MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isspth Structured version   Visualization version   GIF version

Theorem isspth 28978
Description: Conditions for a pair of classes/functions to be a simple path (in an undirected graph). (Contributed by Alexander van der Vekens, 21-Oct-2017.) (Revised by AV, 9-Jan-2021.) (Revised by AV, 29-Oct-2021.)
Assertion
Ref Expression
isspth (𝐹(SPathsβ€˜πΊ)𝑃 ↔ (𝐹(Trailsβ€˜πΊ)𝑃 ∧ Fun ◑𝑃))

Proof of Theorem isspth
Dummy variables 𝑓 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 spthsfval 28976 . 2 (SPathsβ€˜πΊ) = {βŸ¨π‘“, π‘βŸ© ∣ (𝑓(Trailsβ€˜πΊ)𝑝 ∧ Fun ◑𝑝)}
2 cnveq 5873 . . . 4 (𝑝 = 𝑃 β†’ ◑𝑝 = ◑𝑃)
32funeqd 6570 . . 3 (𝑝 = 𝑃 β†’ (Fun ◑𝑝 ↔ Fun ◑𝑃))
43adantl 482 . 2 ((𝑓 = 𝐹 ∧ 𝑝 = 𝑃) β†’ (Fun ◑𝑝 ↔ Fun ◑𝑃))
5 reltrls 28948 . 2 Rel (Trailsβ€˜πΊ)
61, 4, 5brfvopabrbr 6995 1 (𝐹(SPathsβ€˜πΊ)𝑃 ↔ (𝐹(Trailsβ€˜πΊ)𝑃 ∧ Fun ◑𝑃))
Colors of variables: wff setvar class
Syntax hints:   ↔ wb 205   ∧ wa 396   = wceq 1541   class class class wbr 5148  β—‘ccnv 5675  Fun wfun 6537  β€˜cfv 6543  Trailsctrls 28944  SPathscspths 28967
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fv 6551  df-trls 28946  df-spths 28971
This theorem is referenced by:  spthispth  28980  spthdifv  28987  spthdep  28988  pthdepisspth  28989  spthonepeq  29006  uhgrwkspth  29009  usgr2wlkspth  29013  usgr2pth  29018  2spthd  29192  0spth  29376  3spthd  29426  spthcycl  34115
  Copyright terms: Public domain W3C validator