Step | Hyp | Ref
| Expression |
1 | | dffi2 8925 |
. . . 4
⊢ (𝐹 ∈ (fBas‘𝑋) → (fi‘𝐹) = ∩
{𝑧 ∣ (𝐹 ⊆ 𝑧 ∧ ∀𝑢 ∈ 𝑧 ∀𝑣 ∈ 𝑧 (𝑢 ∩ 𝑣) ∈ 𝑧)}) |
2 | | sseq2 3920 |
. . . . . . . . . . . . . . . 16
⊢ (𝑡 = (𝑢 ∩ 𝑣) → (𝑥 ⊆ 𝑡 ↔ 𝑥 ⊆ (𝑢 ∩ 𝑣))) |
3 | 2 | rexbidv 3221 |
. . . . . . . . . . . . . . 15
⊢ (𝑡 = (𝑢 ∩ 𝑣) → (∃𝑥 ∈ 𝐹 𝑥 ⊆ 𝑡 ↔ ∃𝑥 ∈ 𝐹 𝑥 ⊆ (𝑢 ∩ 𝑣))) |
4 | | inss1 4135 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑢 ∩ 𝑣) ⊆ 𝑢 |
5 | | simp1r 1195 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐹 ∈ (fBas‘𝑋) ∧ 𝑢 ∈ 𝒫 ∪ 𝐹)
∧ (𝑦 ∈ 𝐹 ∧ 𝑦 ⊆ 𝑢) ∧ (𝑧 ∈ 𝐹 ∧ 𝑧 ⊆ 𝑣)) → 𝑢 ∈ 𝒫 ∪ 𝐹) |
6 | 5 | elpwid 4508 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐹 ∈ (fBas‘𝑋) ∧ 𝑢 ∈ 𝒫 ∪ 𝐹)
∧ (𝑦 ∈ 𝐹 ∧ 𝑦 ⊆ 𝑢) ∧ (𝑧 ∈ 𝐹 ∧ 𝑧 ⊆ 𝑣)) → 𝑢 ⊆ ∪ 𝐹) |
7 | 4, 6 | sstrid 3905 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐹 ∈ (fBas‘𝑋) ∧ 𝑢 ∈ 𝒫 ∪ 𝐹)
∧ (𝑦 ∈ 𝐹 ∧ 𝑦 ⊆ 𝑢) ∧ (𝑧 ∈ 𝐹 ∧ 𝑧 ⊆ 𝑣)) → (𝑢 ∩ 𝑣) ⊆ ∪ 𝐹) |
8 | | vex 3413 |
. . . . . . . . . . . . . . . . . 18
⊢ 𝑢 ∈ V |
9 | 8 | inex1 5190 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑢 ∩ 𝑣) ∈ V |
10 | 9 | elpw 4501 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑢 ∩ 𝑣) ∈ 𝒫 ∪ 𝐹
↔ (𝑢 ∩ 𝑣) ⊆ ∪ 𝐹) |
11 | 7, 10 | sylibr 237 |
