Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pl42lem2N Structured version   Visualization version   GIF version

Theorem pl42lem2N 40089
Description: Lemma for pl42N 40092. (Contributed by NM, 8-Apr-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
pl42lem.b 𝐵 = (Base‘𝐾)
pl42lem.l = (le‘𝐾)
pl42lem.j = (join‘𝐾)
pl42lem.m = (meet‘𝐾)
pl42lem.o = (oc‘𝐾)
pl42lem.f 𝐹 = (pmap‘𝐾)
pl42lem.p + = (+𝑃𝐾)
Assertion
Ref Expression
pl42lem2N (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵)) → (((𝐹𝑋) + (𝐹𝑌)) + (((𝐹𝑋) + (𝐹𝑊)) ∩ ((𝐹𝑌) + (𝐹𝑉)))) ⊆ (𝐹‘((𝑋 𝑌) ((𝑋 𝑊) (𝑌 𝑉)))))

Proof of Theorem pl42lem2N
StepHypRef Expression
1 simpl1 1192 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵)) → 𝐾 ∈ HL)
21hllatd 39473 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵)) → 𝐾 ∈ Lat)
3 simpl2 1193 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵)) → 𝑋𝐵)
4 simpl3 1194 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵)) → 𝑌𝐵)
5 pl42lem.b . . . . . . 7 𝐵 = (Base‘𝐾)
6 pl42lem.j . . . . . . 7 = (join‘𝐾)
75, 6latjcl 18345 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) ∈ 𝐵)
82, 3, 4, 7syl3anc 1373 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵)) → (𝑋 𝑌) ∈ 𝐵)
9 eqid 2731 . . . . . 6 (Atoms‘𝐾) = (Atoms‘𝐾)
10 pl42lem.f . . . . . 6 𝐹 = (pmap‘𝐾)
115, 9, 10pmapssat 39868 . . . . 5 ((𝐾 ∈ HL ∧ (𝑋 𝑌) ∈ 𝐵) → (𝐹‘(𝑋 𝑌)) ⊆ (Atoms‘𝐾))
121, 8, 11syl2anc 584 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵)) → (𝐹‘(𝑋 𝑌)) ⊆ (Atoms‘𝐾))
13 simpr2 1196 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵)) → 𝑊𝐵)
145, 6latjcl 18345 . . . . . . 7 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑊𝐵) → (𝑋 𝑊) ∈ 𝐵)
152, 3, 13, 14syl3anc 1373 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵)) → (𝑋 𝑊) ∈ 𝐵)
16 simpr3 1197 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵)) → 𝑉𝐵)
175, 6latjcl 18345 . . . . . . 7 ((𝐾 ∈ Lat ∧ 𝑌𝐵𝑉𝐵) → (𝑌 𝑉) ∈ 𝐵)
182, 4, 16, 17syl3anc 1373 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵)) → (𝑌 𝑉) ∈ 𝐵)
19 pl42lem.m . . . . . . 7 = (meet‘𝐾)
205, 19latmcl 18346 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑋 𝑊) ∈ 𝐵 ∧ (𝑌 𝑉) ∈ 𝐵) → ((𝑋 𝑊) (𝑌 𝑉)) ∈ 𝐵)
212, 15, 18, 20syl3anc 1373 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵)) → ((𝑋 𝑊) (𝑌 𝑉)) ∈ 𝐵)
225, 9, 10pmapssat 39868 . . . . 5 ((𝐾 ∈ HL ∧ ((𝑋 𝑊) (𝑌 𝑉)) ∈ 𝐵) → (𝐹‘((𝑋 𝑊) (𝑌 𝑉))) ⊆ (Atoms‘𝐾))
231, 21, 22syl2anc 584 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵)) → (𝐹‘((𝑋 𝑊) (𝑌 𝑉))) ⊆ (Atoms‘𝐾))
241, 12, 233jca 1128 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵)) → (𝐾 ∈ HL ∧ (𝐹‘(𝑋 𝑌)) ⊆ (Atoms‘𝐾) ∧ (𝐹‘((𝑋 𝑊) (𝑌 𝑉))) ⊆ (Atoms‘𝐾)))
25 pl42lem.p . . . . . 6 + = (+𝑃𝐾)
265, 6, 10, 25pmapjoin 39961 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → ((𝐹𝑋) + (𝐹𝑌)) ⊆ (𝐹‘(𝑋 𝑌)))
272, 3, 4, 26syl3anc 1373 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵)) → ((𝐹𝑋) + (𝐹𝑌)) ⊆ (𝐹‘(𝑋 𝑌)))
