MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fbssfi Structured version   Visualization version   GIF version

Theorem fbssfi 23561
Description: A filter base contains subsets of its finite intersections. (Contributed by Mario Carneiro, 26-Nov-2013.) (Revised by Stefan O'Rear, 28-Jul-2015.)
Assertion
Ref Expression
fbssfi ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐴 ∈ (fi‘𝐹)) → ∃𝑥𝐹 𝑥𝐴)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹   𝑥,𝑋

Proof of Theorem fbssfi
Dummy variables 𝑡 𝑢 𝑣 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dffi2 9420 . . . 4 (𝐹 ∈ (fBas‘𝑋) → (fi‘𝐹) = {𝑧 ∣ (𝐹𝑧 ∧ ∀𝑢𝑧𝑣𝑧 (𝑢𝑣) ∈ 𝑧)})
2 sseq2 4007 . . . . . . . . . . . . . . . 16 (𝑡 = (𝑢𝑣) → (𝑥𝑡𝑥 ⊆ (𝑢𝑣)))
32rexbidv 3176 . . . . . . . . . . . . . . 15 (𝑡 = (𝑢𝑣) → (∃𝑥𝐹 𝑥𝑡 ↔ ∃𝑥𝐹 𝑥 ⊆ (𝑢𝑣)))
4 inss1 4227 . . . . . . . . . . . . . . . . 17 (𝑢𝑣) ⊆ 𝑢
5 simp1r 1196 . . . . . . . . . . . . . . . . . 18 (((𝐹 ∈ (fBas‘𝑋) ∧ 𝑢 ∈ 𝒫 𝐹) ∧ (𝑦𝐹𝑦𝑢) ∧ (𝑧𝐹𝑧𝑣)) → 𝑢 ∈ 𝒫 𝐹)
65elpwid 4610 . . . . . . . . . . . . . . . . 17 (((𝐹 ∈ (fBas‘𝑋) ∧ 𝑢 ∈ 𝒫 𝐹) ∧ (𝑦𝐹𝑦𝑢) ∧ (𝑧𝐹𝑧𝑣)) → 𝑢 𝐹)
74, 6sstrid 3992 . . . . . . . . . . . . . . . 16 (((𝐹 ∈ (fBas‘𝑋) ∧ 𝑢 ∈ 𝒫 𝐹) ∧ (𝑦𝐹𝑦𝑢) ∧ (𝑧𝐹𝑧𝑣)) → (𝑢𝑣) ⊆ 𝐹)
8 vex 3476 . . . . . . . . . . . . . . . . . 18 𝑢 ∈ V
98inex1 5316 . . . . . . . . . . . . . . . . 17 (𝑢𝑣) ∈ V
109elpw 4605 . . . . . . . . . . . . . . . 16 ((𝑢𝑣) ∈ 𝒫 𝐹 ↔ (𝑢𝑣) ⊆ 𝐹)
117, 10sylibr 233 . . . . . . . . . . . . . . 15 (((𝐹 ∈ (fBas‘𝑋) ∧ 𝑢 ∈ 𝒫 𝐹) ∧ (𝑦𝐹𝑦𝑢) ∧ (𝑧𝐹𝑧𝑣)) → (𝑢𝑣) ∈ 𝒫 𝐹)
12 simpl 481 . . . . . . . . . . . . . . . . 17 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝑢 ∈ 𝒫 𝐹) → 𝐹 ∈ (fBas‘𝑋))
13 simpl 481 . . . . . . . . . . . . . . . . 17 ((𝑦𝐹𝑦𝑢) → 𝑦𝐹)
14 simpl 481 . . . . . . . . . . . . . . . . 17 ((𝑧𝐹𝑧𝑣) → 𝑧𝐹)
15 fbasssin 23560 . . . . . . . . . . . . . . . . 17 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝑦𝐹𝑧𝐹) → ∃𝑥𝐹 𝑥 ⊆ (𝑦𝑧))
1612, 13, 14, 15syl3an 1158 . . . . . . . . . . . . . . . 16 (((𝐹 ∈ (fBas‘𝑋) ∧ 𝑢 ∈ 𝒫 𝐹) ∧ (𝑦𝐹𝑦𝑢) ∧ (𝑧𝐹𝑧𝑣)) → ∃𝑥𝐹 𝑥 ⊆ (𝑦𝑧))
17 ss2in 4235 . . . . . . . . . . . . . . . . . . . 20 ((𝑦𝑢𝑧𝑣) → (𝑦𝑧) ⊆ (𝑢𝑣))
1817ad2ant2l 742 . . . . . . . . . . . . . . . . . . 19 (((𝑦𝐹𝑦𝑢) ∧ (𝑧𝐹𝑧𝑣)) → (𝑦𝑧) ⊆ (𝑢𝑣))
19183adant1 1128 . . . . . . . . . . . . . . . . . 18 (((𝐹 ∈ (fBas‘𝑋) ∧ 𝑢 ∈ 𝒫 𝐹) ∧ (𝑦𝐹𝑦𝑢) ∧ (𝑧𝐹𝑧𝑣)) → (𝑦𝑧) ⊆ (𝑢𝑣))
20 sstr 3989 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ⊆ (𝑦𝑧) ∧ (𝑦𝑧) ⊆ (𝑢𝑣)) → 𝑥 ⊆ (𝑢𝑣))
2120expcom 412 . . . . . . . . . . . . . . . . . 18 ((𝑦𝑧) ⊆ (𝑢𝑣) → (𝑥 ⊆ (𝑦𝑧) → 𝑥 ⊆ (𝑢𝑣)))
2219, 21syl 17 . . . . . . . . . . . . . . . . 17 (((𝐹 ∈ (fBas‘𝑋) ∧ 𝑢 ∈ 𝒫 𝐹) ∧ (𝑦𝐹𝑦𝑢) ∧ (𝑧𝐹𝑧𝑣)) → (𝑥 ⊆ (𝑦𝑧) → 𝑥 ⊆ (𝑢𝑣)))
