| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isspth | Structured version Visualization version GIF version | ||
| Description: Conditions for a pair of classes/functions to be a simple path (in an undirected graph). (Contributed by Alexander van der Vekens, 21-Oct-2017.) (Revised by AV, 9-Jan-2021.) (Revised by AV, 29-Oct-2021.) |
| Ref | Expression |
|---|---|
| isspth | ⊢ (𝐹(SPaths‘𝐺)𝑃 ↔ (𝐹(Trails‘𝐺)𝑃 ∧ Fun ◡𝑃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | spthsfval 29702 | . 2 ⊢ (SPaths‘𝐺) = {〈𝑓, 𝑝〉 ∣ (𝑓(Trails‘𝐺)𝑝 ∧ Fun ◡𝑝)} | |
| 2 | cnveq 5853 | . . . 4 ⊢ (𝑝 = 𝑃 → ◡𝑝 = ◡𝑃) | |
| 3 | 2 | funeqd 6558 | . . 3 ⊢ (𝑝 = 𝑃 → (Fun ◡𝑝 ↔ Fun ◡𝑃)) |
| 4 | 3 | adantl 481 | . 2 ⊢ ((𝑓 = 𝐹 ∧ 𝑝 = 𝑃) → (Fun ◡𝑝 ↔ Fun ◡𝑃)) |
| 5 | reltrls 29674 | . 2 ⊢ Rel (Trails‘𝐺) | |
| 6 | 1, 4, 5 | brfvopabrbr 6983 | 1 ⊢ (𝐹(SPaths‘𝐺)𝑃 ↔ (𝐹(Trails‘𝐺)𝑃 ∧ Fun ◡𝑃)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 class class class wbr 5119 ◡ccnv 5653 Fun wfun 6525 ‘cfv 6531 Trailsctrls 29670 SPathscspths 29693 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fv 6539 df-trls 29672 df-spths 29697 |
| This theorem is referenced by: spthispth 29706 spthdifv 29715 spthdep 29716 pthdepisspth 29717 spthonepeq 29734 uhgrwkspth 29737 usgr2wlkspth 29741 usgr2pth 29746 2spthd 29923 0spth 30107 3spthd 30157 spthcycl 35151 upgrimspths 47923 |
| Copyright terms: Public domain | W3C validator |