| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | mplsubglem.s | . . 3
⊢ 𝑆 = (𝐼 mPwSer 𝑅) | 
| 2 |  | mplsubglem.i | . . 3
⊢ (𝜑 → 𝐼 ∈ 𝑊) | 
| 3 |  | mpllsslem.r | . . 3
⊢ (𝜑 → 𝑅 ∈ Ring) | 
| 4 | 1, 2, 3 | psrsca 21967 | . 2
⊢ (𝜑 → 𝑅 = (Scalar‘𝑆)) | 
| 5 |  | eqidd 2738 | . 2
⊢ (𝜑 → (Base‘𝑅) = (Base‘𝑅)) | 
| 6 |  | mplsubglem.b | . . 3
⊢ 𝐵 = (Base‘𝑆) | 
| 7 | 6 | a1i 11 | . 2
⊢ (𝜑 → 𝐵 = (Base‘𝑆)) | 
| 8 |  | eqidd 2738 | . 2
⊢ (𝜑 → (+g‘𝑆) = (+g‘𝑆)) | 
| 9 |  | eqidd 2738 | . 2
⊢ (𝜑 → (
·𝑠 ‘𝑆) = ( ·𝑠
‘𝑆)) | 
| 10 |  | eqidd 2738 | . 2
⊢ (𝜑 → (LSubSp‘𝑆) = (LSubSp‘𝑆)) | 
| 11 |  | mplsubglem.z | . . . 4
⊢  0 =
(0g‘𝑅) | 
| 12 |  | mplsubglem.d | . . . 4
⊢ 𝐷 = {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈
Fin} | 
| 13 |  | mplsubglem.0 | . . . 4
⊢ (𝜑 → ∅ ∈ 𝐴) | 
| 14 |  | mplsubglem.a | . . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → (𝑥 ∪ 𝑦) ∈ 𝐴) | 
| 15 |  | mplsubglem.y | . . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ⊆ 𝑥)) → 𝑦 ∈ 𝐴) | 
| 16 |  | mplsubglem.u | . . . 4
⊢ (𝜑 → 𝑈 = {𝑔 ∈ 𝐵 ∣ (𝑔 supp 0 ) ∈ 𝐴}) | 
| 17 |  | ringgrp 20235 | . . . . 5
⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) | 
| 18 | 3, 17 | syl 17 | . . . 4
⊢ (𝜑 → 𝑅 ∈ Grp) | 
| 19 | 1, 6, 11, 12, 2, 13, 14, 15, 16, 18 | mplsubglem 22019 | . . 3
⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝑆)) | 
| 20 | 6 | subgss 19145 | . . 3
⊢ (𝑈 ∈ (SubGrp‘𝑆) → 𝑈 ⊆ 𝐵) | 
| 21 | 19, 20 | syl 17 | . 2
⊢ (𝜑 → 𝑈 ⊆ 𝐵) | 
| 22 |  | eqid 2737 | . . . 4
⊢
(0g‘𝑆) = (0g‘𝑆) | 
| 23 | 22 | subg0cl 19152 | . . 3
⊢ (𝑈 ∈ (SubGrp‘𝑆) →
(0g‘𝑆)
∈ 𝑈) | 
| 24 |  | ne0i 4341 | . . 3
⊢
((0g‘𝑆) ∈ 𝑈 → 𝑈 ≠ ∅) | 
| 25 | 19, 23, 24 | 3syl 18 | . 2
⊢ (𝜑 → 𝑈 ≠ ∅) | 
| 26 | 19 | adantr 480 | . . 3
⊢ ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣 ∈ 𝑈 ∧ 𝑤 ∈ 𝑈)) → 𝑈 ∈ (SubGrp‘𝑆)) | 
| 27 |  | eqid 2737 | . . . . . 6
⊢ (
·𝑠 ‘𝑆) = ( ·𝑠
‘𝑆) | 
| 28 |  | eqid 2737 | . . . . . 6
⊢
