MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fbssfi Structured version   Visualization version   GIF version

Theorem fbssfi 23860
Description: A filter base contains subsets of its finite intersections. (Contributed by Mario Carneiro, 26-Nov-2013.) (Revised by Stefan O'Rear, 28-Jul-2015.)
Assertion
Ref Expression
fbssfi ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐴 ∈ (fi‘𝐹)) → ∃𝑥𝐹 𝑥𝐴)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹   𝑥,𝑋

Proof of Theorem fbssfi
Dummy variables 𝑡 𝑢 𝑣 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dffi2 9460 . . . 4 (𝐹 ∈ (fBas‘𝑋) → (fi‘𝐹) = {𝑧 ∣ (𝐹𝑧 ∧ ∀𝑢𝑧𝑣𝑧 (𝑢𝑣) ∈ 𝑧)})
2 sseq2 4021 . . . . . . . . . . . . . . . 16 (𝑡 = (𝑢𝑣) → (𝑥𝑡𝑥 ⊆ (𝑢𝑣)))
32rexbidv 3176 . . . . . . . . . . . . . . 15 (𝑡 = (𝑢𝑣) → (∃𝑥𝐹 𝑥𝑡 ↔ ∃𝑥𝐹 𝑥 ⊆ (𝑢𝑣)))
4 inss1 4244 . . . . . . . . . . . . . . . . 17 (𝑢𝑣) ⊆ 𝑢
5 simp1r 1197 . . . . . . . . . . . . . . . . . 18 (((𝐹 ∈ (fBas‘𝑋) ∧ 𝑢 ∈ 𝒫 𝐹) ∧ (𝑦𝐹𝑦𝑢) ∧ (𝑧𝐹𝑧𝑣)) → 𝑢 ∈ 𝒫 𝐹)
65elpwid 4613 . . . . . . . . . . . . . . . . 17 (((𝐹 ∈ (fBas‘𝑋) ∧ 𝑢 ∈ 𝒫 𝐹) ∧ (𝑦𝐹𝑦𝑢) ∧ (𝑧𝐹𝑧𝑣)) → 𝑢 𝐹)
74, 6sstrid 4006 . . . . . . . . . . . . . . . 16 (((𝐹 ∈ (fBas‘𝑋) ∧ 𝑢 ∈ 𝒫 𝐹) ∧ (𝑦𝐹𝑦𝑢) ∧ (𝑧𝐹𝑧𝑣)) → (𝑢𝑣) ⊆ 𝐹)
8 vex 3481 . . . . . . . . . . . . . . . . . 18 𝑢 ∈ V
98inex1 5322 . . . . . . . . . . . . . . . . 17 (𝑢𝑣) ∈ V
109elpw 4608 . . . . . . . . . . . . . . . 16 ((𝑢𝑣) ∈ 𝒫 𝐹 ↔ (𝑢𝑣) ⊆ 𝐹)
117, 10sylibr 234 . . . . . . . . . . . . . . 15 (((𝐹 ∈ (fBas‘𝑋) ∧ 𝑢 ∈ 𝒫 𝐹) ∧ (𝑦𝐹𝑦𝑢) ∧ (𝑧𝐹𝑧𝑣)) → (𝑢𝑣) ∈ 𝒫 𝐹)
12 simpl 482 . . . . . . . . . . . . . . . . 17 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝑢 ∈ 𝒫 𝐹) → 𝐹 ∈ (fBas‘𝑋))
13 simpl 482 . . . . . . . . . . . . . . . . 17 ((𝑦𝐹𝑦𝑢) → 𝑦𝐹)
14 simpl 482 . . . . . . . . . . . . . . . . 17 ((𝑧𝐹𝑧𝑣) → 𝑧𝐹)
15 fbasssin 23859 . . . . . . . . . . . . . . . . 17 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝑦𝐹𝑧𝐹) → ∃𝑥𝐹 𝑥 ⊆ (𝑦𝑧))
1612, 13, 14, 15syl3an 1159 . . . . . . . . . . . . . . . 16 (((𝐹 ∈ (fBas‘𝑋) ∧ 𝑢 ∈ 𝒫 𝐹) ∧ (𝑦𝐹𝑦𝑢) ∧ (𝑧𝐹𝑧𝑣)) → ∃𝑥𝐹 𝑥 ⊆ (𝑦𝑧))
17 ss2in 4252 . . . . . . . . . . . . . . . . . . . 20 ((𝑦𝑢𝑧𝑣) → (𝑦𝑧) ⊆ (𝑢𝑣))
1817ad2ant2l 746 . . . . . . . . . . . . . . . . . . 19 (((𝑦𝐹𝑦𝑢) ∧ (𝑧𝐹𝑧𝑣)) → (𝑦𝑧) ⊆ (𝑢𝑣))
19183adant1 1129 . . . . . . . . . . . . . . . . . 18 (((𝐹 ∈ (fBas‘𝑋) ∧ 𝑢 ∈ 𝒫 𝐹) ∧ (𝑦𝐹𝑦𝑢) ∧ (𝑧𝐹𝑧𝑣)) → (𝑦𝑧) ⊆ (𝑢𝑣))
20 sstr 4003 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ⊆ (𝑦𝑧) ∧ (𝑦𝑧) ⊆ (𝑢𝑣)) → 𝑥 ⊆ (𝑢𝑣))
2120expcom 413 . . . . . . . . . . . . . . . . . 18 ((𝑦𝑧) ⊆ (𝑢𝑣) → (𝑥 ⊆ (𝑦𝑧) → 𝑥 ⊆ (𝑢𝑣)))
2219, 21syl 17 . . . . . . . . . . . . . . . . 17 (((𝐹 ∈ (fBas‘𝑋) ∧ 𝑢 ∈ 𝒫 𝐹) ∧ (𝑦𝐹𝑦𝑢) ∧ (𝑧𝐹𝑧𝑣)) → (𝑥 ⊆ (𝑦𝑧) → 𝑥 ⊆ (𝑢𝑣)))