285, 6, 10, 25pmapjoin 39961 . . . . . . 7 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑊𝐵) → ((𝐹𝑋) + (𝐹𝑊)) ⊆ (𝐹‘(𝑋 𝑊)))
292, 3, 13, 28syl3anc 1373 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵)) → ((𝐹𝑋) + (𝐹𝑊)) ⊆ (𝐹‘(𝑋 𝑊)))
305, 6, 10, 25pmapjoin 39961 . . . . . . 7 ((𝐾 ∈ Lat ∧ 𝑌𝐵𝑉𝐵) → ((𝐹𝑌) + (𝐹𝑉)) ⊆ (𝐹‘(𝑌 𝑉)))
312, 4, 16, 30syl3anc 1373 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵)) → ((𝐹𝑌) + (𝐹𝑉)) ⊆ (𝐹‘(𝑌 𝑉)))
32 ss2in 4192 . . . . . 6 ((((𝐹𝑋) + (𝐹𝑊)) ⊆ (𝐹‘(𝑋 𝑊)) ∧ ((𝐹𝑌) + (𝐹𝑉)) ⊆ (𝐹‘(𝑌 𝑉))) → (((𝐹𝑋) + (𝐹𝑊)) ∩ ((𝐹𝑌) + (𝐹𝑉))) ⊆ ((𝐹‘(𝑋 𝑊)) ∩ (𝐹‘(𝑌 𝑉))))
3329, 31, 32syl2anc 584 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵)) → (((𝐹𝑋) + (𝐹𝑊)) ∩ ((𝐹𝑌) + (𝐹𝑉))) ⊆ ((𝐹‘(𝑋 𝑊)) ∩ (𝐹‘(𝑌 𝑉))))
345, 19, 9, 10pmapmeet 39882 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑋 𝑊) ∈ 𝐵 ∧ (𝑌 𝑉) ∈ 𝐵) → (𝐹‘((𝑋 𝑊) (𝑌 𝑉))) = ((𝐹‘(𝑋 𝑊)) ∩ (𝐹‘(𝑌 𝑉))))
351, 15, 18, 34syl3anc 1373 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵)) → (𝐹‘((𝑋 𝑊) (𝑌 𝑉))) = ((𝐹‘(𝑋 𝑊)) ∩ (𝐹‘(𝑌 𝑉))))
3633, 35sseqtrrd 3967 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵)) → (((𝐹𝑋) + (𝐹𝑊)) ∩ ((𝐹𝑌) + (𝐹𝑉))) ⊆ (𝐹‘((𝑋 𝑊) (𝑌 𝑉))))
3727, 36jca 511 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵)) → (((𝐹𝑋) + (𝐹𝑌)) ⊆ (𝐹‘(𝑋 𝑌)) ∧ (((𝐹𝑋) + (𝐹𝑊)) ∩ ((𝐹𝑌) + (𝐹𝑉))) ⊆ (𝐹‘((𝑋 𝑊) (𝑌 𝑉)))))
389, 25paddss12 39928 . . 3 ((𝐾 ∈ HL ∧ (𝐹‘(𝑋 𝑌)) ⊆ (Atoms‘𝐾) ∧ (𝐹‘((𝑋 𝑊) (𝑌 𝑉))) ⊆ (Atoms‘𝐾)) → ((((𝐹𝑋) + (𝐹𝑌)) ⊆ (𝐹‘(𝑋 𝑌)) ∧ (((𝐹𝑋) + (𝐹𝑊)) ∩ ((𝐹𝑌) + (𝐹𝑉))) ⊆ (𝐹‘((𝑋 𝑊) (𝑌 𝑉)))) → (((𝐹𝑋) + (𝐹𝑌)) + (((𝐹𝑋) + (𝐹𝑊)) ∩ ((𝐹𝑌) + (𝐹𝑉)))) ⊆ ((𝐹‘(𝑋 𝑌)) + (𝐹‘((𝑋 𝑊) (𝑌 𝑉))))))
3924, 37, 38sylc 65 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵)) → (((𝐹𝑋) + (𝐹𝑌)) + (((𝐹𝑋) + (𝐹𝑊)) ∩ ((𝐹𝑌) + (𝐹𝑉)))) ⊆ ((𝐹‘(𝑋 𝑌)) + (𝐹‘((𝑋 𝑊) (𝑌 𝑉)))))
405, 6, 10, 25pmapjoin 39961 . . 3 ((𝐾 ∈ Lat ∧ (𝑋 𝑌) ∈ 𝐵 ∧ ((𝑋 𝑊) (𝑌 𝑉)) ∈ 𝐵) → ((𝐹‘(𝑋 𝑌)) + (𝐹‘((𝑋 𝑊) (𝑌 𝑉)))) ⊆ (𝐹‘((𝑋 𝑌) ((𝑋 𝑊) (𝑌 𝑉)))))
412, 8, 21, 40syl3anc 1373 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵)) → ((𝐹‘(𝑋 𝑌)) + (𝐹‘((𝑋 𝑊) (𝑌 𝑉)))) ⊆ (𝐹‘((𝑋 𝑌) ((𝑋 𝑊) (𝑌 𝑉)))))
4239, 41sstrd 3940 1 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵)) → (((𝐹𝑋) + (𝐹𝑌)) + (((𝐹𝑋) + (𝐹𝑊)) ∩ ((𝐹𝑌) + (𝐹𝑉)))) ⊆ (𝐹‘((𝑋 𝑌) ((𝑋 𝑊) (𝑌 𝑉)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2111  cin 3896  wss 3897  cfv 6481  (class class class)co 7346  Basecbs 17120  lecple 17168  occoc 17169  joincjn 18217  meetcmee 18218  Latclat 18337  Atomscatm 39372  HLchlt 39459  pmapcpmap 39606  +𝑃cpadd 39904
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-iin 4942  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-poset 18219  df-lub 18250  df-glb 18251  df-join 18252  df-meet 18253  df-lat 18338  df-clat 18405  df-ats 39376  df-atl 39407  df-cvlat 39431  df-hlat 39460  df-pmap 39613  df-padd 39905
This theorem is referenced by:  pl42lem4N  40091
  Copyright terms: Public domain W3C validator