(Base‘𝑅) =
(Base‘𝑅) | 
| 29 | 3 | adantr 480 | . . . . . 6
⊢ ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣 ∈ 𝑈)) → 𝑅 ∈ Ring) | 
| 30 |  | simprl 771 | . . . . . 6
⊢ ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣 ∈ 𝑈)) → 𝑢 ∈ (Base‘𝑅)) | 
| 31 |  | simprr 773 | . . . . . . . 8
⊢ ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣 ∈ 𝑈)) → 𝑣 ∈ 𝑈) | 
| 32 | 16 | adantr 480 | . . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣 ∈ 𝑈)) → 𝑈 = {𝑔 ∈ 𝐵 ∣ (𝑔 supp 0 ) ∈ 𝐴}) | 
| 33 | 32 | eleq2d 2827 | . . . . . . . . 9
⊢ ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣 ∈ 𝑈)) → (𝑣 ∈ 𝑈 ↔ 𝑣 ∈ {𝑔 ∈ 𝐵 ∣ (𝑔 supp 0 ) ∈ 𝐴})) | 
| 34 |  | oveq1 7438 | . . . . . . . . . . 11
⊢ (𝑔 = 𝑣 → (𝑔 supp 0 ) = (𝑣 supp 0 )) | 
| 35 | 34 | eleq1d 2826 | . . . . . . . . . 10
⊢ (𝑔 = 𝑣 → ((𝑔 supp 0 ) ∈ 𝐴 ↔ (𝑣 supp 0 ) ∈ 𝐴)) | 
| 36 | 35 | elrab 3692 | . . . . . . . . 9
⊢ (𝑣 ∈ {𝑔 ∈ 𝐵 ∣ (𝑔 supp 0 ) ∈ 𝐴} ↔ (𝑣 ∈ 𝐵 ∧ (𝑣 supp 0 ) ∈ 𝐴)) | 
| 37 | 33, 36 | bitrdi 287 | . . . . . . . 8
⊢ ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣 ∈ 𝑈)) → (𝑣 ∈ 𝑈 ↔ (𝑣 ∈ 𝐵 ∧ (𝑣 supp 0 ) ∈ 𝐴))) | 
| 38 | 31, 37 | mpbid 232 | . . . . . . 7
⊢ ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣 ∈ 𝑈)) → (𝑣 ∈ 𝐵 ∧ (𝑣 supp 0 ) ∈ 𝐴)) | 
| 39 | 38 | simpld 494 | . . . . . 6
⊢ ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣 ∈ 𝑈)) → 𝑣 ∈ 𝐵) | 
| 40 | 1, 27, 28, 6, 29, 30, 39 | psrvscacl 21971 | . . . . 5
⊢ ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣 ∈ 𝑈)) → (𝑢( ·𝑠
‘𝑆)𝑣) ∈ 𝐵) | 
| 41 |  | ovex 7464 | . . . . . . 7
⊢ ((𝑢(
·𝑠 ‘𝑆)𝑣) supp 0 ) ∈
V | 
| 42 | 41 | a1i 11 | . . . . . 6
⊢ ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣 ∈ 𝑈)) → ((𝑢( ·𝑠
‘𝑆)𝑣) supp 0 ) ∈
V) | 
| 43 |  | sseq2 4010 | . . . . . . . . 9
⊢ (𝑥 = (𝑣 supp 0 ) → (𝑦 ⊆ 𝑥 ↔ 𝑦 ⊆ (𝑣 supp 0 ))) | 
| 44 | 43 | imbi1d 341 | . . . . . . . 8
⊢ (𝑥 = (𝑣 supp 0 ) → ((𝑦 ⊆ 𝑥 → 𝑦 ∈ 𝐴) ↔ (𝑦 ⊆ (𝑣 supp 0 ) → 𝑦 ∈ 𝐴))) | 