2322reximdv 3168 . . . . . . . . . . . . . . . 16 (((𝐹 ∈ (fBas‘𝑋) ∧ 𝑢 ∈ 𝒫 𝐹) ∧ (𝑦𝐹𝑦𝑢) ∧ (𝑧𝐹𝑧𝑣)) → (∃𝑥𝐹 𝑥 ⊆ (𝑦𝑧) → ∃𝑥𝐹 𝑥 ⊆ (𝑢𝑣)))
2416, 23mpd 15 . . . . . . . . . . . . . . 15 (((𝐹 ∈ (fBas‘𝑋) ∧ 𝑢 ∈ 𝒫 𝐹) ∧ (𝑦𝐹𝑦𝑢) ∧ (𝑧𝐹𝑧𝑣)) → ∃𝑥𝐹 𝑥 ⊆ (𝑢𝑣))
253, 11, 24elrabd 3684 . . . . . . . . . . . . . 14 (((𝐹 ∈ (fBas‘𝑋) ∧ 𝑢 ∈ 𝒫 𝐹) ∧ (𝑦𝐹𝑦𝑢) ∧ (𝑧𝐹𝑧𝑣)) → (𝑢𝑣) ∈ {𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡})
26253expa 1116 . . . . . . . . . . . . 13 ((((𝐹 ∈ (fBas‘𝑋) ∧ 𝑢 ∈ 𝒫 𝐹) ∧ (𝑦𝐹𝑦𝑢)) ∧ (𝑧𝐹𝑧𝑣)) → (𝑢𝑣) ∈ {𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡})
2726rexlimdvaa 3154 . . . . . . . . . . . 12 (((𝐹 ∈ (fBas‘𝑋) ∧ 𝑢 ∈ 𝒫 𝐹) ∧ (𝑦𝐹𝑦𝑢)) → (∃𝑧𝐹 𝑧𝑣 → (𝑢𝑣) ∈ {𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡}))
2827ralrimivw 3148 . . . . . . . . . . 11 (((𝐹 ∈ (fBas‘𝑋) ∧ 𝑢 ∈ 𝒫 𝐹) ∧ (𝑦𝐹𝑦𝑢)) → ∀𝑣 ∈ 𝒫 𝐹(∃𝑧𝐹 𝑧𝑣 → (𝑢𝑣) ∈ {𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡}))
29 sseq2 4007 . . . . . . . . . . . . . 14 (𝑡 = 𝑣 → (𝑥𝑡𝑥𝑣))
3029rexbidv 3176 . . . . . . . . . . . . 13 (𝑡 = 𝑣 → (∃𝑥𝐹 𝑥𝑡 ↔ ∃𝑥𝐹 𝑥𝑣))
31 sseq1 4006 . . . . . . . . . . . . . 14 (𝑥 = 𝑧 → (𝑥𝑣𝑧𝑣))
3231cbvrexvw 3233 . . . . . . . . . . . . 13 (∃𝑥𝐹 𝑥𝑣 ↔ ∃𝑧𝐹 𝑧𝑣)
3330, 32bitrdi 286 . . . . . . . . . . . 12 (𝑡 = 𝑣 → (∃𝑥𝐹 𝑥𝑡 ↔ ∃𝑧𝐹 𝑧𝑣))
3433ralrab 3688 . . . . . . . . . . 11 (∀𝑣 ∈ {𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡} (𝑢𝑣) ∈ {𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡} ↔ ∀𝑣 ∈ 𝒫 𝐹(∃𝑧𝐹 𝑧𝑣 → (𝑢𝑣) ∈ {𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡}))
3528, 34sylibr 233 . . . . . . . . . 10 (((𝐹 ∈ (fBas‘𝑋) ∧ 𝑢 ∈ 𝒫 𝐹) ∧ (𝑦𝐹𝑦𝑢)) → ∀𝑣 ∈ {𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡} (𝑢𝑣) ∈ {𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡})
3635rexlimdvaa 3154 . . . . . . . . 9 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝑢 ∈ 𝒫 𝐹) → (∃𝑦𝐹 𝑦𝑢 → ∀𝑣 ∈ {𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡} (𝑢𝑣) ∈ {𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡}))
3736ralrimiva 3144 . . . . . . . 8 (𝐹 ∈ (fBas‘𝑋) → ∀𝑢 ∈ 𝒫 𝐹(∃𝑦𝐹 𝑦𝑢 → ∀𝑣 ∈ {𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡} (𝑢𝑣) ∈ {𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡}))
38 sseq2 4007 . . . . . . . . . . 11 (𝑡 = 𝑢 → (𝑥𝑡𝑥𝑢))
3938rexbidv 3176 . . . . . . . . . 10 (𝑡 = 𝑢 → (∃𝑥𝐹 𝑥𝑡 ↔ ∃𝑥𝐹 𝑥𝑢))
40 sseq1 4006 . . . . . . . . . . 11 (𝑥 = 𝑦 → (𝑥𝑢𝑦𝑢))
4140cbvrexvw 3233 . . . . . . . . . 10 (∃𝑥𝐹 𝑥𝑢 ↔ ∃𝑦𝐹 𝑦𝑢)
4239, 41bitrdi 286 . . . . . . . . 9 (𝑡 = 𝑢 → (∃𝑥𝐹 𝑥𝑡 ↔ ∃𝑦𝐹 𝑦𝑢))
4342ralrab 3688 . . . . . . . 8 (∀𝑢 ∈ {𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡}∀𝑣 ∈ {𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡} (𝑢𝑣) ∈ {𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡} ↔ ∀𝑢 ∈ 𝒫 𝐹(∃𝑦𝐹 𝑦𝑢 → ∀𝑣 ∈ {𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡} (𝑢𝑣) ∈ {𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡}))
