| Step | Hyp | Ref
| Expression |
| 1 | | mplsubglem.s |
. . 3
⊢ 𝑆 = (𝐼 mPwSer 𝑅) |
| 2 | | mplsubglem.i |
. . 3
⊢ (𝜑 → 𝐼 ∈ 𝑊) |
| 3 | | mpllsslem.r |
. . 3
⊢ (𝜑 → 𝑅 ∈ Ring) |
| 4 | 1, 2, 3 | psrsca 21912 |
. 2
⊢ (𝜑 → 𝑅 = (Scalar‘𝑆)) |
| 5 | | eqidd 2737 |
. 2
⊢ (𝜑 → (Base‘𝑅) = (Base‘𝑅)) |
| 6 | | mplsubglem.b |
. . 3
⊢ 𝐵 = (Base‘𝑆) |
| 7 | 6 | a1i 11 |
. 2
⊢ (𝜑 → 𝐵 = (Base‘𝑆)) |
| 8 | | eqidd 2737 |
. 2
⊢ (𝜑 → (+g‘𝑆) = (+g‘𝑆)) |
| 9 | | eqidd 2737 |
. 2
⊢ (𝜑 → (
·𝑠 ‘𝑆) = ( ·𝑠
‘𝑆)) |
| 10 | | eqidd 2737 |
. 2
⊢ (𝜑 → (LSubSp‘𝑆) = (LSubSp‘𝑆)) |
| 11 | | mplsubglem.z |
. . . 4
⊢ 0 =
(0g‘𝑅) |
| 12 | | mplsubglem.d |
. . . 4
⊢ 𝐷 = {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈
Fin} |
| 13 | | mplsubglem.0 |
. . . 4
⊢ (𝜑 → ∅ ∈ 𝐴) |
| 14 | | mplsubglem.a |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → (𝑥 ∪ 𝑦) ∈ 𝐴) |
| 15 | | mplsubglem.y |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ⊆ 𝑥)) → 𝑦 ∈ 𝐴) |
| 16 | | mplsubglem.u |
. . . 4
⊢ (𝜑 → 𝑈 = {𝑔 ∈ 𝐵 ∣ (𝑔 supp 0 ) ∈ 𝐴}) |
| 17 | | ringgrp 20203 |
. . . . 5
⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) |
| 18 | 3, 17 | syl 17 |
. . . 4
⊢ (𝜑 → 𝑅 ∈ Grp) |
| 19 | 1, 6, 11, 12, 2, 13, 14, 15, 16, 18 | mplsubglem 21964 |
. . 3
⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝑆)) |
| 20 | 6 | subgss 19115 |
. . 3
⊢ (𝑈 ∈ (SubGrp‘𝑆) → 𝑈 ⊆ 𝐵) |
| 21 | 19, 20 | syl 17 |
. 2
⊢ (𝜑 → 𝑈 ⊆ 𝐵) |
| 22 | | eqid 2736 |
. . . 4
⊢
(0g‘𝑆) = (0g‘𝑆) |
| 23 | 22 | subg0cl 19122 |
. . 3
⊢ (𝑈 ∈ (SubGrp‘𝑆) →
(0g‘𝑆)
∈ 𝑈) |
| 24 | | ne0i 4321 |
. . 3
⊢
((0g‘𝑆) ∈ 𝑈 → 𝑈 ≠ ∅) |
| 25 | 19, 23, 24 | 3syl 18 |
. 2
⊢ (𝜑 → 𝑈 ≠ ∅) |
| 26 | 19 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣 ∈ 𝑈 ∧ 𝑤 ∈ 𝑈)) → 𝑈 ∈ (SubGrp‘𝑆)) |
| 27 | | eqid 2736 |
. . . . . 6
⊢ (
·𝑠 ‘𝑆) = ( ·𝑠
‘𝑆) |
| 28 | | eqid 2736 |
. . . . . 6
⊢
(Base‘𝑅) =
(Base‘𝑅) |
| 29 | 3 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣 ∈ 𝑈)) → 𝑅 ∈ Ring) |
| 30 | | simprl 770 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣 ∈ 𝑈)) → 𝑢 ∈ (Base‘𝑅)) |
| 31 | | simprr 772 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣 ∈ 𝑈)) → 𝑣 ∈ 𝑈) |
| 32 | 16 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣 ∈ 𝑈)) → 𝑈 = {𝑔 ∈ 𝐵 ∣ (𝑔 supp 0 ) ∈ 𝐴}) |
