Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  fbssfi Structured version   Visualization version   GIF version

Theorem fbssfi 22542
 Description: A filter base contains subsets of its finite intersections. (Contributed by Mario Carneiro, 26-Nov-2013.) (Revised by Stefan O'Rear, 28-Jul-2015.)
Assertion
Ref Expression
fbssfi ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐴 ∈ (fi‘𝐹)) → ∃𝑥𝐹 𝑥𝐴)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹   𝑥,𝑋

Proof of Theorem fbssfi
Dummy variables 𝑡 𝑢 𝑣 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dffi2 8925 . . . 4 (𝐹 ∈ (fBas‘𝑋) → (fi‘𝐹) = {𝑧 ∣ (𝐹𝑧 ∧ ∀𝑢𝑧𝑣𝑧 (𝑢𝑣) ∈ 𝑧)})
2 sseq2 3920 . . . . . . . . . . . . . . . 16 (𝑡 = (𝑢𝑣) → (𝑥𝑡𝑥 ⊆ (𝑢𝑣)))
32rexbidv 3221 . . . . . . . . . . . . . . 15 (𝑡 = (𝑢𝑣) → (∃𝑥𝐹 𝑥𝑡 ↔ ∃𝑥𝐹 𝑥 ⊆ (𝑢𝑣)))
4 inss1 4135 . . . . . . . . . . . . . . . . 17 (𝑢𝑣) ⊆ 𝑢
5 simp1r 1195 . . . . . . . . . . . . . . . . . 18 (((𝐹 ∈ (fBas‘𝑋) ∧ 𝑢 ∈ 𝒫 𝐹) ∧ (𝑦𝐹𝑦𝑢) ∧ (𝑧𝐹𝑧𝑣)) → 𝑢 ∈ 𝒫 𝐹)
65elpwid 4508 . . . . . . . . . . . . . . . . 17 (((𝐹 ∈ (fBas‘𝑋) ∧ 𝑢 ∈ 𝒫 𝐹) ∧ (𝑦𝐹𝑦𝑢) ∧ (𝑧𝐹𝑧𝑣)) → 𝑢 𝐹)
74, 6sstrid 3905 . . . . . . . . . . . . . . . 16 (((𝐹 ∈ (fBas‘𝑋) ∧ 𝑢 ∈ 𝒫 𝐹) ∧ (𝑦𝐹𝑦𝑢) ∧ (𝑧𝐹𝑧𝑣)) → (𝑢𝑣) ⊆ 𝐹)
8 vex 3413 . . . . . . . . . . . . . . . . . 18 𝑢 ∈ V
98inex1 5190 . . . . . . . . . . . . . . . . 17 (𝑢𝑣) ∈ V
109elpw 4501 . . . . . . . . . . . . . . . 16 ((𝑢𝑣) ∈ 𝒫 𝐹 ↔ (𝑢𝑣) ⊆ 𝐹)
117, 10sylibr 237 . . . . . . . . . . . . . . 15 (((𝐹 ∈ (fBas‘𝑋) ∧ 𝑢 ∈ 𝒫 𝐹) ∧ (𝑦𝐹𝑦𝑢) ∧ (𝑧𝐹𝑧𝑣)) → (𝑢𝑣) ∈ 𝒫 𝐹)
12 simpl 486 . . . . . . . . . . . . . . . . 17 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝑢 ∈ 𝒫 𝐹) → 𝐹 ∈ (fBas‘𝑋))
13 simpl 486 . . . . . . . . . . . . . . . . 17 ((𝑦𝐹𝑦𝑢) → 𝑦𝐹)
14 simpl 486 . . . . . . . . . . . . . . . . 17 ((𝑧𝐹𝑧𝑣) → 𝑧𝐹)
15 fbasssin 22541 . . . . . . . . . . . . . . . . 17 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝑦𝐹𝑧𝐹) → ∃𝑥𝐹 𝑥 ⊆ (𝑦𝑧))
1612, 13, 14, 15syl3an 1157 . . . . . . . . . . . . . . . 16 (((𝐹 ∈ (fBas‘𝑋) ∧ 𝑢 ∈ 𝒫 𝐹) ∧ (𝑦𝐹𝑦𝑢) ∧ (𝑧𝐹𝑧𝑣)) → ∃𝑥𝐹 𝑥 ⊆ (𝑦𝑧))
17 ss2in 4143 . . . . . . . . . . . . . . . . . . . 20 ((𝑦𝑢𝑧𝑣) → (𝑦𝑧) ⊆ (𝑢𝑣))
1817ad2ant2l 745 . . . . . . . . . . . . . . . . . . 19 (((𝑦𝐹𝑦𝑢) ∧ (𝑧𝐹𝑧𝑣)) → (𝑦𝑧) ⊆ (𝑢𝑣))
19183adant1 1127 . . . . . . . . . . . . . . . . . 18 (((𝐹 ∈ (fBas‘𝑋) ∧ 𝑢 ∈ 𝒫 𝐹) ∧ (𝑦𝐹𝑦𝑢) ∧ (𝑧𝐹𝑧𝑣)) → (𝑦𝑧) ⊆ (𝑢𝑣))
