MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mpllsslem Structured version   Visualization version   GIF version

Theorem mpllsslem 19832
Description: If 𝐴 is an ideal of subsets (a nonempty collection closed under subset and binary union) of the set 𝐷 of finite bags (the primary applications being 𝐴 = Fin and 𝐴 = 𝒫 𝐵 for some 𝐵), then the set of all power series whose coefficient functions are supported on an element of 𝐴 is a linear subspace of the set of all power series. (Contributed by Mario Carneiro, 12-Jan-2015.) (Revised by AV, 16-Jul-2019.)
Hypotheses
Ref Expression
mplsubglem.s 𝑆 = (𝐼 mPwSer 𝑅)
mplsubglem.b 𝐵 = (Base‘𝑆)
mplsubglem.z 0 = (0g𝑅)
mplsubglem.d 𝐷 = {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
mplsubglem.i (𝜑𝐼𝑊)
mplsubglem.0 (𝜑 → ∅ ∈ 𝐴)
mplsubglem.a ((𝜑 ∧ (𝑥𝐴𝑦𝐴)) → (𝑥𝑦) ∈ 𝐴)
mplsubglem.y ((𝜑 ∧ (𝑥𝐴𝑦𝑥)) → 𝑦𝐴)
mplsubglem.u (𝜑𝑈 = {𝑔𝐵 ∣ (𝑔 supp 0 ) ∈ 𝐴})
mpllsslem.r (𝜑𝑅 ∈ Ring)
Assertion
Ref Expression
mpllsslem (𝜑𝑈 ∈ (LSubSp‘𝑆))
Distinct variable groups:   𝑓,𝑔,𝑥,𝑦, 0   𝐴,𝑓,𝑔,𝑥,𝑦   𝐵,𝑓,𝑔   𝐷,𝑔   𝑓,𝐼   𝜑,𝑥,𝑦   𝑆,𝑓,𝑔,𝑦
Allowed substitution hints:   𝜑(𝑓,𝑔)   𝐵(𝑥,𝑦)   𝐷(𝑥,𝑦,𝑓)   𝑅(𝑥,𝑦,𝑓,𝑔)   𝑆(𝑥)   𝑈(𝑥,𝑦,𝑓,𝑔)   𝐼(𝑥,𝑦,𝑔)   𝑊(𝑥,𝑦,𝑓,𝑔)

Proof of Theorem mpllsslem
Dummy variables 𝑘 𝑢 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mplsubglem.s . . 3 𝑆 = (𝐼 mPwSer 𝑅)
2 mplsubglem.i . . 3 (𝜑𝐼𝑊)
3 mpllsslem.r . . 3 (𝜑𝑅 ∈ Ring)
41, 2, 3psrsca 19786 . 2 (𝜑𝑅 = (Scalar‘𝑆))
5 eqidd 2779 . 2 (𝜑 → (Base‘𝑅) = (Base‘𝑅))
6 mplsubglem.b . . 3 𝐵 = (Base‘𝑆)
76a1i 11 . 2 (𝜑𝐵 = (Base‘𝑆))
8 eqidd 2779 . 2 (𝜑 → (+g𝑆) = (+g𝑆))
9 eqidd 2779 . 2 (𝜑 → ( ·𝑠𝑆) = ( ·𝑠𝑆))
10 eqidd 2779 . 2 (𝜑 → (LSubSp‘𝑆) = (LSubSp‘𝑆))
11 mplsubglem.z . . . 4 0 = (0g𝑅)
12 mplsubglem.d . . . 4 𝐷 = {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
13 mplsubglem.0 . . . 4 (𝜑 → ∅ ∈ 𝐴)
14 mplsubglem.a . . . 4 ((𝜑 ∧ (𝑥𝐴𝑦𝐴)) → (𝑥𝑦) ∈ 𝐴)
15 mplsubglem.y . . . 4 ((𝜑 ∧ (𝑥𝐴𝑦𝑥)) → 𝑦𝐴)
16 mplsubglem.u . . . 4 (𝜑𝑈 = {𝑔𝐵 ∣ (𝑔 supp 0 ) ∈ 𝐴})
17 ringgrp 18939 . . . . 5 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
183, 17syl 17 . . . 4 (𝜑𝑅 ∈ Grp)
191, 6, 11, 12, 2, 13, 14, 15, 16, 18mplsubglem 19831 . . 3 (𝜑𝑈 ∈ (SubGrp‘𝑆))
206subgss 17979 . . 3 (𝑈 ∈ (SubGrp‘𝑆) → 𝑈𝐵)
2119, 20syl 17 . 2 (𝜑𝑈𝐵)
22 eqid 2778 . . . 4 (0g𝑆) = (0g𝑆)
