MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mpllsslem Structured version   Visualization version   GIF version

Theorem mpllsslem 22043
Description: If 𝐴 is an ideal of subsets (a nonempty collection closed under subset and binary union) of the set 𝐷 of finite bags (the primary applications being 𝐴 = Fin and 𝐴 = 𝒫 𝐵 for some 𝐵), then the set of all power series whose coefficient functions are supported on an element of 𝐴 is a linear subspace of the set of all power series. (Contributed by Mario Carneiro, 12-Jan-2015.) (Revised by AV, 16-Jul-2019.)
Hypotheses
Ref Expression
mplsubglem.s 𝑆 = (𝐼 mPwSer 𝑅)
mplsubglem.b 𝐵 = (Base‘𝑆)
mplsubglem.z 0 = (0g𝑅)
mplsubglem.d 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
mplsubglem.i (𝜑𝐼𝑊)
mplsubglem.0 (𝜑 → ∅ ∈ 𝐴)
mplsubglem.a ((𝜑 ∧ (𝑥𝐴𝑦𝐴)) → (𝑥𝑦) ∈ 𝐴)
mplsubglem.y ((𝜑 ∧ (𝑥𝐴𝑦𝑥)) → 𝑦𝐴)
mplsubglem.u (𝜑𝑈 = {𝑔𝐵 ∣ (𝑔 supp 0 ) ∈ 𝐴})
mpllsslem.r (𝜑𝑅 ∈ Ring)
Assertion
Ref Expression
mpllsslem (𝜑𝑈 ∈ (LSubSp‘𝑆))
Distinct variable groups:   𝑓,𝑔,𝑥,𝑦, 0   𝐴,𝑓,𝑔,𝑥,𝑦   𝐵,𝑓,𝑔   𝐷,𝑔   𝑓,𝐼   𝜑,𝑥,𝑦   𝑆,𝑓,𝑔,𝑦
Allowed substitution hints:   𝜑(𝑓,𝑔)   𝐵(𝑥,𝑦)   𝐷(𝑥,𝑦,𝑓)   𝑅(𝑥,𝑦,𝑓,𝑔)   𝑆(𝑥)   𝑈(𝑥,𝑦,𝑓,𝑔)   𝐼(𝑥,𝑦,𝑔)   𝑊(𝑥,𝑦,𝑓,𝑔)

Proof of Theorem mpllsslem
Dummy variables 𝑘 𝑢 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mplsubglem.s . . 3 𝑆 = (𝐼 mPwSer 𝑅)
2 mplsubglem.i . . 3 (𝜑𝐼𝑊)
3 mpllsslem.r . . 3 (𝜑𝑅 ∈ Ring)
41, 2, 3psrsca 21990 . 2 (𝜑𝑅 = (Scalar‘𝑆))
5 eqidd 2741 . 2 (𝜑 → (Base‘𝑅) = (Base‘𝑅))
6 mplsubglem.b . . 3 𝐵 = (Base‘𝑆)
76a1i 11 . 2 (𝜑𝐵 = (Base‘𝑆))
8 eqidd 2741 . 2 (𝜑 → (+g𝑆) = (+g𝑆))
9 eqidd 2741 . 2 (𝜑 → ( ·𝑠𝑆) = ( ·𝑠𝑆))
10 eqidd 2741 . 2 (𝜑 → (LSubSp‘𝑆) = (LSubSp‘𝑆))
11 mplsubglem.z . . . 4 0 = (0g𝑅)
12 mplsubglem.d . . . 4 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
13 mplsubglem.0 . . . 4 (𝜑 → ∅ ∈ 𝐴)
14 mplsubglem.a . . . 4 ((𝜑 ∧ (𝑥𝐴𝑦𝐴)) → (𝑥𝑦) ∈ 𝐴)
15 mplsubglem.y . . . 4 ((𝜑 ∧ (𝑥𝐴𝑦𝑥)) → 𝑦𝐴)
16 mplsubglem.u . . . 4 (𝜑𝑈 = {𝑔𝐵 ∣ (𝑔 supp 0 ) ∈ 𝐴})
17 ringgrp 20265 . . . . 5 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
183, 17syl 17 . . . 4 (𝜑𝑅 ∈ Grp)
191, 6, 11, 12, 2, 13, 14, 15, 16, 18mplsubglem 22042 . . 3 (𝜑𝑈 ∈ (SubGrp‘𝑆))
206subgss 19167 . . 3 (𝑈 ∈ (SubGrp‘𝑆) → 𝑈𝐵)
2119, 20syl 17 . 2 (𝜑𝑈𝐵)
22 eqid 2740 . . . 4 (0g𝑆) = (0g𝑆)
2322subg0cl 19174 . . 3 (𝑈 ∈ (SubGrp‘𝑆) → (0g𝑆) ∈ 𝑈)
24 ne0i 4364 . . 3 ((0g𝑆) ∈ 𝑈𝑈 ≠ ∅)
2519, 23, 243syl 18 . 2 (𝜑𝑈 ≠ ∅)
2619adantr 480 . . 3 ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣𝑈𝑤𝑈)) → 𝑈 ∈ (SubGrp‘𝑆))