20 sstr 3902 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ⊆ (𝑦𝑧) ∧ (𝑦𝑧) ⊆ (𝑢𝑣)) → 𝑥 ⊆ (𝑢𝑣))
2120expcom 417 . . . . . . . . . . . . . . . . . 18 ((𝑦𝑧) ⊆ (𝑢𝑣) → (𝑥 ⊆ (𝑦𝑧) → 𝑥 ⊆ (𝑢𝑣)))
2219, 21syl 17 . . . . . . . . . . . . . . . . 17 (((𝐹 ∈ (fBas‘𝑋) ∧ 𝑢 ∈ 𝒫 𝐹) ∧ (𝑦𝐹𝑦𝑢) ∧ (𝑧𝐹𝑧𝑣)) → (𝑥 ⊆ (𝑦𝑧) → 𝑥 ⊆ (𝑢𝑣)))
2322reximdv 3197 . . . . . . . . . . . . . . . 16 (((𝐹 ∈ (fBas‘𝑋) ∧ 𝑢 ∈ 𝒫 𝐹) ∧ (𝑦𝐹𝑦𝑢) ∧ (𝑧𝐹𝑧𝑣)) → (∃𝑥𝐹 𝑥 ⊆ (𝑦𝑧) → ∃𝑥𝐹 𝑥 ⊆ (𝑢𝑣)))
2416, 23mpd 15 . . . . . . . . . . . . . . 15 (((𝐹 ∈ (fBas‘𝑋) ∧ 𝑢 ∈ 𝒫 𝐹) ∧ (𝑦𝐹𝑦𝑢) ∧ (𝑧𝐹𝑧𝑣)) → ∃𝑥𝐹 𝑥 ⊆ (𝑢𝑣))
253, 11, 24elrabd 3606 . . . . . . . . . . . . . 14 (((𝐹 ∈ (fBas‘𝑋) ∧ 𝑢 ∈ 𝒫 𝐹) ∧ (𝑦𝐹𝑦𝑢) ∧ (𝑧𝐹𝑧𝑣)) → (𝑢𝑣) ∈ {𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡})
26253expa 1115 . . . . . . . . . . . . 13 ((((𝐹 ∈ (fBas‘𝑋) ∧ 𝑢 ∈ 𝒫 𝐹) ∧ (𝑦𝐹𝑦𝑢)) ∧ (𝑧𝐹𝑧𝑣)) → (𝑢𝑣) ∈ {𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡})
2726rexlimdvaa 3209 . . . . . . . . . . . 12 (((𝐹 ∈ (fBas‘𝑋) ∧ 𝑢 ∈ 𝒫 𝐹) ∧ (𝑦𝐹𝑦𝑢)) → (∃𝑧𝐹 𝑧𝑣 → (𝑢𝑣) ∈ {𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡}))
2827ralrimivw 3114 . . . . . . . . . . 11 (((𝐹 ∈ (fBas‘𝑋) ∧ 𝑢 ∈ 𝒫 𝐹) ∧ (𝑦𝐹𝑦𝑢)) → ∀𝑣 ∈ 𝒫 𝐹(∃𝑧𝐹 𝑧𝑣 → (𝑢𝑣) ∈ {𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡}))
29 sseq2 3920 . . . . . . . . . . . . . 14 (𝑡 = 𝑣 → (𝑥𝑡𝑥𝑣))
3029rexbidv 3221 . . . . . . . . . . . . 13 (𝑡 = 𝑣 → (∃𝑥𝐹 𝑥𝑡 ↔ ∃𝑥𝐹 𝑥𝑣))
31 sseq1 3919 . . . . . . . . . . . . . 14 (𝑥 = 𝑧 → (𝑥𝑣𝑧𝑣))
3231cbvrexvw 3362 . . . . . . . . . . . . 13 (∃𝑥𝐹 𝑥𝑣 ↔ ∃𝑧𝐹 𝑧𝑣)
3330, 32bitrdi 290 . . . . . . . . . . . 12 (𝑡 = 𝑣 → (∃𝑥𝐹 𝑥𝑡 ↔ ∃𝑧𝐹 𝑧𝑣))
3433ralrab 3610 . . . . . . . . . . 11 (∀𝑣 ∈ {𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡} (𝑢𝑣) ∈ {𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡} ↔ ∀𝑣 ∈ 𝒫 𝐹(∃𝑧𝐹 𝑧𝑣 → (𝑢𝑣) ∈ {𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡}))
3528, 34sylibr 237 . . . . . . . . . 10 (((𝐹 ∈ (fBas‘𝑋) ∧ 𝑢 ∈ 𝒫 𝐹) ∧ (𝑦𝐹𝑦𝑢)) → ∀𝑣 ∈ {𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡} (𝑢𝑣) ∈ {𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡})
3635rexlimdvaa 3209 . . . . . . . . 9 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝑢 ∈ 𝒫 𝐹) → (∃𝑦𝐹 𝑦𝑢 → ∀𝑣 ∈ {𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡} (𝑢𝑣) ∈ {𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡}))
