MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isspth Structured version   Visualization version   GIF version

Theorem isspth 29704
Description: Conditions for a pair of classes/functions to be a simple path (in an undirected graph). (Contributed by Alexander van der Vekens, 21-Oct-2017.) (Revised by AV, 9-Jan-2021.) (Revised by AV, 29-Oct-2021.)
Assertion
Ref Expression
isspth (𝐹(SPaths‘𝐺)𝑃 ↔ (𝐹(Trails‘𝐺)𝑃 ∧ Fun 𝑃))

Proof of Theorem isspth
Dummy variables 𝑓 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 spthsfval 29702 . 2 (SPaths‘𝐺) = {⟨𝑓, 𝑝⟩ ∣ (𝑓(Trails‘𝐺)𝑝 ∧ Fun 𝑝)}
2 cnveq 5853 . . . 4 (𝑝 = 𝑃𝑝 = 𝑃)
32funeqd 6558 . . 3 (𝑝 = 𝑃 → (Fun 𝑝 ↔ Fun 𝑃))
43adantl 481 . 2 ((𝑓 = 𝐹𝑝 = 𝑃) → (Fun 𝑝 ↔ Fun 𝑃))
5 reltrls 29674 . 2 Rel (Trails‘𝐺)
61, 4, 5brfvopabrbr 6983 1 (𝐹(SPaths‘𝐺)𝑃 ↔ (𝐹(Trails‘𝐺)𝑃 ∧ Fun 𝑃))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540   class class class wbr 5119  ccnv 5653  Fun wfun 6525  cfv 6531  Trailsctrls 29670  SPathscspths 29693
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fv 6539  df-trls 29672  df-spths 29697
This theorem is referenced by:  spthispth  29706  spthdifv  29715  spthdep  29716  pthdepisspth  29717  spthonepeq  29734  uhgrwkspth  29737  usgr2wlkspth  29741  usgr2pth  29746  2spthd  29923  0spth  30107  3spthd  30157  spthcycl  35151  upgrimspths  47923
  Copyright terms: Public domain W3C validator