27 eqid 2740 . . . . . 6 ( ·𝑠𝑆) = ( ·𝑠𝑆)
28 eqid 2740 . . . . . 6 (Base‘𝑅) = (Base‘𝑅)
293adantr 480 . . . . . 6 ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣𝑈)) → 𝑅 ∈ Ring)
30 simprl 770 . . . . . 6 ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣𝑈)) → 𝑢 ∈ (Base‘𝑅))
31 simprr 772 . . . . . . . 8 ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣𝑈)) → 𝑣𝑈)
3216adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣𝑈)) → 𝑈 = {𝑔𝐵 ∣ (𝑔 supp 0 ) ∈ 𝐴})
3332eleq2d 2830 . . . . . . . . 9 ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣𝑈)) → (𝑣𝑈𝑣 ∈ {𝑔𝐵 ∣ (𝑔 supp 0 ) ∈ 𝐴}))
34 oveq1 7455 . . . . . . . . . . 11 (𝑔 = 𝑣 → (𝑔 supp 0 ) = (𝑣 supp 0 ))
3534eleq1d 2829 . . . . . . . . . 10 (𝑔 = 𝑣 → ((𝑔 supp 0 ) ∈ 𝐴 ↔ (𝑣 supp 0 ) ∈ 𝐴))
3635elrab 3708 . . . . . . . . 9 (𝑣 ∈ {𝑔𝐵 ∣ (𝑔 supp 0 ) ∈ 𝐴} ↔ (𝑣𝐵 ∧ (𝑣 supp 0 ) ∈ 𝐴))
3733, 36bitrdi 287 . . . . . . . 8 ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣𝑈)) → (𝑣𝑈 ↔ (𝑣𝐵 ∧ (𝑣 supp 0 ) ∈ 𝐴)))
3831, 37mpbid 232 . . . . . . 7 ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣𝑈)) → (𝑣𝐵 ∧ (𝑣 supp 0 ) ∈ 𝐴))
3938simpld 494 . . . . . 6 ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣𝑈)) → 𝑣𝐵)
401, 27, 28, 6, 29, 30, 39psrvscacl 21994 . . . . 5 ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣𝑈)) → (𝑢( ·𝑠𝑆)𝑣) ∈ 𝐵)
41 ovex 7481 . . . . . . 7 ((𝑢( ·𝑠𝑆)𝑣) supp 0 ) ∈ V
4241a1i 11 . . . . . 6 ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣𝑈)) → ((𝑢( ·𝑠𝑆)𝑣) supp 0 ) ∈ V)
43 sseq2 4035 . . . . . . . . 9 (𝑥 = (𝑣 supp 0 ) → (𝑦𝑥𝑦 ⊆ (𝑣 supp 0 )))
4443imbi1d 341 . . . . . . . 8 (𝑥 = (𝑣 supp 0 ) → ((𝑦𝑥𝑦𝐴) ↔ (𝑦 ⊆ (𝑣 supp 0 ) → 𝑦𝐴)))
4544albidv 1919 . . . . . . 7 (𝑥 = (𝑣 supp 0 ) → (∀𝑦(𝑦𝑥𝑦𝐴) ↔ ∀𝑦(𝑦 ⊆ (𝑣 supp 0 ) → 𝑦𝐴)))
4615expr 456 . . . . . . . . . 10 ((𝜑𝑥𝐴) → (𝑦𝑥𝑦𝐴))
4746alrimiv 1926 . . . . . . . . 9 ((𝜑𝑥𝐴) → ∀𝑦(𝑦𝑥𝑦𝐴))
4847ralrimiva 3152 . . . . . . . 8 (𝜑 → ∀𝑥𝐴𝑦(𝑦𝑥𝑦𝐴))
4948adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣𝑈)) → ∀𝑥𝐴𝑦(𝑦𝑥𝑦𝐴))
5038simprd 495 . . . . . . 7 ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣𝑈)) → (𝑣 supp 0 ) ∈ 𝐴)
5145, 49, 50rspcdva 3636 . . . . . 6 ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣𝑈)) → ∀𝑦(𝑦 ⊆ (𝑣 supp 0 ) → 𝑦𝐴))
521, 28, 12, 6, 40psrelbas 21977 . . . . . . 7 ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣𝑈)) → (𝑢( ·𝑠𝑆)𝑣):𝐷⟶(Base‘𝑅))
53 eqid 2740 . . . . . . . . 9 (.r𝑅) = (.r𝑅)
5430adantr 480 . . . . . . . . 9 (((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣𝑈)) ∧ 𝑘 ∈ (𝐷 ∖ (𝑣 supp 0 ))) → 𝑢 ∈ (Base‘𝑅))