| 33 | 32 | eleq2d 2821 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣 ∈ 𝑈)) → (𝑣 ∈ 𝑈 ↔ 𝑣 ∈ {𝑔 ∈ 𝐵 ∣ (𝑔 supp 0 ) ∈ 𝐴})) |
| 34 | | oveq1 7417 |
. . . . . . . . . . 11
⊢ (𝑔 = 𝑣 → (𝑔 supp 0 ) = (𝑣 supp 0 )) |
| 35 | 34 | eleq1d 2820 |
. . . . . . . . . 10
⊢ (𝑔 = 𝑣 → ((𝑔 supp 0 ) ∈ 𝐴 ↔ (𝑣 supp 0 ) ∈ 𝐴)) |
| 36 | 35 | elrab 3676 |
. . . . . . . . 9
⊢ (𝑣 ∈ {𝑔 ∈ 𝐵 ∣ (𝑔 supp 0 ) ∈ 𝐴} ↔ (𝑣 ∈ 𝐵 ∧ (𝑣 supp 0 ) ∈ 𝐴)) |
| 37 | 33, 36 | bitrdi 287 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣 ∈ 𝑈)) → (𝑣 ∈ 𝑈 ↔ (𝑣 ∈ 𝐵 ∧ (𝑣 supp 0 ) ∈ 𝐴))) |
| 38 | 31, 37 | mpbid 232 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣 ∈ 𝑈)) → (𝑣 ∈ 𝐵 ∧ (𝑣 supp 0 ) ∈ 𝐴)) |
| 39 | 38 | simpld 494 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣 ∈ 𝑈)) → 𝑣 ∈ 𝐵) |
| 40 | 1, 27, 28, 6, 29, 30, 39 | psrvscacl 21916 |
. . . . 5
⊢ ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣 ∈ 𝑈)) → (𝑢( ·𝑠
‘𝑆)𝑣) ∈ 𝐵) |
| 41 | | ovex 7443 |
. . . . . . 7
⊢ ((𝑢(
·𝑠 ‘𝑆)𝑣) supp 0 ) ∈
V |
| 42 | 41 | a1i 11 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣 ∈ 𝑈)) → ((𝑢( ·𝑠
‘𝑆)𝑣) supp 0 ) ∈
V) |
| 43 | | sseq2 3990 |
. . . . . . . . 9
⊢ (𝑥 = (𝑣 supp 0 ) → (𝑦 ⊆ 𝑥 ↔ 𝑦 ⊆ (𝑣 supp 0 ))) |
| 44 | 43 | imbi1d 341 |
. . . . . . . 8
⊢ (𝑥 = (𝑣 supp 0 ) → ((𝑦 ⊆ 𝑥 → 𝑦 ∈ 𝐴) ↔ (𝑦 ⊆ (𝑣 supp 0 ) → 𝑦 ∈ 𝐴))) |
| 45 | 44 | albidv 1920 |
. . . . . . 7
⊢ (𝑥 = (𝑣 supp 0 ) → (∀𝑦(𝑦 ⊆ 𝑥 → 𝑦 ∈ 𝐴) ↔ ∀𝑦(𝑦 ⊆ (𝑣 supp 0 ) → 𝑦 ∈ 𝐴))) |
| 46 | 15 | expr 456 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝑦 ⊆ 𝑥 → 𝑦 ∈ 𝐴)) |
| 47 | 46 | alrimiv 1927 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∀𝑦(𝑦 ⊆ 𝑥 → 𝑦 ∈ 𝐴)) |
| 48 | 47 | ralrimiva 3133 |
. . . . . . . 8
⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦(𝑦 ⊆ 𝑥 → 𝑦 ∈ 𝐴)) |
| 49 | 48 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣 ∈ 𝑈)) → ∀𝑥 ∈ 𝐴 ∀𝑦(𝑦 ⊆ 𝑥 → 𝑦 ∈ 𝐴)) |
| 50 | 38 | simprd 495 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣 ∈ 𝑈)) → (𝑣 supp 0 ) ∈ 𝐴) |
| 51 | 45, 49, 50 | rspcdva 3607 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣 ∈ 𝑈)) → ∀𝑦(𝑦 ⊆ (𝑣 supp 0 ) → 𝑦 ∈ 𝐴)) |
| 52 | 1, 28, 12, 6, 40 | psrelbas 21899 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣 ∈ 𝑈)) → (𝑢( ·𝑠
‘𝑆)𝑣):𝐷⟶(Base‘𝑅)) |
