Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pl42lem2N Structured version   Visualization version   GIF version

Theorem pl42lem2N 37118
Description: Lemma for pl42N 37121. (Contributed by NM, 8-Apr-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
pl42lem.b 𝐵 = (Base‘𝐾)
pl42lem.l = (le‘𝐾)
pl42lem.j = (join‘𝐾)
pl42lem.m = (meet‘𝐾)
pl42lem.o = (oc‘𝐾)
pl42lem.f 𝐹 = (pmap‘𝐾)
pl42lem.p + = (+𝑃𝐾)
Assertion
Ref Expression
pl42lem2N (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵)) → (((𝐹𝑋) + (𝐹𝑌)) + (((𝐹𝑋) + (𝐹𝑊)) ∩ ((𝐹𝑌) + (𝐹𝑉)))) ⊆ (𝐹‘((𝑋 𝑌) ((𝑋 𝑊) (𝑌 𝑉)))))

Proof of Theorem pl42lem2N
StepHypRef Expression
1 simpl1 1187 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵)) → 𝐾 ∈ HL)
21hllatd 36502 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵)) → 𝐾 ∈ Lat)
3 simpl2 1188 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵)) → 𝑋𝐵)
4 simpl3 1189 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵)) → 𝑌𝐵)
5 pl42lem.b . . . . . . 7 𝐵 = (Base‘𝐾)
6 pl42lem.j . . . . . . 7 = (join‘𝐾)
75, 6latjcl 17663 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) ∈ 𝐵)
82, 3, 4, 7syl3anc 1367 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵)) → (𝑋 𝑌) ∈ 𝐵)
9 eqid 2823 . . . . . 6 (Atoms‘𝐾) = (Atoms‘𝐾)
10 pl42lem.f . . . . . 6 𝐹 = (pmap‘𝐾)
115, 9, 10pmapssat 36897 . . . . 5 ((𝐾 ∈ HL ∧ (𝑋 𝑌) ∈ 𝐵) → (𝐹‘(𝑋 𝑌)) ⊆ (Atoms‘𝐾))
121, 8, 11syl2anc 586 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵)) → (𝐹‘(𝑋 𝑌)) ⊆ (Atoms‘𝐾))
13 simpr2 1191 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵)) → 𝑊𝐵)
145, 6latjcl 17663 . . . . . . 7 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑊𝐵) → (𝑋 𝑊) ∈ 𝐵)
152, 3, 13, 14syl3anc 1367 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵)) → (𝑋 𝑊) ∈ 𝐵)
16 simpr3 1192 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵)) → 𝑉𝐵)
175, 6latjcl 17663 . . . . . . 7 ((𝐾 ∈ Lat ∧ 𝑌𝐵𝑉𝐵) → (𝑌 𝑉) ∈ 𝐵)
182, 4, 16, 17syl3anc 1367 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵)) → (𝑌 𝑉) ∈ 𝐵)
19 pl42lem.m . . . . . . 7 = (meet‘𝐾)
205, 19latmcl 17664 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑋 𝑊) ∈ 𝐵 ∧ (𝑌 𝑉) ∈ 𝐵) → ((𝑋 𝑊) (𝑌 𝑉)) ∈ 𝐵)
212, 15, 18, 20syl3anc 1367 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵)) → ((𝑋 𝑊) (𝑌 𝑉)) ∈ 𝐵)
225, 9, 10pmapssat 36897 . . . . 5 ((𝐾 ∈ HL ∧ ((𝑋 𝑊) (𝑌 𝑉)) ∈ 𝐵) → (𝐹‘((𝑋 𝑊) (𝑌 𝑉))) ⊆ (Atoms‘𝐾))
231, 21, 22syl2anc 586 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵)) → (𝐹‘((𝑋 𝑊) (𝑌 𝑉))) ⊆ (Atoms‘𝐾))
241, 12, 233jca 1124 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵)) → (𝐾 ∈ HL ∧ (𝐹‘(𝑋 𝑌)) ⊆ (Atoms‘𝐾) ∧ (𝐹‘((𝑋 𝑊) (𝑌 𝑉))) ⊆ (Atoms‘𝐾)))
25 pl42lem.p . . . . . 6 + = (+𝑃𝐾)
265, 6, 10, 25pmapjoin 36990 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → ((𝐹𝑋) + (𝐹𝑌)) ⊆ (𝐹‘(𝑋 𝑌)))
272, 3, 4, 26syl3anc 1367 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵)) → ((𝐹𝑋) + (𝐹𝑌)) ⊆ (𝐹‘(𝑋 𝑌)))
285, 6, 10, 25pmapjoin 36990 . . . . . . 7 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑊𝐵) → ((𝐹𝑋) + (𝐹𝑊)) ⊆ (𝐹‘(𝑋 𝑊)))