. . . . . . . . . . . . . . 15
⊢ (((𝐹 ∈ (fBas‘𝑋) ∧ 𝑢 ∈ 𝒫 ∪ 𝐹)
∧ (𝑦 ∈ 𝐹 ∧ 𝑦 ⊆ 𝑢) ∧ (𝑧 ∈ 𝐹 ∧ 𝑧 ⊆ 𝑣)) → (𝑢 ∩ 𝑣) ∈ 𝒫 ∪ 𝐹) |
12 | | simpl 486 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐹 ∈ (fBas‘𝑋) ∧ 𝑢 ∈ 𝒫 ∪ 𝐹)
→ 𝐹 ∈
(fBas‘𝑋)) |
13 | | simpl 486 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑦 ∈ 𝐹 ∧ 𝑦 ⊆ 𝑢) → 𝑦 ∈ 𝐹) |
14 | | simpl 486 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑧 ∈ 𝐹 ∧ 𝑧 ⊆ 𝑣) → 𝑧 ∈ 𝐹) |
15 | | fbasssin 22541 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐹 ∈ (fBas‘𝑋) ∧ 𝑦 ∈ 𝐹 ∧ 𝑧 ∈ 𝐹) → ∃𝑥 ∈ 𝐹 𝑥 ⊆ (𝑦 ∩ 𝑧)) |
16 | 12, 13, 14, 15 | syl3an 1157 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐹 ∈ (fBas‘𝑋) ∧ 𝑢 ∈ 𝒫 ∪ 𝐹)
∧ (𝑦 ∈ 𝐹 ∧ 𝑦 ⊆ 𝑢) ∧ (𝑧 ∈ 𝐹 ∧ 𝑧 ⊆ 𝑣)) → ∃𝑥 ∈ 𝐹 𝑥 ⊆ (𝑦 ∩ 𝑧)) |
17 | | ss2in 4143 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑦 ⊆ 𝑢 ∧ 𝑧 ⊆ 𝑣) → (𝑦 ∩ 𝑧) ⊆ (𝑢 ∩ 𝑣)) |
18 | 17 | ad2ant2l 745 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑦 ∈ 𝐹 ∧ 𝑦 ⊆ 𝑢) ∧ (𝑧 ∈ 𝐹 ∧ 𝑧 ⊆ 𝑣)) → (𝑦 ∩ 𝑧) ⊆ (𝑢 ∩ 𝑣)) |
19 | 18 | 3adant1 1127 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐹 ∈ (fBas‘𝑋) ∧ 𝑢 ∈ 𝒫 ∪ 𝐹)
∧ (𝑦 ∈ 𝐹 ∧ 𝑦 ⊆ 𝑢) ∧ (𝑧 ∈ 𝐹 ∧ 𝑧 ⊆ 𝑣)) → (𝑦 ∩ 𝑧) ⊆ (𝑢 ∩ 𝑣)) |