2322reximdv 3167 . . . . . . . . . . . . . . . 16 (((𝐹 ∈ (fBas‘𝑋) ∧ 𝑢 ∈ 𝒫 𝐹) ∧ (𝑦𝐹𝑦𝑢) ∧ (𝑧𝐹𝑧𝑣)) → (∃𝑥𝐹 𝑥 ⊆ (𝑦𝑧) → ∃𝑥𝐹 𝑥 ⊆ (𝑢𝑣)))
2416, 23mpd 15 . . . . . . . . . . . . . . 15 (((𝐹 ∈ (fBas‘𝑋) ∧ 𝑢 ∈ 𝒫 𝐹) ∧ (𝑦𝐹𝑦𝑢) ∧ (𝑧𝐹𝑧𝑣)) → ∃𝑥𝐹 𝑥 ⊆ (𝑢𝑣))
253, 11, 24elrabd 3696 . . . . . . . . . . . . . 14 (((𝐹 ∈ (fBas‘𝑋) ∧ 𝑢 ∈ 𝒫 𝐹) ∧ (𝑦𝐹𝑦𝑢) ∧ (𝑧𝐹𝑧𝑣)) → (𝑢𝑣) ∈ {𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡})
26253expa 1117 . . . . . . . . . . . . 13 ((((𝐹 ∈ (fBas‘𝑋) ∧ 𝑢 ∈ 𝒫 𝐹) ∧ (𝑦𝐹𝑦𝑢)) ∧ (𝑧𝐹𝑧𝑣)) → (𝑢𝑣) ∈ {𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡})
2726rexlimdvaa 3153 . . . . . . . . . . . 12 (((𝐹 ∈ (fBas‘𝑋) ∧ 𝑢 ∈ 𝒫 𝐹) ∧ (𝑦𝐹𝑦𝑢)) → (∃𝑧𝐹 𝑧𝑣 → (𝑢𝑣) ∈ {𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡}))
2827ralrimivw 3147 . . . . . . . . . . 11 (((𝐹 ∈ (fBas‘𝑋) ∧ 𝑢 ∈ 𝒫 𝐹) ∧ (𝑦𝐹𝑦𝑢)) → ∀𝑣 ∈ 𝒫 𝐹(∃𝑧𝐹 𝑧𝑣 → (𝑢𝑣) ∈ {𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡}))
29 sseq2 4021 . . . . . . . . . . . . . 14 (𝑡 = 𝑣 → (𝑥𝑡𝑥𝑣))
3029rexbidv 3176 . . . . . . . . . . . . 13 (𝑡 = 𝑣 → (∃𝑥𝐹 𝑥𝑡 ↔ ∃𝑥𝐹 𝑥𝑣))
31 sseq1 4020 . . . . . . . . . . . . . 14 (𝑥 = 𝑧 → (𝑥𝑣𝑧𝑣))
3231cbvrexvw 3235 . . . . . . . . . . . . 13 (∃𝑥𝐹 𝑥𝑣 ↔ ∃𝑧𝐹 𝑧𝑣)
3330, 32bitrdi 287 . . . . . . . . . . . 12 (𝑡 = 𝑣 → (∃𝑥𝐹 𝑥𝑡 ↔ ∃𝑧𝐹 𝑧𝑣))
3433ralrab 3701 . . . . . . . . . . 11 (∀𝑣 ∈ {𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡} (𝑢𝑣) ∈ {𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡} ↔ ∀𝑣 ∈ 𝒫 𝐹(∃𝑧𝐹 𝑧𝑣 → (𝑢𝑣) ∈ {𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡}))
3528, 34sylibr 234 . . . . . . . . . 10 (((𝐹 ∈ (fBas‘𝑋) ∧ 𝑢 ∈ 𝒫 𝐹) ∧ (𝑦𝐹𝑦𝑢)) → ∀𝑣 ∈ {𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡} (𝑢𝑣) ∈ {𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡})
3635rexlimdvaa 3153 . . . . . . . . 9 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝑢 ∈ 𝒫 𝐹) → (∃𝑦𝐹 𝑦𝑢 → ∀𝑣 ∈ {𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡} (𝑢𝑣) ∈ {𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡}))
3736ralrimiva 3143 . . . . . . . 8 (𝐹 ∈ (fBas‘𝑋) → ∀𝑢 ∈ 𝒫 𝐹(∃𝑦𝐹 𝑦𝑢 → ∀𝑣 ∈ {𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡} (𝑢𝑣) ∈ {𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡}))
38 sseq2 4021 . . . . . . . . . . 11 (𝑡 = 𝑢 → (𝑥𝑡𝑥𝑢))
3938rexbidv 3176 . . . . . . . . . 10 (𝑡 = 𝑢 → (∃𝑥𝐹 𝑥𝑡 ↔ ∃𝑥𝐹 𝑥𝑢))
40 sseq1 4020 . . . . . . . . . . 11 (𝑥 = 𝑦 → (𝑥𝑢𝑦𝑢))
4140cbvrexvw 3235 . . . . . . . . . 10 (∃𝑥𝐹 𝑥𝑢 ↔ ∃𝑦𝐹 𝑦𝑢)
4239, 41bitrdi 287 . . . . . . . . 9 (𝑡 = 𝑢 → (∃𝑥𝐹 𝑥𝑡 ↔ ∃𝑦𝐹 𝑦𝑢))
4342ralrab 3701 . . . . . . . 8 (∀𝑢 ∈ {𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡}∀𝑣 ∈ {𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡} (𝑢𝑣) ∈ {𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡} ↔ ∀𝑢 ∈ 𝒫 𝐹(∃𝑦𝐹 𝑦𝑢 → ∀𝑣 ∈ {𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡} (𝑢𝑣) ∈ {𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡}))
