![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isspth | Structured version Visualization version GIF version |
Description: Conditions for a pair of classes/functions to be a simple path (in an undirected graph). (Contributed by Alexander van der Vekens, 21-Oct-2017.) (Revised by AV, 9-Jan-2021.) (Revised by AV, 29-Oct-2021.) |
Ref | Expression |
---|---|
isspth | β’ (πΉ(SPathsβπΊ)π β (πΉ(TrailsβπΊ)π β§ Fun β‘π)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | spthsfval 29484 | . 2 β’ (SPathsβπΊ) = {β¨π, πβ© β£ (π(TrailsβπΊ)π β§ Fun β‘π)} | |
2 | cnveq 5866 | . . . 4 β’ (π = π β β‘π = β‘π) | |
3 | 2 | funeqd 6563 | . . 3 β’ (π = π β (Fun β‘π β Fun β‘π)) |
4 | 3 | adantl 481 | . 2 β’ ((π = πΉ β§ π = π) β (Fun β‘π β Fun β‘π)) |
5 | reltrls 29456 | . 2 β’ Rel (TrailsβπΊ) | |
6 | 1, 4, 5 | brfvopabrbr 6988 | 1 β’ (πΉ(SPathsβπΊ)π β (πΉ(TrailsβπΊ)π β§ Fun β‘π)) |
Colors of variables: wff setvar class |
Syntax hints: β wb 205 β§ wa 395 = wceq 1533 class class class wbr 5141 β‘ccnv 5668 Fun wfun 6530 βcfv 6536 Trailsctrls 29452 SPathscspths 29475 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pr 5420 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-ral 3056 df-rex 3065 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-br 5142 df-opab 5204 df-mpt 5225 df-id 5567 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-iota 6488 df-fun 6538 df-fv 6544 df-trls 29454 df-spths 29479 |
This theorem is referenced by: spthispth 29488 spthdifv 29495 spthdep 29496 pthdepisspth 29497 spthonepeq 29514 uhgrwkspth 29517 usgr2wlkspth 29521 usgr2pth 29526 2spthd 29700 0spth 29884 3spthd 29934 spthcycl 34648 |
Copyright terms: Public domain | W3C validator |