MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isspth Structured version   Visualization version   GIF version

Theorem isspth 29700
Description: Conditions for a pair of classes/functions to be a simple path (in an undirected graph). (Contributed by Alexander van der Vekens, 21-Oct-2017.) (Revised by AV, 9-Jan-2021.) (Revised by AV, 29-Oct-2021.)
Assertion
Ref Expression
isspth (𝐹(SPaths‘𝐺)𝑃 ↔ (𝐹(Trails‘𝐺)𝑃 ∧ Fun 𝑃))

Proof of Theorem isspth
Dummy variables 𝑓 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 spthsfval 29698 . 2 (SPaths‘𝐺) = {⟨𝑓, 𝑝⟩ ∣ (𝑓(Trails‘𝐺)𝑝 ∧ Fun 𝑝)}
2 cnveq 5812 . . . 4 (𝑝 = 𝑃𝑝 = 𝑃)
32funeqd 6503 . . 3 (𝑝 = 𝑃 → (Fun 𝑝 ↔ Fun 𝑃))
43adantl 481 . 2 ((𝑓 = 𝐹𝑝 = 𝑃) → (Fun 𝑝 ↔ Fun 𝑃))
5 reltrls 29671 . 2 Rel (Trails‘𝐺)
61, 4, 5brfvopabrbr 6926 1 (𝐹(SPaths‘𝐺)𝑃 ↔ (𝐹(Trails‘𝐺)𝑃 ∧ Fun 𝑃))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1541   class class class wbr 5089  ccnv 5613  Fun wfun 6475  cfv 6481  Trailsctrls 29667  SPathscspths 29689
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fv 6489  df-trls 29669  df-spths 29693
This theorem is referenced by:  spthispth  29702  spthdifv  29711  spthdep  29712  pthdepisspth  29713  spthonepeq  29730  uhgrwkspth  29733  usgr2wlkspth  29737  usgr2pth  29742  2spthd  29919  0spth  30106  3spthd  30156  spthcycl  35173  upgrimspths  47949
  Copyright terms: Public domain W3C validator