20 | | sstr 3902 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑥 ⊆ (𝑦 ∩ 𝑧) ∧ (𝑦 ∩ 𝑧) ⊆ (𝑢 ∩ 𝑣)) → 𝑥 ⊆ (𝑢 ∩ 𝑣)) |
21 | 20 | expcom 417 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑦 ∩ 𝑧) ⊆ (𝑢 ∩ 𝑣) → (𝑥 ⊆ (𝑦 ∩ 𝑧) → 𝑥 ⊆ (𝑢 ∩ 𝑣))) |
22 | 19, 21 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐹 ∈ (fBas‘𝑋) ∧ 𝑢 ∈ 𝒫 ∪ 𝐹)
∧ (𝑦 ∈ 𝐹 ∧ 𝑦 ⊆ 𝑢) ∧ (𝑧 ∈ 𝐹 ∧ 𝑧 ⊆ 𝑣)) → (𝑥 ⊆ (𝑦 ∩ 𝑧) → 𝑥 ⊆ (𝑢 ∩ 𝑣))) |
23 | 22 | reximdv 3197 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐹 ∈ (fBas‘𝑋) ∧ 𝑢 ∈ 𝒫 ∪ 𝐹)
∧ (𝑦 ∈ 𝐹 ∧ 𝑦 ⊆ 𝑢) ∧ (𝑧 ∈ 𝐹 ∧ 𝑧 ⊆ 𝑣)) → (∃𝑥 ∈ 𝐹 𝑥 ⊆ (𝑦 ∩ 𝑧) → ∃𝑥 ∈ 𝐹 𝑥 ⊆ (𝑢 ∩ 𝑣))) |
24 | 16, 23 | mpd 15 |
. . . . . . . . . . . . . . 15
⊢ (((𝐹 ∈ (fBas‘𝑋) ∧ 𝑢 ∈ 𝒫 ∪ 𝐹)
∧ (𝑦 ∈ 𝐹 ∧ 𝑦 ⊆ 𝑢) ∧ (𝑧 ∈ 𝐹 ∧ 𝑧 ⊆ 𝑣)) → ∃𝑥 ∈ 𝐹 𝑥 ⊆ (𝑢 ∩ 𝑣)) |
25 | 3, 11, 24 | elrabd 3606 |
. . . . . . . . . . . . . 14
⊢ (((𝐹 ∈ (fBas‘𝑋) ∧ 𝑢 ∈ 𝒫 ∪ 𝐹)
∧ (𝑦 ∈ 𝐹 ∧ 𝑦 ⊆ 𝑢) ∧ (𝑧 ∈ 𝐹 ∧ 𝑧 ⊆ 𝑣)) → (𝑢 ∩ 𝑣) ∈ {𝑡 ∈ 𝒫 ∪ 𝐹
∣ ∃𝑥 ∈
𝐹 𝑥 ⊆ 𝑡}) |
26 | 25 | 3expa 1115 |
. . . . . . . . . . . . 13
⊢ ((((𝐹 ∈ (fBas‘𝑋) ∧ 𝑢 ∈ 𝒫 ∪ 𝐹)
∧ (𝑦 ∈ 𝐹 ∧ 𝑦 ⊆ 𝑢)) ∧ (𝑧 ∈ 𝐹 ∧ 𝑧 ⊆ 𝑣)) → (𝑢 ∩ 𝑣) ∈ {𝑡 ∈ 𝒫 ∪ 𝐹
∣ ∃𝑥 ∈
𝐹 𝑥 ⊆ 𝑡}) |
27 | 26 | rexlimdvaa 3209 |
. . . . . . . . . . . 12
⊢ (((𝐹 ∈ (fBas‘𝑋) ∧ 𝑢 ∈ 𝒫 ∪ 𝐹)