5539adantr 480 . . . . . . . . 9 (((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣𝑈)) ∧ 𝑘 ∈ (𝐷 ∖ (𝑣 supp 0 ))) → 𝑣𝐵)
56 eldifi 4154 . . . . . . . . . 10 (𝑘 ∈ (𝐷 ∖ (𝑣 supp 0 )) → 𝑘𝐷)
5756adantl 481 . . . . . . . . 9 (((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣𝑈)) ∧ 𝑘 ∈ (𝐷 ∖ (𝑣 supp 0 ))) → 𝑘𝐷)
581, 27, 28, 6, 53, 12, 54, 55, 57psrvscaval 21993 . . . . . . . 8 (((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣𝑈)) ∧ 𝑘 ∈ (𝐷 ∖ (𝑣 supp 0 ))) → ((𝑢( ·𝑠𝑆)𝑣)‘𝑘) = (𝑢(.r𝑅)(𝑣𝑘)))
591, 28, 12, 6, 39psrelbas 21977 . . . . . . . . . 10 ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣𝑈)) → 𝑣:𝐷⟶(Base‘𝑅))
60 ssidd 4032 . . . . . . . . . 10 ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣𝑈)) → (𝑣 supp 0 ) ⊆ (𝑣 supp 0 ))
61 ovex 7481 . . . . . . . . . . . 12 (ℕ0m 𝐼) ∈ V
6212, 61rabex2 5359 . . . . . . . . . . 11 𝐷 ∈ V
6362a1i 11 . . . . . . . . . 10 ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣𝑈)) → 𝐷 ∈ V)
6411fvexi 6934 . . . . . . . . . . 11 0 ∈ V
6564a1i 11 . . . . . . . . . 10 ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣𝑈)) → 0 ∈ V)
6659, 60, 63, 65suppssr 8236 . . . . . . . . 9 (((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣𝑈)) ∧ 𝑘 ∈ (𝐷 ∖ (𝑣 supp 0 ))) → (𝑣𝑘) = 0 )
6766oveq2d 7464 . . . . . . . 8 (((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣𝑈)) ∧ 𝑘 ∈ (𝐷 ∖ (𝑣 supp 0 ))) → (𝑢(.r𝑅)(𝑣𝑘)) = (𝑢(.r𝑅) 0 ))
6828, 53, 11ringrz 20317 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝑢 ∈ (Base‘𝑅)) → (𝑢(.r𝑅) 0 ) = 0 )
693, 30, 68syl2an2r 684 . . . . . . . . 9 ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣𝑈)) → (𝑢(.r𝑅) 0 ) = 0 )
7069adantr 480 . . . . . . . 8 (((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣𝑈)) ∧ 𝑘 ∈ (𝐷 ∖ (𝑣 supp 0 ))) → (𝑢(.r𝑅) 0 ) = 0 )
7158, 67, 703eqtrd 2784 . . . . . . 7 (((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣𝑈)) ∧ 𝑘 ∈ (𝐷 ∖ (𝑣 supp 0 ))) → ((𝑢( ·𝑠𝑆)𝑣)‘𝑘) = 0 )
7252, 71suppss 8235 . . . . . 6 ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣𝑈)) → ((𝑢( ·𝑠𝑆)𝑣) supp 0 ) ⊆ (𝑣 supp 0 ))
73 sseq1 4034 . . . . . . . 8 (𝑦 = ((𝑢( ·𝑠𝑆)𝑣) supp 0 ) → (𝑦 ⊆ (𝑣 supp 0 ) ↔ ((𝑢( ·𝑠𝑆)𝑣) supp 0 ) ⊆ (𝑣 supp 0 )))
74 eleq1 2832 . . . . . . . 8 (𝑦 = ((𝑢( ·𝑠𝑆)𝑣) supp 0 ) → (𝑦𝐴 ↔ ((𝑢( ·𝑠𝑆)𝑣) supp 0 ) ∈ 𝐴))
7573, 74imbi12d 344 . . . . . . 7 (𝑦 = ((𝑢( ·𝑠𝑆)𝑣) supp 0 ) → ((𝑦 ⊆ (𝑣 supp 0 ) → 𝑦𝐴) ↔ (((𝑢( ·𝑠𝑆)𝑣) supp 0 ) ⊆ (𝑣 supp 0 ) → ((𝑢( ·𝑠𝑆)𝑣) supp 0 ) ∈ 𝐴)))