4437, 43sylibr 234 . . . . . . 7 (𝐹 ∈ (fBas‘𝑋) → ∀𝑢 ∈ {𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡}∀𝑣 ∈ {𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡} (𝑢𝑣) ∈ {𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡})
45 pwuni 4949 . . . . . . . 8 𝐹 ⊆ 𝒫 𝐹
46 ssid 4017 . . . . . . . . . 10 𝑡𝑡
47 sseq1 4020 . . . . . . . . . . 11 (𝑥 = 𝑡 → (𝑥𝑡𝑡𝑡))
4847rspcev 3621 . . . . . . . . . 10 ((𝑡𝐹𝑡𝑡) → ∃𝑥𝐹 𝑥𝑡)
4946, 48mpan2 691 . . . . . . . . 9 (𝑡𝐹 → ∃𝑥𝐹 𝑥𝑡)
5049rgen 3060 . . . . . . . 8 𝑡𝐹𝑥𝐹 𝑥𝑡
51 ssrab 4082 . . . . . . . 8 (𝐹 ⊆ {𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡} ↔ (𝐹 ⊆ 𝒫 𝐹 ∧ ∀𝑡𝐹𝑥𝐹 𝑥𝑡))
5245, 50, 51mpbir2an 711 . . . . . . 7 𝐹 ⊆ {𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡}
5344, 52jctil 519 . . . . . 6 (𝐹 ∈ (fBas‘𝑋) → (𝐹 ⊆ {𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡} ∧ ∀𝑢 ∈ {𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡}∀𝑣 ∈ {𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡} (𝑢𝑣) ∈ {𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡}))
54 uniexg 7758 . . . . . . 7 (𝐹 ∈ (fBas‘𝑋) → 𝐹 ∈ V)
55 pwexg 5383 . . . . . . 7 ( 𝐹 ∈ V → 𝒫 𝐹 ∈ V)
56 rabexg 5342 . . . . . . 7 (𝒫 𝐹 ∈ V → {𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡} ∈ V)
57 sseq2 4021 . . . . . . . . 9 (𝑧 = {𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡} → (𝐹𝑧𝐹 ⊆ {𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡}))
58 eleq2 2827 . . . . . . . . . . 11 (𝑧 = {𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡} → ((𝑢𝑣) ∈ 𝑧 ↔ (𝑢𝑣) ∈ {𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡}))
5958raleqbi1dv 3335 . . . . . . . . . 10 (𝑧 = {𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡} → (∀𝑣𝑧 (𝑢𝑣) ∈ 𝑧 ↔ ∀𝑣 ∈ {𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡} (𝑢𝑣) ∈ {𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡}))
6059raleqbi1dv 3335 . . . . . . . . 9 (𝑧 = {𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡} → (∀𝑢𝑧𝑣𝑧 (𝑢𝑣) ∈ 𝑧 ↔ ∀𝑢 ∈ {𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡}∀𝑣 ∈ {𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡} (𝑢𝑣) ∈ {𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡}))
6157, 60anbi12d 632 . . . . . . . 8 (𝑧 = {𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡} → ((𝐹𝑧 ∧ ∀𝑢𝑧𝑣𝑧 (𝑢𝑣) ∈ 𝑧) ↔ (𝐹 ⊆ {𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡} ∧ ∀𝑢 ∈ {𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡}∀𝑣 ∈ {𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡} (𝑢𝑣) ∈ {𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡})))