∧ (𝑦 ∈ 𝐹 ∧ 𝑦 ⊆ 𝑢)) → (∃𝑧 ∈ 𝐹 𝑧 ⊆ 𝑣 → (𝑢 ∩ 𝑣) ∈ {𝑡 ∈ 𝒫 ∪ 𝐹
∣ ∃𝑥 ∈
𝐹 𝑥 ⊆ 𝑡})) |
28 | 27 | ralrimivw 3114 |
. . . . . . . . . . 11
⊢ (((𝐹 ∈ (fBas‘𝑋) ∧ 𝑢 ∈ 𝒫 ∪ 𝐹)
∧ (𝑦 ∈ 𝐹 ∧ 𝑦 ⊆ 𝑢)) → ∀𝑣 ∈ 𝒫 ∪ 𝐹(∃𝑧 ∈ 𝐹 𝑧 ⊆ 𝑣 → (𝑢 ∩ 𝑣) ∈ {𝑡 ∈ 𝒫 ∪ 𝐹
∣ ∃𝑥 ∈
𝐹 𝑥 ⊆ 𝑡})) |
29 | | sseq2 3920 |
. . . . . . . . . . . . . 14
⊢ (𝑡 = 𝑣 → (𝑥 ⊆ 𝑡 ↔ 𝑥 ⊆ 𝑣)) |
30 | 29 | rexbidv 3221 |
. . . . . . . . . . . . 13
⊢ (𝑡 = 𝑣 → (∃𝑥 ∈ 𝐹 𝑥 ⊆ 𝑡 ↔ ∃𝑥 ∈ 𝐹 𝑥 ⊆ 𝑣)) |
31 | | sseq1 3919 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑧 → (𝑥 ⊆ 𝑣 ↔ 𝑧 ⊆ 𝑣)) |
32 | 31 | cbvrexvw 3362 |
. . . . . . . . . . . . 13
⊢
(∃𝑥 ∈
𝐹 𝑥 ⊆ 𝑣 ↔ ∃𝑧 ∈ 𝐹 𝑧 ⊆ 𝑣) |
33 | 30, 32 | bitrdi 290 |
. . . . . . . . . . . 12
⊢ (𝑡 = 𝑣 → (∃𝑥 ∈ 𝐹 𝑥 ⊆ 𝑡 ↔ ∃𝑧 ∈ 𝐹 𝑧 ⊆ 𝑣)) |
34 | 33 | ralrab 3610 |
. . . . . . . . . . 11
⊢
(∀𝑣 ∈
{𝑡 ∈ 𝒫 ∪ 𝐹
∣ ∃𝑥 ∈
𝐹 𝑥 ⊆ 𝑡} (𝑢 ∩ 𝑣) ∈ {𝑡 ∈ 𝒫 ∪ 𝐹
∣ ∃𝑥 ∈
𝐹 𝑥 ⊆ 𝑡} ↔ ∀𝑣 ∈ 𝒫 ∪ 𝐹(∃𝑧 ∈ 𝐹 𝑧 ⊆ 𝑣 → (𝑢 ∩ 𝑣) ∈ {𝑡 ∈ 𝒫 ∪ 𝐹
∣ ∃𝑥 ∈
𝐹 𝑥 ⊆ 𝑡})) |
35 | 28, 34 | sylibr 237 |
. . . . . . . . . 10
⊢ (((𝐹 ∈ (fBas‘𝑋) ∧ 𝑢 ∈ 𝒫 ∪ 𝐹)
∧ (𝑦 ∈ 𝐹 ∧ 𝑦 ⊆ 𝑢)) → ∀𝑣 ∈ {𝑡 ∈ 𝒫 ∪ 𝐹
∣ ∃𝑥 ∈
𝐹 𝑥 ⊆ 𝑡} (𝑢 ∩ 𝑣) ∈ {𝑡 ∈ 𝒫 ∪ 𝐹
∣ ∃𝑥 ∈
𝐹 𝑥 ⊆ 𝑡}) |
36 | 35 | rexlimdvaa 3209 |
. . . . . . . . 9
⊢ ((𝐹 ∈ (fBas‘𝑋) ∧ 𝑢 ∈ 𝒫 ∪ 𝐹)
→ (∃𝑦 ∈