| 45 | 44 | albidv 1920 | . . . . . . 7
⊢ (𝑥 = (𝑣 supp 0 ) → (∀𝑦(𝑦 ⊆ 𝑥 → 𝑦 ∈ 𝐴) ↔ ∀𝑦(𝑦 ⊆ (𝑣 supp 0 ) → 𝑦 ∈ 𝐴))) | 
| 46 | 15 | expr 456 | . . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝑦 ⊆ 𝑥 → 𝑦 ∈ 𝐴)) | 
| 47 | 46 | alrimiv 1927 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∀𝑦(𝑦 ⊆ 𝑥 → 𝑦 ∈ 𝐴)) | 
| 48 | 47 | ralrimiva 3146 | . . . . . . . 8
⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦(𝑦 ⊆ 𝑥 → 𝑦 ∈ 𝐴)) | 
| 49 | 48 | adantr 480 | . . . . . . 7
⊢ ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣 ∈ 𝑈)) → ∀𝑥 ∈ 𝐴 ∀𝑦(𝑦 ⊆ 𝑥 → 𝑦 ∈ 𝐴)) | 
| 50 | 38 | simprd 495 | . . . . . . 7
⊢ ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣 ∈ 𝑈)) → (𝑣 supp 0 ) ∈ 𝐴) | 
| 51 | 45, 49, 50 | rspcdva 3623 | . . . . . 6
⊢ ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣 ∈ 𝑈)) → ∀𝑦(𝑦 ⊆ (𝑣 supp 0 ) → 𝑦 ∈ 𝐴)) | 
| 52 | 1, 28, 12, 6, 40 | psrelbas 21954 | . . . . . . 7
⊢ ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣 ∈ 𝑈)) → (𝑢( ·𝑠
‘𝑆)𝑣):𝐷⟶(Base‘𝑅)) | 
| 53 |  | eqid 2737 | . . . . . . . . 9
⊢
(.r‘𝑅) = (.r‘𝑅) | 
| 54 | 30 | adantr 480 | . . . . . . . . 9
⊢ (((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣 ∈ 𝑈)) ∧ 𝑘 ∈ (𝐷 ∖ (𝑣 supp 0 ))) → 𝑢 ∈ (Base‘𝑅)) | 
| 55 | 39 | adantr 480 | . . . . . . . . 9
⊢ (((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣 ∈ 𝑈)) ∧ 𝑘 ∈ (𝐷 ∖ (𝑣 supp 0 ))) → 𝑣 ∈ 𝐵) | 
| 56 |  | eldifi 4131 | . . . . . . . . . 10
⊢ (𝑘 ∈ (𝐷 ∖ (𝑣 supp 0 )) → 𝑘 ∈ 𝐷) | 
| 57 | 56 | adantl 481 | . . . . . . . . 9
⊢ (((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣 ∈ 𝑈)) ∧ 𝑘 ∈ (𝐷 ∖ (𝑣 supp 0 ))) → 𝑘 ∈ 𝐷) | 
| 58 | 1, 27, 28, 6, 53, 12, 54, 55, 57 | psrvscaval 21970 | . . . . . . . 8
⊢ (((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣 ∈ 𝑈)) ∧ 𝑘 ∈ (𝐷 ∖ (𝑣 supp 0 ))) → ((𝑢(
·𝑠 ‘𝑆)𝑣)‘𝑘) = (𝑢(.r‘𝑅)(𝑣‘𝑘))) | 
| 59 | 1, 28, 12, 6, 39 | psrelbas 21954 | . . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣 ∈ 𝑈)) → 𝑣:𝐷⟶(Base‘𝑅)) | 