| 53 | | eqid 2736 |
. . . . . . . . 9
⊢
(.r‘𝑅) = (.r‘𝑅) |
| 54 | 30 | adantr 480 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣 ∈ 𝑈)) ∧ 𝑘 ∈ (𝐷 ∖ (𝑣 supp 0 ))) → 𝑢 ∈ (Base‘𝑅)) |
| 55 | 39 | adantr 480 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣 ∈ 𝑈)) ∧ 𝑘 ∈ (𝐷 ∖ (𝑣 supp 0 ))) → 𝑣 ∈ 𝐵) |
| 56 | | eldifi 4111 |
. . . . . . . . . 10
⊢ (𝑘 ∈ (𝐷 ∖ (𝑣 supp 0 )) → 𝑘 ∈ 𝐷) |
| 57 | 56 | adantl 481 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣 ∈ 𝑈)) ∧ 𝑘 ∈ (𝐷 ∖ (𝑣 supp 0 ))) → 𝑘 ∈ 𝐷) |
| 58 | 1, 27, 28, 6, 53, 12, 54, 55, 57 | psrvscaval 21915 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣 ∈ 𝑈)) ∧ 𝑘 ∈ (𝐷 ∖ (𝑣 supp 0 ))) → ((𝑢(
·𝑠 ‘𝑆)𝑣)‘𝑘) = (𝑢(.r‘𝑅)(𝑣‘𝑘))) |
| 59 | 1, 28, 12, 6, 39 | psrelbas 21899 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣 ∈ 𝑈)) → 𝑣:𝐷⟶(Base‘𝑅)) |
| 60 | | ssidd 3987 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣 ∈ 𝑈)) → (𝑣 supp 0 ) ⊆ (𝑣 supp 0 )) |
| 61 | | ovex 7443 |
. . . . . . . . . . . 12
⊢
(ℕ0 ↑m 𝐼) ∈ V |
| 62 | 12, 61 | rabex2 5316 |
. . . . . . . . . . 11
⊢ 𝐷 ∈ V |
| 63 | 62 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣 ∈ 𝑈)) → 𝐷 ∈ V) |
| 64 | 11 | fvexi 6895 |
. . . . . . . . . . 11
⊢ 0 ∈
V |
| 65 | 64 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣 ∈ 𝑈)) → 0 ∈ V) |
| 66 | 59, 60, 63, 65 | suppssr 8199 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣 ∈ 𝑈)) ∧ 𝑘 ∈ (𝐷 ∖ (𝑣 supp 0 ))) → (𝑣‘𝑘) = 0 ) |
| 67 | 66 | oveq2d 7426 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣 ∈ 𝑈)) ∧ 𝑘 ∈ (𝐷 ∖ (𝑣 supp 0 ))) → (𝑢(.r‘𝑅)(𝑣‘𝑘)) = (𝑢(.r‘𝑅) 0 )) |
| 68 | 28, 53, 11 | ringrz 20259 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ Ring ∧ 𝑢 ∈ (Base‘𝑅)) → (𝑢(.r‘𝑅) 0 ) = 0 ) |
| 69 | 3, 30, 68 | syl2an2r 685 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣 ∈ 𝑈)) → (𝑢(.r‘𝑅) 0 ) = 0 ) |
| 70 | 69 | adantr 480 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣 ∈ 𝑈)) ∧ 𝑘 ∈ (𝐷 ∖ (𝑣 supp 0 ))) → (𝑢(.r‘𝑅) 0 ) = 0 ) |
| 71 | 58, 67, 70 | 3eqtrd 2775 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣 ∈ 𝑈)) ∧ 𝑘 ∈ (𝐷 ∖ (𝑣 supp 0 ))) → ((𝑢(
·𝑠 ‘𝑆)𝑣)‘𝑘) = 0 ) |
| 72 | 52, 71 | suppss 8198 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣 ∈ 𝑈)) → ((𝑢( ·𝑠