6261elabg 3676 . . . . . . 7 ({𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡} ∈ V → ({𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡} ∈ {𝑧 ∣ (𝐹𝑧 ∧ ∀𝑢𝑧𝑣𝑧 (𝑢𝑣) ∈ 𝑧)} ↔ (𝐹 ⊆ {𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡} ∧ ∀𝑢 ∈ {𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡}∀𝑣 ∈ {𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡} (𝑢𝑣) ∈ {𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡})))
6354, 55, 56, 624syl 19 . . . . . 6 (𝐹 ∈ (fBas‘𝑋) → ({𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡} ∈ {𝑧 ∣ (𝐹𝑧 ∧ ∀𝑢𝑧𝑣𝑧 (𝑢𝑣) ∈ 𝑧)} ↔ (𝐹 ⊆ {𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡} ∧ ∀𝑢 ∈ {𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡}∀𝑣 ∈ {𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡} (𝑢𝑣) ∈ {𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡})))
6453, 63mpbird 257 . . . . 5 (𝐹 ∈ (fBas‘𝑋) → {𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡} ∈ {𝑧 ∣ (𝐹𝑧 ∧ ∀𝑢𝑧𝑣𝑧 (𝑢𝑣) ∈ 𝑧)})
65 intss1 4967 . . . . 5 ({𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡} ∈ {𝑧 ∣ (𝐹𝑧 ∧ ∀𝑢𝑧𝑣𝑧 (𝑢𝑣) ∈ 𝑧)} → {𝑧 ∣ (𝐹𝑧 ∧ ∀𝑢𝑧𝑣𝑧 (𝑢𝑣) ∈ 𝑧)} ⊆ {𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡})
6664, 65syl 17 . . . 4 (𝐹 ∈ (fBas‘𝑋) → {𝑧 ∣ (𝐹𝑧 ∧ ∀𝑢𝑧𝑣𝑧 (𝑢𝑣) ∈ 𝑧)} ⊆ {𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡})
671, 66eqsstrd 4033 . . 3 (𝐹 ∈ (fBas‘𝑋) → (fi‘𝐹) ⊆ {𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡})
6867sselda 3994 . 2 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐴 ∈ (fi‘𝐹)) → 𝐴 ∈ {𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡})
69 sseq2 4021 . . . . 5 (𝑡 = 𝐴 → (𝑥𝑡𝑥𝐴))
7069rexbidv 3176 . . . 4 (𝑡 = 𝐴 → (∃𝑥𝐹 𝑥𝑡 ↔ ∃𝑥𝐹 𝑥𝐴))
7170elrab 3694 . . 3 (𝐴 ∈ {𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡} ↔ (𝐴 ∈ 𝒫 𝐹 ∧ ∃𝑥𝐹 𝑥𝐴))
7271simprbi 496 . 2 (𝐴 ∈ {𝑡 ∈ 𝒫 𝐹 ∣ ∃𝑥𝐹 𝑥𝑡} → ∃𝑥𝐹 𝑥𝐴)
7368, 72syl 17 1 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐴 ∈ (fi‘𝐹)) → ∃𝑥𝐹 𝑥𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1536  wcel 2105  {cab 2711  wral 3058  wrex 3067  {crab 3432  Vcvv 3477  cin 3961  wss 3962  𝒫 cpw 4604   cuni 4911   cint 4950  cfv 6562  ficfi 9447  fBascfbas 21369
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-int 4951  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-om 7887  df-1o 8504  df-2o 8505  df-en 8984  df-fin 8987  df-fi 9448  df-fbas 21378
This theorem is referenced by:  fbssint  23861  fbunfip  23892  fmfnfmlem1  23977  fmfnfmlem4  23980
  Copyright terms: Public domain W3C validator