| 60 |  | ssidd 4007 | . . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣 ∈ 𝑈)) → (𝑣 supp 0 ) ⊆ (𝑣 supp 0 )) | 
| 61 |  | ovex 7464 | . . . . . . . . . . . 12
⊢
(ℕ0 ↑m 𝐼) ∈ V | 
| 62 | 12, 61 | rabex2 5341 | . . . . . . . . . . 11
⊢ 𝐷 ∈ V | 
| 63 | 62 | a1i 11 | . . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣 ∈ 𝑈)) → 𝐷 ∈ V) | 
| 64 | 11 | fvexi 6920 | . . . . . . . . . . 11
⊢  0 ∈
V | 
| 65 | 64 | a1i 11 | . . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣 ∈ 𝑈)) → 0 ∈ V) | 
| 66 | 59, 60, 63, 65 | suppssr 8220 | . . . . . . . . 9
⊢ (((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣 ∈ 𝑈)) ∧ 𝑘 ∈ (𝐷 ∖ (𝑣 supp 0 ))) → (𝑣‘𝑘) = 0 ) | 
| 67 | 66 | oveq2d 7447 | . . . . . . . 8
⊢ (((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣 ∈ 𝑈)) ∧ 𝑘 ∈ (𝐷 ∖ (𝑣 supp 0 ))) → (𝑢(.r‘𝑅)(𝑣‘𝑘)) = (𝑢(.r‘𝑅) 0 )) | 
| 68 | 28, 53, 11 | ringrz 20291 | . . . . . . . . . 10
⊢ ((𝑅 ∈ Ring ∧ 𝑢 ∈ (Base‘𝑅)) → (𝑢(.r‘𝑅) 0 ) = 0 ) | 
| 69 | 3, 30, 68 | syl2an2r 685 | . . . . . . . . 9
⊢ ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣 ∈ 𝑈)) → (𝑢(.r‘𝑅) 0 ) = 0 ) | 
| 70 | 69 | adantr 480 | . . . . . . . 8
⊢ (((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣 ∈ 𝑈)) ∧ 𝑘 ∈ (𝐷 ∖ (𝑣 supp 0 ))) → (𝑢(.r‘𝑅) 0 ) = 0 ) | 
| 71 | 58, 67, 70 | 3eqtrd 2781 | . . . . . . 7
⊢ (((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣 ∈ 𝑈)) ∧ 𝑘 ∈ (𝐷 ∖ (𝑣 supp 0 ))) → ((𝑢(
·𝑠 ‘𝑆)𝑣)‘𝑘) = 0 ) | 
| 72 | 52, 71 | suppss 8219 | . . . . . 6
⊢ ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣 ∈ 𝑈)) → ((𝑢( ·𝑠
‘𝑆)𝑣) supp 0 ) ⊆ (𝑣 supp 0 )) | 
| 73 |  | sseq1 4009 | . . . . . . . 8
⊢ (𝑦 = ((𝑢( ·𝑠
‘𝑆)𝑣) supp 0 ) → (𝑦 ⊆ (𝑣 supp 0 ) ↔ ((𝑢(
·𝑠 ‘𝑆)𝑣) supp 0 ) ⊆ (𝑣 supp 0 ))) | 
| 74 |  | eleq1 2829 | . . . . . . . 8
⊢ (𝑦 = ((𝑢( ·𝑠
‘𝑆)𝑣) supp 0 ) → (𝑦 ∈ 𝐴 ↔ ((𝑢( ·𝑠
‘𝑆)𝑣) supp 0 ) ∈ 𝐴)) | 
| 75 | 73, 74 | imbi12d 344 | . . . . . . 7
⊢ (𝑦 = ((𝑢( ·𝑠