𝐹 𝑦 ⊆ 𝑢 → ∀𝑣 ∈ {𝑡 ∈ 𝒫 ∪ 𝐹
∣ ∃𝑥 ∈
𝐹 𝑥 ⊆ 𝑡} (𝑢 ∩ 𝑣) ∈ {𝑡 ∈ 𝒫 ∪ 𝐹
∣ ∃𝑥 ∈
𝐹 𝑥 ⊆ 𝑡})) |
37 | 36 | ralrimiva 3113 |
. . . . . . . 8
⊢ (𝐹 ∈ (fBas‘𝑋) → ∀𝑢 ∈ 𝒫 ∪ 𝐹(∃𝑦 ∈ 𝐹 𝑦 ⊆ 𝑢 → ∀𝑣 ∈ {𝑡 ∈ 𝒫 ∪ 𝐹
∣ ∃𝑥 ∈
𝐹 𝑥 ⊆ 𝑡} (𝑢 ∩ 𝑣) ∈ {𝑡 ∈ 𝒫 ∪ 𝐹
∣ ∃𝑥 ∈
𝐹 𝑥 ⊆ 𝑡})) |
38 | | sseq2 3920 |
. . . . . . . . . . 11
⊢ (𝑡 = 𝑢 → (𝑥 ⊆ 𝑡 ↔ 𝑥 ⊆ 𝑢)) |
39 | 38 | rexbidv 3221 |
. . . . . . . . . 10
⊢ (𝑡 = 𝑢 → (∃𝑥 ∈ 𝐹 𝑥 ⊆ 𝑡 ↔ ∃𝑥 ∈ 𝐹 𝑥 ⊆ 𝑢)) |
40 | | sseq1 3919 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑦 → (𝑥 ⊆ 𝑢 ↔ 𝑦 ⊆ 𝑢)) |
41 | 40 | cbvrexvw 3362 |
. . . . . . . . . 10
⊢
(∃𝑥 ∈
𝐹 𝑥 ⊆ 𝑢 ↔ ∃𝑦 ∈ 𝐹 𝑦 ⊆ 𝑢) |
42 | 39, 41 | bitrdi 290 |
. . . . . . . . 9
⊢ (𝑡 = 𝑢 → (∃𝑥 ∈ 𝐹 𝑥 ⊆ 𝑡 ↔ ∃𝑦 ∈ 𝐹 𝑦 ⊆ 𝑢)) |
43 | 42 | ralrab 3610 |
. . . . . . . 8
⊢
(∀𝑢 ∈
{𝑡 ∈ 𝒫 ∪ 𝐹
∣ ∃𝑥 ∈
𝐹 𝑥 ⊆ 𝑡}∀𝑣 ∈ {𝑡 ∈ 𝒫 ∪ 𝐹
∣ ∃𝑥 ∈
𝐹 𝑥 ⊆ 𝑡} (𝑢 ∩ 𝑣) ∈ {𝑡 ∈ 𝒫 ∪ 𝐹
∣ ∃𝑥 ∈
𝐹 𝑥 ⊆ 𝑡} ↔ ∀𝑢 ∈ 𝒫 ∪ 𝐹(∃𝑦 ∈ 𝐹 𝑦 ⊆ 𝑢 → ∀𝑣 ∈ {𝑡 ∈ 𝒫 ∪ 𝐹
∣ ∃𝑥 ∈
𝐹 𝑥 ⊆ 𝑡} (𝑢 ∩ 𝑣) ∈ {𝑡 ∈ 𝒫 ∪ 𝐹
∣ ∃𝑥 ∈
𝐹 𝑥 ⊆ 𝑡})) |
44 | 37, 43 | sylibr 237 |
. . . . . . 7
⊢ (𝐹 ∈ (fBas‘𝑋) → ∀𝑢 ∈ {𝑡 ∈ 𝒫 ∪ 𝐹
∣ ∃𝑥 ∈
𝐹 𝑥 ⊆ 𝑡}∀𝑣 ∈ {𝑡 ∈ 𝒫 ∪ 𝐹
∣ ∃𝑥 ∈
𝐹 𝑥 ⊆ 𝑡} (𝑢 ∩ 𝑣) ∈ {𝑡 ∈ 𝒫 ∪ 𝐹
∣ ∃𝑥 ∈
𝐹 𝑥 ⊆ 𝑡}) |
45 | | pwuni 4840 |
. . . . . . . 8
⊢ 𝐹 ⊆ 𝒫 ∪ 𝐹 |
46 | | ssid 3916 |
. . . . . . . . . 10