7675spcgv 3609 . . . . . 6 (((𝑢( ·𝑠𝑆)𝑣) supp 0 ) ∈ V → (∀𝑦(𝑦 ⊆ (𝑣 supp 0 ) → 𝑦𝐴) → (((𝑢( ·𝑠𝑆)𝑣) supp 0 ) ⊆ (𝑣 supp 0 ) → ((𝑢( ·𝑠𝑆)𝑣) supp 0 ) ∈ 𝐴)))
7742, 51, 72, 76syl3c 66 . . . . 5 ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣𝑈)) → ((𝑢( ·𝑠𝑆)𝑣) supp 0 ) ∈ 𝐴)
7832eleq2d 2830 . . . . . 6 ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣𝑈)) → ((𝑢( ·𝑠𝑆)𝑣) ∈ 𝑈 ↔ (𝑢( ·𝑠𝑆)𝑣) ∈ {𝑔𝐵 ∣ (𝑔 supp 0 ) ∈ 𝐴}))
79 oveq1 7455 . . . . . . . 8 (𝑔 = (𝑢( ·𝑠𝑆)𝑣) → (𝑔 supp 0 ) = ((𝑢( ·𝑠𝑆)𝑣) supp 0 ))
8079eleq1d 2829 . . . . . . 7 (𝑔 = (𝑢( ·𝑠𝑆)𝑣) → ((𝑔 supp 0 ) ∈ 𝐴 ↔ ((𝑢( ·𝑠𝑆)𝑣) supp 0 ) ∈ 𝐴))
8180elrab 3708 . . . . . 6 ((𝑢( ·𝑠𝑆)𝑣) ∈ {𝑔𝐵 ∣ (𝑔 supp 0 ) ∈ 𝐴} ↔ ((𝑢( ·𝑠𝑆)𝑣) ∈ 𝐵 ∧ ((𝑢( ·𝑠𝑆)𝑣) supp 0 ) ∈ 𝐴))
8278, 81bitrdi 287 . . . . 5 ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣𝑈)) → ((𝑢( ·𝑠𝑆)𝑣) ∈ 𝑈 ↔ ((𝑢( ·𝑠𝑆)𝑣) ∈ 𝐵 ∧ ((𝑢( ·𝑠𝑆)𝑣) supp 0 ) ∈ 𝐴)))
8340, 77, 82mpbir2and 712 . . . 4 ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣𝑈)) → (𝑢( ·𝑠𝑆)𝑣) ∈ 𝑈)
84833adantr3 1171 . . 3 ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣𝑈𝑤𝑈)) → (𝑢( ·𝑠𝑆)𝑣) ∈ 𝑈)
85 simpr3 1196 . . 3 ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣𝑈𝑤𝑈)) → 𝑤𝑈)
86 eqid 2740 . . . 4 (+g𝑆) = (+g𝑆)
8786subgcl 19176 . . 3 ((𝑈 ∈ (SubGrp‘𝑆) ∧ (𝑢( ·𝑠𝑆)𝑣) ∈ 𝑈𝑤𝑈) → ((𝑢( ·𝑠𝑆)𝑣)(+g𝑆)𝑤) ∈ 𝑈)
8826, 84, 85, 87syl3anc 1371 . 2 ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣𝑈𝑤𝑈)) → ((𝑢( ·𝑠𝑆)𝑣)(+g𝑆)𝑤) ∈ 𝑈)
894, 5, 7, 8, 9, 10, 21, 25, 88islssd 20956 1 (𝜑𝑈 ∈ (LSubSp‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087  wal 1535   = wceq 1537  wcel 2108  wne 2946  wral 3067  {crab 3443  Vcvv 3488  cdif 3973  cun 3974  wss 3976  c0 4352  ccnv 5699  cima 5703  cfv 6573  (class class class)co 7448   supp csupp 8201  m cmap 8884  Fincfn 9003  cn 12293  0cn0 12553  Basecbs 17258  +gcplusg 17311  .rcmulr 17312   ·𝑠 cvsca 17315  0gc0g 17499  Grpcgrp 18973  SubGrpcsubg 19160  Ringcrg 20260  LSubSpclss 20952   mPwSer cmps 21947
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-map 8886  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-sup 9511  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-fz 13568  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-hom 17335  df-cco 17336  df-0g 17501  df-prds 17507  df-pws 17509  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-grp 18976  df-minusg 18977  df-subg 19163  df-cmn 19824  df-abl 19825  df-mgp 20162  df-rng 20180  df-ur 20209  df-ring 20262  df-lss 20953  df-psr 21952
This theorem is referenced by:  mpllss  22046
  Copyright terms: Public domain W3C validator