292, 3, 13, 28syl3anc 1367 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵)) → ((𝐹𝑋) + (𝐹𝑊)) ⊆ (𝐹‘(𝑋 𝑊)))
305, 6, 10, 25pmapjoin 36990 . . . . . . 7 ((𝐾 ∈ Lat ∧ 𝑌𝐵𝑉𝐵) → ((𝐹𝑌) + (𝐹𝑉)) ⊆ (𝐹‘(𝑌 𝑉)))
312, 4, 16, 30syl3anc 1367 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵)) → ((𝐹𝑌) + (𝐹𝑉)) ⊆ (𝐹‘(𝑌 𝑉)))
32 ss2in 4215 . . . . . 6 ((((𝐹𝑋) + (𝐹𝑊)) ⊆ (𝐹‘(𝑋 𝑊)) ∧ ((𝐹𝑌) + (𝐹𝑉)) ⊆ (𝐹‘(𝑌 𝑉))) → (((𝐹𝑋) + (𝐹𝑊)) ∩ ((𝐹𝑌) + (𝐹𝑉))) ⊆ ((𝐹‘(𝑋 𝑊)) ∩ (𝐹‘(𝑌 𝑉))))
3329, 31, 32syl2anc 586 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵)) → (((𝐹𝑋) + (𝐹𝑊)) ∩ ((𝐹𝑌) + (𝐹𝑉))) ⊆ ((𝐹‘(𝑋 𝑊)) ∩ (𝐹‘(𝑌 𝑉))))
345, 19, 9, 10pmapmeet 36911 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑋 𝑊) ∈ 𝐵 ∧ (𝑌 𝑉) ∈ 𝐵) → (𝐹‘((𝑋 𝑊) (𝑌 𝑉))) = ((𝐹‘(𝑋 𝑊)) ∩ (𝐹‘(𝑌 𝑉))))
351, 15, 18, 34syl3anc 1367 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵)) → (𝐹‘((𝑋 𝑊) (𝑌 𝑉))) = ((𝐹‘(𝑋 𝑊)) ∩ (𝐹‘(𝑌 𝑉))))
3633, 35sseqtrrd 4010 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵)) → (((𝐹𝑋) + (𝐹𝑊)) ∩ ((𝐹𝑌) + (𝐹𝑉))) ⊆ (𝐹‘((𝑋 𝑊) (𝑌 𝑉))))
3727, 36jca 514 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵)) → (((𝐹𝑋) + (𝐹𝑌)) ⊆ (𝐹‘(𝑋 𝑌)) ∧ (((𝐹𝑋) + (𝐹𝑊)) ∩ ((𝐹𝑌) + (𝐹𝑉))) ⊆ (𝐹‘((𝑋 𝑊) (𝑌 𝑉)))))
389, 25paddss12 36957 . . 3 ((𝐾 ∈ HL ∧ (𝐹‘(𝑋 𝑌)) ⊆ (Atoms‘𝐾) ∧ (𝐹‘((𝑋 𝑊) (𝑌 𝑉))) ⊆ (Atoms‘𝐾)) → ((((𝐹𝑋) + (𝐹𝑌)) ⊆ (𝐹‘(𝑋 𝑌)) ∧ (((𝐹𝑋) + (𝐹𝑊)) ∩ ((𝐹𝑌) + (𝐹𝑉))) ⊆ (𝐹‘((𝑋 𝑊) (𝑌 𝑉)))) → (((𝐹𝑋) + (𝐹𝑌)) + (((𝐹𝑋) + (𝐹𝑊)) ∩ ((𝐹𝑌) + (𝐹𝑉)))) ⊆ ((𝐹‘(𝑋 𝑌)) + (𝐹‘((𝑋 𝑊) (𝑌 𝑉))))))
3924, 37, 38sylc 65 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵)) → (((𝐹𝑋) + (𝐹𝑌)) + (((𝐹𝑋) + (𝐹𝑊)) ∩ ((𝐹𝑌) + (𝐹𝑉)))) ⊆ ((𝐹‘(𝑋 𝑌)) + (𝐹‘((𝑋 𝑊) (𝑌 𝑉)))))
405, 6, 10, 25pmapjoin 36990 . . 3 ((𝐾 ∈ Lat ∧ (𝑋 𝑌) ∈ 𝐵 ∧ ((𝑋 𝑊) (𝑌 𝑉)) ∈ 𝐵) → ((𝐹‘(𝑋 𝑌)) + (𝐹‘((𝑋 𝑊) (𝑌 𝑉)))) ⊆ (𝐹‘((𝑋 𝑌) ((𝑋 𝑊) (𝑌 𝑉)))))
412, 8, 21, 40syl3anc 1367 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵)) → ((𝐹‘(𝑋 𝑌)) + (𝐹‘((𝑋 𝑊) (𝑌 𝑉)))) ⊆ (𝐹‘((𝑋 𝑌) ((𝑋 𝑊) (𝑌 𝑉)))))
4239, 41sstrd 3979 1 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵)) → (((𝐹𝑋) + (𝐹𝑌)) + (((𝐹𝑋) + (𝐹𝑊)) ∩ ((𝐹𝑌) + (𝐹𝑉)))) ⊆ (𝐹‘((𝑋 𝑌) ((𝑋 𝑊) (𝑌 𝑉)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1537  wcel 2114  cin 3937  wss 3938  cfv 6357  (class class class)co 7158  Basecbs 16485  lecple 16574  occoc 16575  joincjn 17556  meetcmee 17557  Latclat 17657  Atomscatm 36401  HLchlt 36488  pmapcpmap 36635  +𝑃cpadd 36933
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-reu 3147  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-iun 4923  df-iin 4924  df-br 5069  df-opab 5131  df-mpt 5149  df-id 5462  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-1st 7691  df-2nd 7692  df-poset 17558  df-lub 17586  df-glb 17587  df-join 17588  df-meet 17589  df-lat 17658  df-clat 17720  df-ats 36405  df-atl 36436  df-cvlat 36460  df-hlat 36489  df-pmap 36642  df-padd 36934
This theorem is referenced by:  pl42lem4N  37120
  Copyright terms: Public domain W3C validator