⊢ 𝑡 ⊆ 𝑡 |
47 | | sseq1 3919 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑡 → (𝑥 ⊆ 𝑡 ↔ 𝑡 ⊆ 𝑡)) |
48 | 47 | rspcev 3543 |
. . . . . . . . . 10
⊢ ((𝑡 ∈ 𝐹 ∧ 𝑡 ⊆ 𝑡) → ∃𝑥 ∈ 𝐹 𝑥 ⊆ 𝑡) |
49 | 46, 48 | mpan2 690 |
. . . . . . . . 9
⊢ (𝑡 ∈ 𝐹 → ∃𝑥 ∈ 𝐹 𝑥 ⊆ 𝑡) |
50 | 49 | rgen 3080 |
. . . . . . . 8
⊢
∀𝑡 ∈
𝐹 ∃𝑥 ∈ 𝐹 𝑥 ⊆ 𝑡 |
51 | | ssrab 3979 |
. . . . . . . 8
⊢ (𝐹 ⊆ {𝑡 ∈ 𝒫 ∪ 𝐹
∣ ∃𝑥 ∈
𝐹 𝑥 ⊆ 𝑡} ↔ (𝐹 ⊆ 𝒫 ∪ 𝐹
∧ ∀𝑡 ∈
𝐹 ∃𝑥 ∈ 𝐹 𝑥 ⊆ 𝑡)) |
52 | 45, 50, 51 | mpbir2an 710 |
. . . . . . 7
⊢ 𝐹 ⊆ {𝑡 ∈ 𝒫 ∪ 𝐹
∣ ∃𝑥 ∈
𝐹 𝑥 ⊆ 𝑡} |
53 | 44, 52 | jctil 523 |
. . . . . 6
⊢ (𝐹 ∈ (fBas‘𝑋) → (𝐹 ⊆ {𝑡 ∈ 𝒫 ∪ 𝐹
∣ ∃𝑥 ∈
𝐹 𝑥 ⊆ 𝑡} ∧ ∀𝑢 ∈ {𝑡 ∈ 𝒫 ∪ 𝐹
∣ ∃𝑥 ∈
𝐹 𝑥 ⊆ 𝑡}∀𝑣 ∈ {𝑡 ∈ 𝒫 ∪ 𝐹
∣ ∃𝑥 ∈
𝐹 𝑥 ⊆ 𝑡} (𝑢 ∩ 𝑣) ∈ {𝑡 ∈ 𝒫 ∪ 𝐹
∣ ∃𝑥 ∈
𝐹 𝑥 ⊆ 𝑡})) |
54 | | uniexg 7469 |
. . . . . . 7
⊢ (𝐹 ∈ (fBas‘𝑋) → ∪ 𝐹
∈ V) |
55 | | pwexg 5250 |
. . . . . . 7
⊢ (∪ 𝐹
∈ V → 𝒫 ∪ 𝐹 ∈ V) |
56 | | rabexg 5204 |
. . . . . . 7
⊢
(𝒫 ∪ 𝐹 ∈ V → {𝑡 ∈ 𝒫 ∪ 𝐹
∣ ∃𝑥 ∈
𝐹 𝑥 ⊆ 𝑡} ∈ V) |
57 | | sseq2 3920 |
. . . . . . . . 9
⊢ (𝑧 = {𝑡 ∈ 𝒫 ∪ 𝐹
∣ ∃𝑥 ∈
𝐹 𝑥 ⊆ 𝑡} → (𝐹 ⊆ 𝑧 ↔ 𝐹 ⊆ {𝑡 ∈ 𝒫 ∪ 𝐹
∣ ∃𝑥 ∈
𝐹 𝑥 ⊆ 𝑡})) |
58 | | eleq2 2840 |
. . . . . . . . . . 11
⊢ (𝑧 = {𝑡 ∈ 𝒫 ∪ 𝐹
∣ ∃𝑥 ∈
𝐹 𝑥 ⊆ 𝑡} → ((𝑢 ∩ 𝑣) ∈ 𝑧 ↔ (𝑢 ∩ 𝑣) ∈ {𝑡 ∈ 𝒫 ∪ 𝐹
∣ ∃𝑥 ∈