‘𝑆)𝑣) supp 0 ) → ((𝑦 ⊆ (𝑣 supp 0 ) → 𝑦 ∈ 𝐴) ↔ (((𝑢( ·𝑠
‘𝑆)𝑣) supp 0 ) ⊆ (𝑣 supp 0 ) → ((𝑢(
·𝑠 ‘𝑆)𝑣) supp 0 ) ∈ 𝐴))) | 
| 76 | 75 | spcgv 3596 | . . . . . 6
⊢ (((𝑢(
·𝑠 ‘𝑆)𝑣) supp 0 ) ∈ V →
(∀𝑦(𝑦 ⊆ (𝑣 supp 0 ) → 𝑦 ∈ 𝐴) → (((𝑢( ·𝑠
‘𝑆)𝑣) supp 0 ) ⊆ (𝑣 supp 0 ) → ((𝑢(
·𝑠 ‘𝑆)𝑣) supp 0 ) ∈ 𝐴))) | 
| 77 | 42, 51, 72, 76 | syl3c 66 | . . . . 5
⊢ ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣 ∈ 𝑈)) → ((𝑢( ·𝑠
‘𝑆)𝑣) supp 0 ) ∈ 𝐴) | 
| 78 | 32 | eleq2d 2827 | . . . . . 6
⊢ ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣 ∈ 𝑈)) → ((𝑢( ·𝑠
‘𝑆)𝑣) ∈ 𝑈 ↔ (𝑢( ·𝑠
‘𝑆)𝑣) ∈ {𝑔 ∈ 𝐵 ∣ (𝑔 supp 0 ) ∈ 𝐴})) | 
| 79 |  | oveq1 7438 | . . . . . . . 8
⊢ (𝑔 = (𝑢( ·𝑠
‘𝑆)𝑣) → (𝑔 supp 0 ) = ((𝑢( ·𝑠
‘𝑆)𝑣) supp 0 )) | 
| 80 | 79 | eleq1d 2826 | . . . . . . 7
⊢ (𝑔 = (𝑢( ·𝑠
‘𝑆)𝑣) → ((𝑔 supp 0 ) ∈ 𝐴 ↔ ((𝑢( ·𝑠
‘𝑆)𝑣) supp 0 ) ∈ 𝐴)) | 
| 81 | 80 | elrab 3692 | . . . . . 6
⊢ ((𝑢(
·𝑠 ‘𝑆)𝑣) ∈ {𝑔 ∈ 𝐵 ∣ (𝑔 supp 0 ) ∈ 𝐴} ↔ ((𝑢( ·𝑠
‘𝑆)𝑣) ∈ 𝐵 ∧ ((𝑢( ·𝑠
‘𝑆)𝑣) supp 0 ) ∈ 𝐴)) | 
| 82 | 78, 81 | bitrdi 287 | . . . . 5
⊢ ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣 ∈ 𝑈)) → ((𝑢( ·𝑠
‘𝑆)𝑣) ∈ 𝑈 ↔ ((𝑢( ·𝑠
‘𝑆)𝑣) ∈ 𝐵 ∧ ((𝑢( ·𝑠
‘𝑆)𝑣) supp 0 ) ∈ 𝐴))) | 
| 83 | 40, 77, 82 | mpbir2and 713 | . . . 4
⊢ ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣 ∈ 𝑈)) → (𝑢( ·𝑠
‘𝑆)𝑣) ∈ 𝑈) | 
| 84 | 83 | 3adantr3 1172 | . . 3
⊢ ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣 ∈ 𝑈 ∧ 𝑤 ∈ 𝑈)) → (𝑢( ·𝑠
‘𝑆)𝑣) ∈ 𝑈) | 
| 85 |  | simpr3 1197 | . . 3
⊢ ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣 ∈ 𝑈 ∧ 𝑤 ∈ 𝑈)) → 𝑤 ∈ 𝑈) | 
| 86 |  | eqid 2737 | . . . 4
⊢
(+g‘𝑆) = (+g‘𝑆) | 
| 87 | 86 | subgcl 19154 | . . 3
⊢ ((𝑈 ∈ (SubGrp‘𝑆) ∧ (𝑢( ·𝑠
‘𝑆)𝑣) ∈ 𝑈 ∧ 𝑤 ∈ 𝑈) → ((𝑢( ·𝑠
‘𝑆)𝑣)(+g‘𝑆)𝑤) ∈ 𝑈) | 
| 88 | 26, 84, 85, 87 | syl3anc 1373 | . 2
⊢ ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣 ∈ 𝑈 ∧ 𝑤 ∈ 𝑈)) → ((𝑢( ·𝑠
‘𝑆)𝑣)(+g‘𝑆)𝑤) ∈ 𝑈) | 
| 89 | 4, 5, 7, 8, 9, 10,
21, 25, 88 | islssd 20933 | 1
⊢ (𝜑 → 𝑈 ∈ (LSubSp‘𝑆)) |