‘𝑆)𝑣) supp 0 ) ⊆ (𝑣 supp 0 )) |
| 73 | | sseq1 3989 |
. . . . . . . 8
⊢ (𝑦 = ((𝑢( ·𝑠
‘𝑆)𝑣) supp 0 ) → (𝑦 ⊆ (𝑣 supp 0 ) ↔ ((𝑢(
·𝑠 ‘𝑆)𝑣) supp 0 ) ⊆ (𝑣 supp 0 ))) |
| 74 | | eleq1 2823 |
. . . . . . . 8
⊢ (𝑦 = ((𝑢( ·𝑠
‘𝑆)𝑣) supp 0 ) → (𝑦 ∈ 𝐴 ↔ ((𝑢( ·𝑠
‘𝑆)𝑣) supp 0 ) ∈ 𝐴)) |
| 75 | 73, 74 | imbi12d 344 |
. . . . . . 7
⊢ (𝑦 = ((𝑢( ·𝑠
‘𝑆)𝑣) supp 0 ) → ((𝑦 ⊆ (𝑣 supp 0 ) → 𝑦 ∈ 𝐴) ↔ (((𝑢( ·𝑠
‘𝑆)𝑣) supp 0 ) ⊆ (𝑣 supp 0 ) → ((𝑢(
·𝑠 ‘𝑆)𝑣) supp 0 ) ∈ 𝐴))) |
| 76 | 75 | spcgv 3580 |
. . . . . 6
⊢ (((𝑢(
·𝑠 ‘𝑆)𝑣) supp 0 ) ∈ V →
(∀𝑦(𝑦 ⊆ (𝑣 supp 0 ) → 𝑦 ∈ 𝐴) → (((𝑢( ·𝑠
‘𝑆)𝑣) supp 0 ) ⊆ (𝑣 supp 0 ) → ((𝑢(
·𝑠 ‘𝑆)𝑣) supp 0 ) ∈ 𝐴))) |
| 77 | 42, 51, 72, 76 | syl3c 66 |
. . . . 5
⊢ ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣 ∈ 𝑈)) → ((𝑢( ·𝑠
‘𝑆)𝑣) supp 0 ) ∈ 𝐴) |
| 78 | 32 | eleq2d 2821 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣 ∈ 𝑈)) → ((𝑢( ·𝑠
‘𝑆)𝑣) ∈ 𝑈 ↔ (𝑢( ·𝑠
‘𝑆)𝑣) ∈ {𝑔 ∈ 𝐵 ∣ (𝑔 supp 0 ) ∈ 𝐴})) |
| 79 | | oveq1 7417 |
. . . . . . . 8
⊢ (𝑔 = (𝑢( ·𝑠
‘𝑆)𝑣) → (𝑔 supp 0 ) = ((𝑢( ·𝑠
‘𝑆)𝑣) supp 0 )) |
| 80 | 79 | eleq1d 2820 |
. . . . . . 7
⊢ (𝑔 = (𝑢( ·𝑠
‘𝑆)𝑣) → ((𝑔 supp 0 ) ∈ 𝐴 ↔ ((𝑢( ·𝑠
‘𝑆)𝑣) supp 0 ) ∈ 𝐴)) |
| 81 | 80 | elrab 3676 |
. . . . . 6
⊢ ((𝑢(
·𝑠 ‘𝑆)𝑣) ∈ {𝑔 ∈ 𝐵 ∣ (𝑔 supp 0 ) ∈ 𝐴} ↔ ((𝑢( ·𝑠
‘𝑆)𝑣) ∈ 𝐵 ∧ ((𝑢( ·𝑠
‘𝑆)𝑣) supp 0 ) ∈ 𝐴)) |
| 82 | 78, 81 | bitrdi 287 |
. . . . 5
⊢ ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣 ∈ 𝑈)) → ((𝑢( ·𝑠
‘𝑆)𝑣) ∈ 𝑈 ↔ ((𝑢( ·𝑠
‘𝑆)𝑣) ∈ 𝐵 ∧ ((𝑢( ·𝑠
‘𝑆)𝑣) supp 0 ) ∈ 𝐴))) |
| 83 | 40, 77, 82 | mpbir2and 713 |
. . . 4
⊢ ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣 ∈ 𝑈)) → (𝑢( ·𝑠
‘𝑆)𝑣) ∈ 𝑈) |
| 84 | 83 | 3adantr3 1172 |
. . 3
⊢ ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣 ∈ 𝑈 ∧ 𝑤 ∈ 𝑈)) → (𝑢( ·𝑠
‘𝑆)𝑣) ∈ 𝑈) |
| 85 | | simpr3 1197 |
. . 3
⊢ ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣 ∈ 𝑈 ∧ 𝑤 ∈ 𝑈)) → 𝑤 ∈ 𝑈) |
| 86 | | eqid 2736 |
. . . 4
⊢
(+g‘𝑆) = (+g‘𝑆) |
| 87 | 86 | subgcl 19124 |
. . 3
⊢ ((𝑈 ∈ (SubGrp‘𝑆) ∧ (𝑢( ·𝑠
‘𝑆)𝑣) ∈ 𝑈 ∧ 𝑤 ∈ 𝑈) → ((𝑢( ·𝑠
‘𝑆)𝑣)(+g‘𝑆)𝑤) ∈ 𝑈) |
| 88 | 26, 84, 85, 87 | syl3anc 1373 |
. 2
⊢ ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣 ∈ 𝑈 ∧ 𝑤 ∈ 𝑈)) → ((𝑢( ·𝑠
‘𝑆)𝑣)(+g‘𝑆)𝑤) ∈ 𝑈) |
| 89 | 4, 5, 7, 8, 9, 10,
21, 25, 88 | islssd 20897 |
1
⊢ (𝜑 → 𝑈 ∈ (LSubSp‘𝑆)) |