𝐹 𝑥 ⊆ 𝑡})) |
59 | 58 | raleqbi1dv 3321 |
. . . . . . . . . 10
⊢ (𝑧 = {𝑡 ∈ 𝒫 ∪ 𝐹
∣ ∃𝑥 ∈
𝐹 𝑥 ⊆ 𝑡} → (∀𝑣 ∈ 𝑧 (𝑢 ∩ 𝑣) ∈ 𝑧 ↔ ∀𝑣 ∈ {𝑡 ∈ 𝒫 ∪ 𝐹
∣ ∃𝑥 ∈
𝐹 𝑥 ⊆ 𝑡} (𝑢 ∩ 𝑣) ∈ {𝑡 ∈ 𝒫 ∪ 𝐹
∣ ∃𝑥 ∈
𝐹 𝑥 ⊆ 𝑡})) |
60 | 59 | raleqbi1dv 3321 |
. . . . . . . . 9
⊢ (𝑧 = {𝑡 ∈ 𝒫 ∪ 𝐹
∣ ∃𝑥 ∈
𝐹 𝑥 ⊆ 𝑡} → (∀𝑢 ∈ 𝑧 ∀𝑣 ∈ 𝑧 (𝑢 ∩ 𝑣) ∈ 𝑧 ↔ ∀𝑢 ∈ {𝑡 ∈ 𝒫 ∪ 𝐹
∣ ∃𝑥 ∈
𝐹 𝑥 ⊆ 𝑡}∀𝑣 ∈ {𝑡 ∈ 𝒫 ∪ 𝐹
∣ ∃𝑥 ∈
𝐹 𝑥 ⊆ 𝑡} (𝑢 ∩ 𝑣) ∈ {𝑡 ∈ 𝒫 ∪ 𝐹
∣ ∃𝑥 ∈
𝐹 𝑥 ⊆ 𝑡})) |
61 | 57, 60 | anbi12d 633 |
. . . . . . . 8
⊢ (𝑧 = {𝑡 ∈ 𝒫 ∪ 𝐹
∣ ∃𝑥 ∈
𝐹 𝑥 ⊆ 𝑡} → ((𝐹 ⊆ 𝑧 ∧ ∀𝑢 ∈ 𝑧 ∀𝑣 ∈ 𝑧 (𝑢 ∩ 𝑣) ∈ 𝑧) ↔ (𝐹 ⊆ {𝑡 ∈ 𝒫 ∪ 𝐹
∣ ∃𝑥 ∈
𝐹 𝑥 ⊆ 𝑡} ∧ ∀𝑢 ∈ {𝑡 ∈ 𝒫 ∪ 𝐹
∣ ∃𝑥 ∈
𝐹 𝑥 ⊆ 𝑡}∀𝑣 ∈ {𝑡 ∈ 𝒫 ∪ 𝐹
∣ ∃𝑥 ∈
𝐹 𝑥 ⊆ 𝑡} (𝑢 ∩ 𝑣) ∈ {𝑡 ∈ 𝒫 ∪ 𝐹
∣ ∃𝑥 ∈
𝐹 𝑥 ⊆ 𝑡}))) |
62 | 61 | elabg 3589 |
. . . . . . 7
⊢ ({𝑡 ∈ 𝒫 ∪ 𝐹
∣ ∃𝑥 ∈
𝐹 𝑥 ⊆ 𝑡} ∈ V → ({𝑡 ∈ 𝒫 ∪ 𝐹
∣ ∃𝑥 ∈
𝐹 𝑥 ⊆ 𝑡} ∈ {𝑧 ∣ (𝐹 ⊆ 𝑧 ∧ ∀𝑢 ∈ 𝑧 ∀𝑣 ∈ 𝑧 (𝑢 ∩ 𝑣) ∈ 𝑧)} ↔ (𝐹 ⊆ {𝑡 ∈ 𝒫 ∪ 𝐹
∣ ∃𝑥 ∈
𝐹 𝑥 ⊆ 𝑡} ∧ ∀𝑢 ∈ {𝑡 ∈ 𝒫 ∪ 𝐹
∣ ∃𝑥 ∈
𝐹 𝑥 ⊆ 𝑡}∀𝑣 ∈ {𝑡 ∈ 𝒫 ∪ 𝐹
∣ ∃𝑥 ∈
𝐹 𝑥 ⊆ 𝑡} (𝑢 ∩ 𝑣) ∈ {𝑡 ∈ 𝒫 ∪ 𝐹
∣ ∃𝑥 ∈
𝐹 𝑥 ⊆ 𝑡}))) |
63 | 54, 55, 56, 62 | 4syl 19 |
. . . . . 6
⊢ (𝐹 ∈ (fBas‘𝑋) → ({𝑡 ∈ 𝒫 ∪ 𝐹
∣ ∃𝑥 ∈
𝐹 𝑥 ⊆ 𝑡} ∈ {𝑧 ∣ (𝐹 ⊆ 𝑧 ∧ ∀𝑢 ∈ 𝑧 ∀𝑣 ∈ 𝑧 (𝑢 ∩ 𝑣) ∈ 𝑧)} ↔ (𝐹 ⊆ {𝑡 ∈ 𝒫 ∪ 𝐹
∣ ∃𝑥 ∈
𝐹 𝑥 ⊆ 𝑡} ∧ ∀𝑢 ∈ {𝑡 ∈ 𝒫 ∪ 𝐹
∣ ∃𝑥 ∈