2322subg0cl 17986 . . 3 (𝑈 ∈ (SubGrp‘𝑆) → (0g𝑆) ∈ 𝑈)
24 ne0i 4149 . . 3 ((0g𝑆) ∈ 𝑈𝑈 ≠ ∅)
2519, 23, 243syl 18 . 2 (𝜑𝑈 ≠ ∅)
2619adantr 474 . . 3 ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣𝑈𝑤𝑈)) → 𝑈 ∈ (SubGrp‘𝑆))
27 eqid 2778 . . . . . 6 ( ·𝑠𝑆) = ( ·𝑠𝑆)
28 eqid 2778 . . . . . 6 (Base‘𝑅) = (Base‘𝑅)
293adantr 474 . . . . . 6 ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣𝑈)) → 𝑅 ∈ Ring)
30 simprl 761 . . . . . 6 ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣𝑈)) → 𝑢 ∈ (Base‘𝑅))
31 simprr 763 . . . . . . . 8 ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣𝑈)) → 𝑣𝑈)
3216adantr 474 . . . . . . . . . 10 ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣𝑈)) → 𝑈 = {𝑔𝐵 ∣ (𝑔 supp 0 ) ∈ 𝐴})
3332eleq2d 2845 . . . . . . . . 9 ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣𝑈)) → (𝑣𝑈𝑣 ∈ {𝑔𝐵 ∣ (𝑔 supp 0 ) ∈ 𝐴}))
34 oveq1 6929 . . . . . . . . . . 11 (𝑔 = 𝑣 → (𝑔 supp 0 ) = (𝑣 supp 0 ))
3534eleq1d 2844 . . . . . . . . . 10 (𝑔 = 𝑣 → ((𝑔 supp 0 ) ∈ 𝐴 ↔ (𝑣 supp 0 ) ∈ 𝐴))
3635elrab 3572 . . . . . . . . 9 (𝑣 ∈ {𝑔𝐵 ∣ (𝑔 supp 0 ) ∈ 𝐴} ↔ (𝑣𝐵 ∧ (𝑣 supp 0 ) ∈ 𝐴))
3733, 36syl6bb 279 . . . . . . . 8 ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣𝑈)) → (𝑣𝑈 ↔ (𝑣𝐵 ∧ (𝑣 supp 0 ) ∈ 𝐴)))
3831, 37mpbid 224 . . . . . . 7 ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣𝑈)) → (𝑣𝐵 ∧ (𝑣 supp 0 ) ∈ 𝐴))
3938simpld 490 . . . . . 6 ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣𝑈)) → 𝑣𝐵)
401, 27, 28, 6, 29, 30, 39psrvscacl 19790 . . . . 5 ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣𝑈)) → (𝑢( ·𝑠𝑆)𝑣) ∈ 𝐵)
41 ovex 6954 . . . . . . 7 ((𝑢( ·𝑠𝑆)𝑣) supp 0 ) ∈ V
4241a1i 11 . . . . . 6 ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣𝑈)) → ((𝑢( ·𝑠𝑆)𝑣) supp 0 ) ∈ V)
43 sseq2 3846 . . . . . . . . 9 (𝑥 = (𝑣 supp 0 ) → (𝑦𝑥𝑦 ⊆ (𝑣 supp 0 )))
4443imbi1d 333 . . . . . . . 8 (𝑥 = (𝑣 supp 0 ) → ((𝑦𝑥𝑦𝐴) ↔ (𝑦 ⊆ (𝑣 supp 0 ) → 𝑦𝐴)))
4544albidv 1963 . . . . . . 7 (𝑥 = (𝑣 supp 0 ) → (∀𝑦(𝑦𝑥𝑦𝐴) ↔ ∀𝑦(𝑦 ⊆ (𝑣 supp 0 ) → 𝑦𝐴)))
4615expr 450 . . . . . . . . . 10 ((𝜑𝑥𝐴) → (𝑦𝑥𝑦𝐴))
4746alrimiv 1970 . . . . . . . . 9 ((𝜑𝑥𝐴) → ∀𝑦(𝑦𝑥𝑦𝐴))
4847ralrimiva 3148 . . . . . . . 8 (𝜑 → ∀𝑥𝐴𝑦(𝑦𝑥𝑦𝐴))
4948adantr 474 . . . . . . 7 ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣𝑈)) → ∀𝑥𝐴𝑦(𝑦𝑥𝑦𝐴))