3736ralrimiva 3113 . . . . . . . 8 (𝐹 ∈ (fBas‘𝑋) → ∀𝑢 ∈ 𝒫 𝐹(∃𝑦𝐹 𝑦𝑢 → ∀𝑣 ∈ {𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡} (𝑢𝑣) ∈ {𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡}))
38 sseq2 3920 . . . . . . . . . . 11 (𝑡 = 𝑢 → (𝑥𝑡𝑥𝑢))
3938rexbidv 3221 . . . . . . . . . 10 (𝑡 = 𝑢 → (∃𝑥𝐹 𝑥𝑡 ↔ ∃𝑥𝐹 𝑥𝑢))
40 sseq1 3919 . . . . . . . . . . 11 (𝑥 = 𝑦 → (𝑥𝑢𝑦𝑢))
4140cbvrexvw 3362 . . . . . . . . . 10 (∃𝑥𝐹 𝑥𝑢 ↔ ∃𝑦𝐹 𝑦𝑢)
4239, 41bitrdi 290 . . . . . . . . 9 (𝑡 = 𝑢 → (∃𝑥𝐹 𝑥𝑡 ↔ ∃𝑦𝐹 𝑦𝑢))
4342ralrab 3610 . . . . . . . 8 (∀𝑢 ∈ {𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡}∀𝑣 ∈ {𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡} (𝑢𝑣) ∈ {𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡} ↔ ∀𝑢 ∈ 𝒫 𝐹(∃𝑦𝐹 𝑦𝑢 → ∀𝑣 ∈ {𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡} (𝑢𝑣) ∈ {𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡}))
4437, 43sylibr 237 . . . . . . 7 (𝐹 ∈ (fBas‘𝑋) → ∀𝑢 ∈ {𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡}∀𝑣 ∈ {𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡} (𝑢𝑣) ∈ {𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡})
45 pwuni 4840 . . . . . . . 8 𝐹 ⊆ 𝒫 𝐹
46 ssid 3916 . . . . . . . . . 10 𝑡𝑡
47 sseq1 3919 . . . . . . . . . . 11 (𝑥 = 𝑡 → (𝑥𝑡𝑡𝑡))
4847rspcev 3543 . . . . . . . . . 10 ((𝑡𝐹𝑡𝑡) → ∃𝑥𝐹 𝑥𝑡)
4946, 48mpan2 690 . . . . . . . . 9 (𝑡𝐹 → ∃𝑥𝐹 𝑥𝑡)
5049rgen 3080 . . . . . . . 8 𝑡𝐹𝑥𝐹 𝑥𝑡
51 ssrab 3979 . . . . . . . 8 (𝐹 ⊆ {𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡} ↔ (𝐹 ⊆ 𝒫 𝐹 ∧ ∀𝑡𝐹𝑥𝐹 𝑥𝑡))
5245, 50, 51mpbir2an 710 . . . . . . 7 𝐹 ⊆ {𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡}
5344, 52jctil 523 . . . . . 6 (𝐹 ∈ (fBas‘𝑋) → (𝐹 ⊆ {𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡} ∧ ∀𝑢 ∈ {𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡}∀𝑣 ∈ {𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡} (𝑢𝑣) ∈ {𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡}))
54 uniexg 7469 . . . . . . 7 (𝐹 ∈ (fBas‘𝑋) → 𝐹 ∈ V)
55 pwexg 5250 . . . . . . 7 ( 𝐹 ∈ V → 𝒫 𝐹 ∈ V)
56 rabexg 5204 . . . . . . 7 (𝒫 𝐹 ∈ V → {𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡} ∈ V)
57 sseq2 3920 . . . . . . . . 9 (𝑧 = {𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡} → (𝐹𝑧𝐹 ⊆ {𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡}))
58 eleq2 2840 . . . . . . . . . . 11 (𝑧 = {𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡} → ((𝑢𝑣) ∈ 𝑧 ↔ (𝑢𝑣) ∈ {𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡}))
5958raleqbi1dv 3321 . . . . . . . . . 10 (𝑧 = {𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡} → (∀𝑣𝑧 (𝑢𝑣) ∈ 𝑧 ↔ ∀𝑣 ∈ {𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡} (𝑢𝑣) ∈ {𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡}))
6059raleqbi1dv 3321 . . . . . . . . 9 (𝑧 = {𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡} → (∀𝑢𝑧𝑣𝑧 (𝑢𝑣) ∈ 𝑧 ↔ ∀𝑢 ∈ {𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡}∀𝑣 ∈ {𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡} (𝑢𝑣) ∈ {𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡}))
6157, 60anbi12d 633 . . . . . . . 8 (𝑧 = {𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡} → ((𝐹𝑧 ∧ ∀𝑢𝑧𝑣𝑧 (𝑢𝑣) ∈ 𝑧) ↔ (𝐹 ⊆ {𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡} ∧ ∀𝑢 ∈ {𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡}∀𝑣 ∈ {𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡} (𝑢𝑣) ∈ {𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡})))
6261elabg 3589 . . . . . . 7 ({𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡} ∈ V → ({𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡} ∈ {𝑧 ∣ (𝐹𝑧 ∧ ∀𝑢𝑧𝑣𝑧 (𝑢𝑣) ∈ 𝑧)} ↔ (𝐹 ⊆ {𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡} ∧ ∀𝑢 ∈ {𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡}∀𝑣 ∈ {𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡} (𝑢𝑣) ∈ {𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡})))
6354, 55, 56, 624syl 19 . . . . . 6 (𝐹 ∈ (fBas‘𝑋) → ({𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡} ∈ {𝑧 ∣ (𝐹𝑧 ∧ ∀𝑢𝑧𝑣𝑧 (𝑢𝑣) ∈ 𝑧)} ↔ (𝐹 ⊆ {𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡} ∧ ∀𝑢 ∈ {𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡}∀𝑣 ∈ {𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡} (𝑢𝑣) ∈ {𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡})))
6453, 63mpbird 260 . . . . 5 (𝐹 ∈ (fBas‘𝑋) → {𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡} ∈ {𝑧 ∣ (𝐹𝑧 ∧ ∀𝑢𝑧𝑣𝑧 (𝑢𝑣) ∈ 𝑧)})