4437, 43sylibr 233 . . . . . . 7 (𝐹 ∈ (fBas‘𝑋) → ∀𝑢 ∈ {𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡}∀𝑣 ∈ {𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡} (𝑢𝑣) ∈ {𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡})
45 pwuni 4948 . . . . . . . 8 𝐹 ⊆ 𝒫 𝐹
46 ssid 4003 . . . . . . . . . 10 𝑡𝑡
47 sseq1 4006 . . . . . . . . . . 11 (𝑥 = 𝑡 → (𝑥𝑡𝑡𝑡))
4847rspcev 3611 . . . . . . . . . 10 ((𝑡𝐹𝑡𝑡) → ∃𝑥𝐹 𝑥𝑡)
4946, 48mpan2 687 . . . . . . . . 9 (𝑡𝐹 → ∃𝑥𝐹 𝑥𝑡)
5049rgen 3061 . . . . . . . 8 𝑡𝐹𝑥𝐹 𝑥𝑡
51 ssrab 4069 . . . . . . . 8 (𝐹 ⊆ {𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡} ↔ (𝐹 ⊆ 𝒫 𝐹 ∧ ∀𝑡𝐹𝑥𝐹 𝑥𝑡))
5245, 50, 51mpbir2an 707 . . . . . . 7 𝐹 ⊆ {𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡}
5344, 52jctil 518 . . . . . 6 (𝐹 ∈ (fBas‘𝑋) → (𝐹 ⊆ {𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡} ∧ ∀𝑢 ∈ {𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡}∀𝑣 ∈ {𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡} (𝑢𝑣) ∈ {𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡}))
54 uniexg 7732 . . . . . . 7 (𝐹 ∈ (fBas‘𝑋) → 𝐹 ∈ V)
55 pwexg 5375 . . . . . . 7 ( 𝐹 ∈ V → 𝒫 𝐹 ∈ V)
56 rabexg 5330 . . . . . . 7 (𝒫 𝐹 ∈ V → {𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡} ∈ V)
57 sseq2 4007 . . . . . . . . 9 (𝑧 = {𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡} → (𝐹𝑧𝐹 ⊆ {𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡}))
58 eleq2 2820 . . . . . . . . . . 11 (𝑧 = {𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡} → ((𝑢𝑣) ∈ 𝑧 ↔ (𝑢𝑣) ∈ {𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡}))
5958raleqbi1dv 3331 . . . . . . . . . 10 (𝑧 = {𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡} → (∀𝑣𝑧 (𝑢𝑣) ∈ 𝑧 ↔ ∀𝑣 ∈ {𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡} (𝑢𝑣) ∈ {𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡}))
6059raleqbi1dv 3331 . . . . . . . . 9 (𝑧 = {𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡} → (∀𝑢𝑧𝑣𝑧 (𝑢𝑣) ∈ 𝑧 ↔ ∀𝑢 ∈ {𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡}∀𝑣 ∈ {𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡} (𝑢𝑣) ∈ {𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡}))
6157, 60anbi12d 629 . . . . . . . 8 (𝑧 = {𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡} → ((𝐹𝑧 ∧ ∀𝑢𝑧𝑣𝑧 (𝑢𝑣) ∈ 𝑧) ↔ (𝐹 ⊆ {𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡} ∧ ∀𝑢 ∈ {𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡}∀𝑣 ∈ {𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡} (𝑢𝑣) ∈ {𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡})))