5038simprd 491 . . . . . . 7 ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣𝑈)) → (𝑣 supp 0 ) ∈ 𝐴)
5145, 49, 50rspcdva 3517 . . . . . 6 ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣𝑈)) → ∀𝑦(𝑦 ⊆ (𝑣 supp 0 ) → 𝑦𝐴))
521, 28, 12, 6, 40psrelbas 19776 . . . . . . 7 ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣𝑈)) → (𝑢( ·𝑠𝑆)𝑣):𝐷⟶(Base‘𝑅))
53 eqid 2778 . . . . . . . . 9 (.r𝑅) = (.r𝑅)
5430adantr 474 . . . . . . . . 9 (((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣𝑈)) ∧ 𝑘 ∈ (𝐷 ∖ (𝑣 supp 0 ))) → 𝑢 ∈ (Base‘𝑅))
5539adantr 474 . . . . . . . . 9 (((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣𝑈)) ∧ 𝑘 ∈ (𝐷 ∖ (𝑣 supp 0 ))) → 𝑣𝐵)
56 eldifi 3955 . . . . . . . . . 10 (𝑘 ∈ (𝐷 ∖ (𝑣 supp 0 )) → 𝑘𝐷)
5756adantl 475 . . . . . . . . 9 (((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣𝑈)) ∧ 𝑘 ∈ (𝐷 ∖ (𝑣 supp 0 ))) → 𝑘𝐷)
581, 27, 28, 6, 53, 12, 54, 55, 57psrvscaval 19789 . . . . . . . 8 (((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣𝑈)) ∧ 𝑘 ∈ (𝐷 ∖ (𝑣 supp 0 ))) → ((𝑢( ·𝑠𝑆)𝑣)‘𝑘) = (𝑢(.r𝑅)(𝑣𝑘)))
591, 28, 12, 6, 39psrelbas 19776 . . . . . . . . . 10 ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣𝑈)) → 𝑣:𝐷⟶(Base‘𝑅))
60 ssidd 3843 . . . . . . . . . 10 ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣𝑈)) → (𝑣 supp 0 ) ⊆ (𝑣 supp 0 ))
61 ovex 6954 . . . . . . . . . . . 12 (ℕ0𝑚 𝐼) ∈ V
6212, 61rabex2 5051 . . . . . . . . . . 11 𝐷 ∈ V
6362a1i 11 . . . . . . . . . 10 ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣𝑈)) → 𝐷 ∈ V)
6411fvexi 6460 . . . . . . . . . . 11 0 ∈ V
6564a1i 11 . . . . . . . . . 10 ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣𝑈)) → 0 ∈ V)
6659, 60, 63, 65suppssr 7608 . . . . . . . . 9 (((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣𝑈)) ∧ 𝑘 ∈ (𝐷 ∖ (𝑣 supp 0 ))) → (𝑣𝑘) = 0 )
6766oveq2d 6938 . . . . . . . 8 (((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣𝑈)) ∧ 𝑘 ∈ (𝐷 ∖ (𝑣 supp 0 ))) → (𝑢(.r𝑅)(𝑣𝑘)) = (𝑢(.r𝑅) 0 ))
6828, 53, 11ringrz 18975 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝑢 ∈ (Base‘𝑅)) → (𝑢(.r𝑅) 0 ) = 0 )
693, 30, 68syl2an2r 675 . . . . . . . . 9 ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣𝑈)) → (𝑢(.r𝑅) 0 ) = 0 )
