MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isspth Structured version   Visualization version   GIF version

Theorem isspth 29667
Description: Conditions for a pair of classes/functions to be a simple path (in an undirected graph). (Contributed by Alexander van der Vekens, 21-Oct-2017.) (Revised by AV, 9-Jan-2021.) (Revised by AV, 29-Oct-2021.)
Assertion
Ref Expression
isspth (𝐹(SPaths‘𝐺)𝑃 ↔ (𝐹(Trails‘𝐺)𝑃 ∧ Fun 𝑃))

Proof of Theorem isspth
Dummy variables 𝑓 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 spthsfval 29665 . 2 (SPaths‘𝐺) = {⟨𝑓, 𝑝⟩ ∣ (𝑓(Trails‘𝐺)𝑝 ∧ Fun 𝑝)}
2 cnveq 5816 . . . 4 (𝑝 = 𝑃𝑝 = 𝑃)
32funeqd 6504 . . 3 (𝑝 = 𝑃 → (Fun 𝑝 ↔ Fun 𝑃))
43adantl 481 . 2 ((𝑓 = 𝐹𝑝 = 𝑃) → (Fun 𝑝 ↔ Fun 𝑃))
5 reltrls 29638 . 2 Rel (Trails‘𝐺)
61, 4, 5brfvopabrbr 6927 1 (𝐹(SPaths‘𝐺)𝑃 ↔ (𝐹(Trails‘𝐺)𝑃 ∧ Fun 𝑃))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540   class class class wbr 5092  ccnv 5618  Fun wfun 6476  cfv 6482  Trailsctrls 29634  SPathscspths 29656
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fv 6490  df-trls 29636  df-spths 29660
This theorem is referenced by:  spthispth  29669  spthdifv  29678  spthdep  29679  pthdepisspth  29680  spthonepeq  29697  uhgrwkspth  29700  usgr2wlkspth  29704  usgr2pth  29709  2spthd  29886  0spth  30070  3spthd  30120  spthcycl  35102  upgrimspths  47894
  Copyright terms: Public domain W3C validator