6261elabg 3665 . . . . . . 7 ({𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡} ∈ V → ({𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡} ∈ {𝑧 ∣ (𝐹𝑧 ∧ ∀𝑢𝑧𝑣𝑧 (𝑢𝑣) ∈ 𝑧)} ↔ (𝐹 ⊆ {𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡} ∧ ∀𝑢 ∈ {𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡}∀𝑣 ∈ {𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡} (𝑢𝑣) ∈ {𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡})))
6354, 55, 56, 624syl 19 . . . . . 6 (𝐹 ∈ (fBas‘𝑋) → ({𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡} ∈ {𝑧 ∣ (𝐹𝑧 ∧ ∀𝑢𝑧𝑣𝑧 (𝑢𝑣) ∈ 𝑧)} ↔ (𝐹 ⊆ {𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡} ∧ ∀𝑢 ∈ {𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡}∀𝑣 ∈ {𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡} (𝑢𝑣) ∈ {𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡})))
6453, 63mpbird 256 . . . . 5 (𝐹 ∈ (fBas‘𝑋) → {𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡} ∈ {𝑧 ∣ (𝐹𝑧 ∧ ∀𝑢𝑧𝑣𝑧 (𝑢𝑣) ∈ 𝑧)})
65 intss1 4966 . . . . 5 ({𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡} ∈ {𝑧 ∣ (𝐹𝑧 ∧ ∀𝑢𝑧𝑣𝑧 (𝑢𝑣) ∈ 𝑧)} → {𝑧 ∣ (𝐹𝑧 ∧ ∀𝑢𝑧𝑣𝑧 (𝑢𝑣) ∈ 𝑧)} ⊆ {𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡})
6664, 65syl 17 . . . 4 (𝐹 ∈ (fBas‘𝑋) → {𝑧 ∣ (𝐹𝑧 ∧ ∀𝑢𝑧𝑣𝑧 (𝑢𝑣) ∈ 𝑧)} ⊆ {𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡})
671, 66eqsstrd 4019 . . 3 (𝐹 ∈ (fBas‘𝑋) → (fi‘𝐹) ⊆ {𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡})
6867sselda 3981 . 2 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐴 ∈ (fi‘𝐹)) → 𝐴 ∈ {𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡})
69 sseq2 4007 . . . . 5 (𝑡 = 𝐴 → (𝑥𝑡𝑥𝐴))
7069rexbidv 3176 . . . 4 (𝑡 = 𝐴 → (∃𝑥𝐹 𝑥𝑡 ↔ ∃𝑥𝐹 𝑥𝐴))
7170elrab 3682 . . 3 (𝐴 ∈ {𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡} ↔ (𝐴 ∈ 𝒫 𝐹 ∧ ∃𝑥𝐹 𝑥𝐴))
7271simprbi 495 . 2 (𝐴 ∈ {𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡} → ∃𝑥𝐹 𝑥𝐴)
7368, 72syl 17 1 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐴 ∈ (fi‘𝐹)) → ∃𝑥𝐹 𝑥𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  w3a 1085   = wceq 1539  wcel 2104  {cab 2707  wral 3059  wrex 3068  {crab 3430  Vcvv 3472  cin 3946  wss 3947  𝒫 cpw 4601   cuni 4907   cint 4949  cfv 6542  ficfi 9407  fBascfbas 21132
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7727
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-om 7858  df-1o 8468  df-er 8705  df-en 8942  df-fin 8945  df-fi 9408  df-fbas 21141
This theorem is referenced by:  fbssint  23562  fbunfip  23593  fmfnfmlem1  23678  fmfnfmlem4  23681
  Copyright terms: Public domain W3C validator