7069adantr 474 . . . . . . . 8 (((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣𝑈)) ∧ 𝑘 ∈ (𝐷 ∖ (𝑣 supp 0 ))) → (𝑢(.r𝑅) 0 ) = 0 )
7158, 67, 703eqtrd 2818 . . . . . . 7 (((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣𝑈)) ∧ 𝑘 ∈ (𝐷 ∖ (𝑣 supp 0 ))) → ((𝑢( ·𝑠𝑆)𝑣)‘𝑘) = 0 )
7252, 71suppss 7607 . . . . . 6 ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣𝑈)) → ((𝑢( ·𝑠𝑆)𝑣) supp 0 ) ⊆ (𝑣 supp 0 ))
73 sseq1 3845 . . . . . . . 8 (𝑦 = ((𝑢( ·𝑠𝑆)𝑣) supp 0 ) → (𝑦 ⊆ (𝑣 supp 0 ) ↔ ((𝑢( ·𝑠𝑆)𝑣) supp 0 ) ⊆ (𝑣 supp 0 )))
74 eleq1 2847 . . . . . . . 8 (𝑦 = ((𝑢( ·𝑠𝑆)𝑣) supp 0 ) → (𝑦𝐴 ↔ ((𝑢( ·𝑠𝑆)𝑣) supp 0 ) ∈ 𝐴))
7573, 74imbi12d 336 . . . . . . 7 (𝑦 = ((𝑢( ·𝑠𝑆)𝑣) supp 0 ) → ((𝑦 ⊆ (𝑣 supp 0 ) → 𝑦𝐴) ↔ (((𝑢( ·𝑠𝑆)𝑣) supp 0 ) ⊆ (𝑣 supp 0 ) → ((𝑢( ·𝑠𝑆)𝑣) supp 0 ) ∈ 𝐴)))
7675spcgv 3495 . . . . . 6 (((𝑢( ·𝑠𝑆)𝑣) supp 0 ) ∈ V → (∀𝑦(𝑦 ⊆ (𝑣 supp 0 ) → 𝑦𝐴) → (((𝑢( ·𝑠𝑆)𝑣) supp 0 ) ⊆ (𝑣 supp 0 ) → ((𝑢( ·𝑠𝑆)𝑣) supp 0 ) ∈ 𝐴)))
7742, 51, 72, 76syl3c 66 . . . . 5 ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣𝑈)) → ((𝑢( ·𝑠𝑆)𝑣) supp 0 ) ∈ 𝐴)
7832eleq2d 2845 . . . . . 6 ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣𝑈)) → ((𝑢( ·𝑠𝑆)𝑣) ∈ 𝑈 ↔ (𝑢( ·𝑠𝑆)𝑣) ∈ {𝑔𝐵 ∣ (𝑔 supp 0 ) ∈ 𝐴}))
79 oveq1 6929 . . . . . . . 8 (𝑔 = (𝑢( ·𝑠𝑆)𝑣) → (𝑔 supp 0 ) = ((𝑢( ·𝑠𝑆)𝑣) supp 0 ))
8079eleq1d 2844 . . . . . . 7 (𝑔 = (𝑢( ·𝑠𝑆)𝑣) → ((𝑔 supp 0 ) ∈ 𝐴 ↔ ((𝑢( ·𝑠𝑆)𝑣) supp 0 ) ∈ 𝐴))
8180elrab 3572 . . . . . 6 ((𝑢( ·𝑠𝑆)𝑣) ∈ {𝑔𝐵 ∣ (𝑔 supp 0 ) ∈ 𝐴} ↔ ((𝑢( ·𝑠𝑆)𝑣) ∈ 𝐵 ∧ ((𝑢( ·𝑠𝑆)𝑣) supp 0 ) ∈ 𝐴))
8278, 81syl6bb 279 . . . . 5 ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣𝑈)) → ((𝑢( ·𝑠𝑆)𝑣) ∈ 𝑈 ↔ ((𝑢( ·𝑠𝑆)𝑣) ∈ 𝐵 ∧ ((𝑢( ·𝑠𝑆)𝑣) supp 0 ) ∈ 𝐴)))
8340, 77, 82mpbir2and 703 . . . 4 ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣𝑈)) → (𝑢( ·𝑠𝑆)𝑣) ∈ 𝑈)
84833adantr3 1173 . . 3 ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣𝑈𝑤𝑈)) → (𝑢( ·𝑠𝑆)𝑣) ∈ 𝑈)
85 simpr3 1209 . . 3 ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣𝑈𝑤𝑈)) → 𝑤𝑈)
86 eqid 2778 . . . 4 (+g𝑆) = (+g𝑆)
8786subgcl 17988 . . 3 ((𝑈 ∈ (SubGrp‘𝑆) ∧ (𝑢( ·𝑠𝑆)𝑣) ∈ 𝑈𝑤𝑈) → ((𝑢( ·𝑠𝑆)𝑣)(+g𝑆)𝑤) ∈ 𝑈)
8826, 84, 85, 87syl3anc 1439 . 2 ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣𝑈𝑤𝑈)) → ((𝑢( ·𝑠𝑆)𝑣)(+g𝑆)𝑤) ∈ 𝑈)