𝐹 𝑥 ⊆ 𝑡}∀𝑣 ∈ {𝑡 ∈ 𝒫 ∪ 𝐹
∣ ∃𝑥 ∈
𝐹 𝑥 ⊆ 𝑡} (𝑢 ∩ 𝑣) ∈ {𝑡 ∈ 𝒫 ∪ 𝐹
∣ ∃𝑥 ∈
𝐹 𝑥 ⊆ 𝑡}))) |
64 | 53, 63 | mpbird 260 |
. . . . 5
⊢ (𝐹 ∈ (fBas‘𝑋) → {𝑡 ∈ 𝒫 ∪ 𝐹
∣ ∃𝑥 ∈
𝐹 𝑥 ⊆ 𝑡} ∈ {𝑧 ∣ (𝐹 ⊆ 𝑧 ∧ ∀𝑢 ∈ 𝑧 ∀𝑣 ∈ 𝑧 (𝑢 ∩ 𝑣) ∈ 𝑧)}) |
65 | | intss1 4856 |
. . . . 5
⊢ ({𝑡 ∈ 𝒫 ∪ 𝐹
∣ ∃𝑥 ∈
𝐹 𝑥 ⊆ 𝑡} ∈ {𝑧 ∣ (𝐹 ⊆ 𝑧 ∧ ∀𝑢 ∈ 𝑧 ∀𝑣 ∈ 𝑧 (𝑢 ∩ 𝑣) ∈ 𝑧)} → ∩ {𝑧 ∣ (𝐹 ⊆ 𝑧 ∧ ∀𝑢 ∈ 𝑧 ∀𝑣 ∈ 𝑧 (𝑢 ∩ 𝑣) ∈ 𝑧)} ⊆ {𝑡 ∈ 𝒫 ∪ 𝐹
∣ ∃𝑥 ∈
𝐹 𝑥 ⊆ 𝑡}) |
66 | 64, 65 | syl 17 |
. . . 4
⊢ (𝐹 ∈ (fBas‘𝑋) → ∩ {𝑧
∣ (𝐹 ⊆ 𝑧 ∧ ∀𝑢 ∈ 𝑧 ∀𝑣 ∈ 𝑧 (𝑢 ∩ 𝑣) ∈ 𝑧)} ⊆ {𝑡 ∈ 𝒫 ∪ 𝐹
∣ ∃𝑥 ∈
𝐹 𝑥 ⊆ 𝑡}) |
67 | 1, 66 | eqsstrd 3932 |
. . 3
⊢ (𝐹 ∈ (fBas‘𝑋) → (fi‘𝐹) ⊆ {𝑡 ∈ 𝒫 ∪ 𝐹
∣ ∃𝑥 ∈
𝐹 𝑥 ⊆ 𝑡}) |
68 | 67 | sselda 3894 |
. 2
⊢ ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐴 ∈ (fi‘𝐹)) → 𝐴 ∈ {𝑡 ∈ 𝒫 ∪ 𝐹
∣ ∃𝑥 ∈
𝐹 𝑥 ⊆ 𝑡}) |
69 | | sseq2 3920 |
. . . . 5
⊢ (𝑡 = 𝐴 → (𝑥 ⊆ 𝑡 ↔ 𝑥 ⊆ 𝐴)) |
70 | 69 | rexbidv 3221 |
. . . 4
⊢ (𝑡 = 𝐴 → (∃𝑥 ∈ 𝐹 𝑥 ⊆ 𝑡 ↔ ∃𝑥 ∈ 𝐹 𝑥 ⊆ 𝐴)) |
71 | 70 | elrab 3604 |
. . 3
⊢ (𝐴 ∈ {𝑡 ∈ 𝒫 ∪ 𝐹
∣ ∃𝑥 ∈
𝐹 𝑥 ⊆ 𝑡} ↔ (𝐴 ∈ 𝒫 ∪ 𝐹
∧ ∃𝑥 ∈ 𝐹 𝑥 ⊆ 𝐴)) |
72 | 71 | simprbi 500 |
. 2
⊢ (𝐴 ∈ {𝑡 ∈ 𝒫 ∪ 𝐹
∣ ∃𝑥 ∈
𝐹 𝑥 ⊆ 𝑡} → ∃𝑥 ∈ 𝐹 𝑥 ⊆ 𝐴) |
73 | 68, 72 | syl 17 |
1
⊢ ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐴 ∈ (fi‘𝐹)) → ∃𝑥 ∈ 𝐹 𝑥 ⊆ 𝐴) |