π΄ β ((π’( Β·π
βπ)π£) supp 0 ) β π΄)) |
81 | 80 | elrab 3682 |
. . . . . 6
β’ ((π’(
Β·π βπ)π£) β {π β π΅ β£ (π supp 0 ) β π΄} β ((π’( Β·π
βπ)π£) β π΅ β§ ((π’( Β·π
βπ)π£) supp 0 ) β π΄)) |
82 | 78, 81 | bitrdi 286 |
. . . . 5
β’ ((π β§ (π’ β (Baseβπ
) β§ π£ β π)) β ((π’( Β·π
βπ)π£) β π β ((π’( Β·π
βπ)π£) β π΅ β§ ((π’( Β·π
βπ)π£) supp 0 ) β π΄))) |
83 | 40, 77, 82 | mpbir2and 711 |
. . . 4
β’ ((π β§ (π’ β (Baseβπ
) β§ π£ β π)) β (π’( Β·π
βπ)π£) β π) |
84 | 83 | 3adantr3 1171 |
. . 3
β’ ((π β§ (π’ β (Baseβπ
) β§ π£ β π β§ π€ β π)) β (π’( Β·π
βπ)π£) β π) |
85 | | simpr3 1196 |
. . 3
β’ ((π β§ (π’ β (Baseβπ
) β§ π£ β π β§ π€ β π)) β π€ β π) |
86 | | eqid 2732 |
. . . 4
β’
(+gβπ) = (+gβπ) |
87 | 86 | subgcl 19010 |
. . 3
β’ ((π β (SubGrpβπ) β§ (π’( Β·π
βπ)π£) β π β§ π€ β π) β ((π’( Β·π
βπ)π£)(+gβπ)π€) β π) |
88 | 26, 84, 85, 87 | syl3anc 1371 |
. 2
β’ ((π β§ (π’ β (Baseβπ
) β§ π£ β π β§ π€ β π)) β ((π’( Β·π
βπ)π£)(+gβπ)π€) β π) |
89 | 4, 5, 7, 8, 9, 10,
21, 25, 88 | islssd 20538 |
1
β’ (π β π β (LSubSpβπ)) |