894, 5, 7, 8, 9, 10, 21, 25, 88islssd 19328 1 (𝜑𝑈 ∈ (LSubSp‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386  w3a 1071  wal 1599   = wceq 1601  wcel 2107  wne 2969  wral 3090  {crab 3094  Vcvv 3398  cdif 3789  cun 3790  wss 3792  c0 4141  ccnv 5354  cima 5358  cfv 6135  (class class class)co 6922   supp csupp 7576  𝑚 cmap 8140  Fincfn 8241  cn 11374  0cn0 11642  Basecbs 16255  +gcplusg 16338  .rcmulr 16339   ·𝑠 cvsca 16342  0gc0g 16486  Grpcgrp 17809  SubGrpcsubg 17972  Ringcrg 18934  LSubSpclss 19324   mPwSer cmps 19748
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5006  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226  ax-cnex 10328  ax-resscn 10329  ax-1cn 10330  ax-icn 10331  ax-addcl 10332  ax-addrcl 10333  ax-mulcl 10334  ax-mulrcl 10335  ax-mulcom 10336  ax-addass 10337  ax-mulass 10338  ax-distr 10339  ax-i2m1 10340  ax-1ne0 10341  ax-1rid 10342  ax-rnegex 10343  ax-rrecex 10344  ax-cnre 10345  ax-pre-lttri 10346  ax-pre-lttrn 10347  ax-pre-ltadd 10348  ax-pre-mulgt0 10349
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4672  df-int 4711  df-iun 4755  df-br 4887  df-opab 4949  df-mpt 4966  df-tr 4988  df-id 5261  df-eprel 5266  df-po 5274  df-so 5275  df-fr 5314  df-we 5316  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-pred 5933  df-ord 5979  df-on 5980  df-lim 5981  df-suc 5982  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-riota 6883  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-of 7174  df-om 7344  df-1st 7445  df-2nd 7446  df-supp 7577  df-wrecs 7689  df-recs 7751  df-rdg 7789  df-1o 7843  df-oadd 7847  df-er 8026  df-map 8142  df-en 8242  df-dom 8243  df-sdom 8244  df-fin 8245  df-fsupp 8564  df-pnf 10413  df-mnf 10414  df-xr 10415  df-ltxr 10416  df-le 10417  df-sub 10608  df-neg 10609  df-nn 11375  df-2 11438  df-3 11439  df-4 11440  df-5 11441  df-6 11442  df-7 11443  df-8 11444  df-9 11445  df-n0 11643  df-z 11729  df-uz 11993  df-fz 12644  df-struct 16257  df-ndx 16258  df-slot 16259  df-base 16261  df-sets 16262  df-ress 16263  df-plusg 16351  df-mulr 16352  df-sca 16354  df-vsca 16355  df-tset 16357  df-0g 16488  df-mgm 17628  df-sgrp 17670  df-mnd 17681  df-grp 17812  df-minusg 17813  df-subg 17975  df-mgp 18877  df-ring 18936  df-lss 19325  df-psr 19753
This theorem is referenced by:  mpllss  19835
  Copyright terms: Public domain W3C validator