65 intss1 4856 . . . . 5 ({𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡} ∈ {𝑧 ∣ (𝐹𝑧 ∧ ∀𝑢𝑧𝑣𝑧 (𝑢𝑣) ∈ 𝑧)} → {𝑧 ∣ (𝐹𝑧 ∧ ∀𝑢𝑧𝑣𝑧 (𝑢𝑣) ∈ 𝑧)} ⊆ {𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡})
6664, 65syl 17 . . . 4 (𝐹 ∈ (fBas‘𝑋) → {𝑧 ∣ (𝐹𝑧 ∧ ∀𝑢𝑧𝑣𝑧 (𝑢𝑣) ∈ 𝑧)} ⊆ {𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡})
671, 66eqsstrd 3932 . . 3 (𝐹 ∈ (fBas‘𝑋) → (fi‘𝐹) ⊆ {𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡})
6867sselda 3894 . 2 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐴 ∈ (fi‘𝐹)) → 𝐴 ∈ {𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡})
69 sseq2 3920 . . . . 5 (𝑡 = 𝐴 → (𝑥𝑡𝑥𝐴))
7069rexbidv 3221 . . . 4 (𝑡 = 𝐴 → (∃𝑥𝐹 𝑥𝑡 ↔ ∃𝑥𝐹 𝑥𝐴))
7170elrab 3604 . . 3 (𝐴 ∈ {𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡} ↔ (𝐴 ∈ 𝒫 𝐹 ∧ ∃𝑥𝐹 𝑥𝐴))
7271simprbi 500 . 2 (𝐴 ∈ {𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡} → ∃𝑥𝐹 𝑥𝐴)
7368, 72syl 17 1 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐴 ∈ (fi‘𝐹)) → ∃𝑥𝐹 𝑥𝐴)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   ∧ w3a 1084   = wceq 1538   ∈ wcel 2111  {cab 2735  ∀wral 3070  ∃wrex 3071  {crab 3074  Vcvv 3409   ∩ cin 3859   ⊆ wss 3860  𝒫 cpw 4497  ∪ cuni 4801  ∩ cint 4841  ‘cfv 6339  ficfi 8912  fBascfbas 20159 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-sep 5172  ax-nul 5179  ax-pow 5237  ax-pr 5301  ax-un 7464 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rab 3079  df-v 3411  df-sbc 3699  df-csb 3808  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-pss 3879  df-nul 4228  df-if 4424  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-int 4842  df-br 5036  df-opab 5098  df-mpt 5116  df-tr 5142  df-id 5433  df-eprel 5438  df-po 5446  df-so 5447  df-fr 5486  df-we 5488  df-xp 5533  df-rel 5534  df-cnv 5535  df-co 5536  df-dm 5537  df-rn 5538  df-res 5539  df-ima 5540  df-ord 6176  df-on 6177  df-lim 6178  df-suc 6179  df-iota 6298  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-om 7585  df-1o 8117  df-er 8304  df-en 8533  df-fin 8536  df-fi 8913  df-fbas 20168 This theorem is referenced by:  fbssint  22543  fbunfip  22574  fmfnfmlem1  22659  fmfnfmlem4  22662
 Copyright terms: Public domain W3C validator