| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isspth | Structured version Visualization version GIF version | ||
| Description: Conditions for a pair of classes/functions to be a simple path (in an undirected graph). (Contributed by Alexander van der Vekens, 21-Oct-2017.) (Revised by AV, 9-Jan-2021.) (Revised by AV, 29-Oct-2021.) |
| Ref | Expression |
|---|---|
| isspth | ⊢ (𝐹(SPaths‘𝐺)𝑃 ↔ (𝐹(Trails‘𝐺)𝑃 ∧ Fun ◡𝑃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | spthsfval 29698 | . 2 ⊢ (SPaths‘𝐺) = {〈𝑓, 𝑝〉 ∣ (𝑓(Trails‘𝐺)𝑝 ∧ Fun ◡𝑝)} | |
| 2 | cnveq 5812 | . . . 4 ⊢ (𝑝 = 𝑃 → ◡𝑝 = ◡𝑃) | |
| 3 | 2 | funeqd 6503 | . . 3 ⊢ (𝑝 = 𝑃 → (Fun ◡𝑝 ↔ Fun ◡𝑃)) |
| 4 | 3 | adantl 481 | . 2 ⊢ ((𝑓 = 𝐹 ∧ 𝑝 = 𝑃) → (Fun ◡𝑝 ↔ Fun ◡𝑃)) |
| 5 | reltrls 29671 | . 2 ⊢ Rel (Trails‘𝐺) | |
| 6 | 1, 4, 5 | brfvopabrbr 6926 | 1 ⊢ (𝐹(SPaths‘𝐺)𝑃 ↔ (𝐹(Trails‘𝐺)𝑃 ∧ Fun ◡𝑃)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1541 class class class wbr 5089 ◡ccnv 5613 Fun wfun 6475 ‘cfv 6481 Trailsctrls 29667 SPathscspths 29689 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fv 6489 df-trls 29669 df-spths 29693 |
| This theorem is referenced by: spthispth 29702 spthdifv 29711 spthdep 29712 pthdepisspth 29713 spthonepeq 29730 uhgrwkspth 29733 usgr2wlkspth 29737 usgr2pth 29742 2spthd 29919 0spth 30106 3spthd 30156 spthcycl 35173 upgrimspths 47949 |
| Copyright terms: Public domain | W3C validator |