HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  5oai Structured version   Visualization version   GIF version

Theorem 5oai 31597
Description: Orthoarguesian law 5OA. This 8-variable inference is called 5OA because it can be converted to a 5-variable equation (see Quantum Logic Explorer). (Contributed by NM, 5-May-2000.) (New usage is discouraged.)
Hypotheses
Ref Expression
5oa.1 𝐴C
5oa.2 𝐵C
5oa.3 𝐶C
5oa.4 𝐷C
5oa.5 𝐹C
5oa.6 𝐺C
5oa.7 𝑅C
5oa.8 𝑆C
5oa.9 𝐴 ⊆ (⊥‘𝐵)
5oa.10 𝐶 ⊆ (⊥‘𝐷)
5oa.11 𝐹 ⊆ (⊥‘𝐺)
5oa.12 𝑅 ⊆ (⊥‘𝑆)
Assertion
Ref Expression
5oai (((𝐴 𝐵) ∩ (𝐶 𝐷)) ∩ ((𝐹 𝐺) ∩ (𝑅 𝑆))) ⊆ (𝐵 (𝐴 ∩ (𝐶 ((((𝐴 𝐶) ∩ (𝐵 𝐷)) ∩ (((𝐴 𝑅) ∩ (𝐵 𝑆)) ∨ ((𝐶 𝑅) ∩ (𝐷 𝑆)))) ∩ ((((𝐴 𝐹) ∩ (𝐵 𝐺)) ∩ (((𝐴 𝑅) ∩ (𝐵 𝑆)) ∨ ((𝐹 𝑅) ∩ (𝐺 𝑆)))) ∨ (((𝐶 𝐹) ∩ (𝐷 𝐺)) ∩ (((𝐶 𝑅) ∩ (𝐷 𝑆)) ∨ ((𝐹 𝑅) ∩ (𝐺 𝑆)))))))))

Proof of Theorem 5oai
StepHypRef Expression
1 5oa.9 . . . . . 6 𝐴 ⊆ (⊥‘𝐵)
2 5oa.1 . . . . . . 7 𝐴C
3 5oa.2 . . . . . . 7 𝐵C
42, 3osumi 31578 . . . . . 6 (𝐴 ⊆ (⊥‘𝐵) → (𝐴 + 𝐵) = (𝐴 𝐵))
51, 4ax-mp 5 . . . . 5 (𝐴 + 𝐵) = (𝐴 𝐵)
6 5oa.10 . . . . . 6 𝐶 ⊆ (⊥‘𝐷)
7 5oa.3 . . . . . . 7 𝐶C
8 5oa.4 . . . . . . 7 𝐷C
97, 8osumi 31578 . . . . . 6 (𝐶 ⊆ (⊥‘𝐷) → (𝐶 + 𝐷) = (𝐶 𝐷))
106, 9ax-mp 5 . . . . 5 (𝐶 + 𝐷) = (𝐶 𝐷)
115, 10ineq12i 4184 . . . 4 ((𝐴 + 𝐵) ∩ (𝐶 + 𝐷)) = ((𝐴 𝐵) ∩ (𝐶 𝐷))
12 5oa.11 . . . . . 6 𝐹 ⊆ (⊥‘𝐺)
13 5oa.5 . . . . . . 7 𝐹C
14 5oa.6 . . . . . . 7 𝐺C
1513, 14osumi 31578 . . . . . 6 (𝐹 ⊆ (⊥‘𝐺) → (𝐹 + 𝐺) = (𝐹 𝐺))
1612, 15ax-mp 5 . . . . 5 (𝐹 + 𝐺) = (𝐹 𝐺)
17 5oa.12 . . . . . 6 𝑅 ⊆ (⊥‘𝑆)
18 5oa.7 . . . . . . 7 𝑅C
19 5oa.8 . . . . . . 7 𝑆C
2018, 19osumi 31578 . . . . . 6 (𝑅 ⊆ (⊥‘𝑆) → (𝑅 + 𝑆) = (𝑅 𝑆))
2117, 20ax-mp 5 . . . . 5 (𝑅 + 𝑆) = (𝑅 𝑆)
2216, 21ineq12i 4184 . . . 4 ((𝐹 + 𝐺) ∩ (𝑅 + 𝑆)) = ((𝐹 𝐺) ∩ (𝑅 𝑆))
2311, 22ineq12i 4184 . . 3 (((𝐴 + 𝐵) ∩ (𝐶 + 𝐷)) ∩ ((𝐹 + 𝐺) ∩ (𝑅 + 𝑆))) = (((𝐴 𝐵) ∩ (𝐶 𝐷)) ∩ ((𝐹 𝐺) ∩ (𝑅 𝑆)))
242chshii 31163 . . . 4 𝐴S
253chshii 31163 . . . 4 𝐵S
267chshii 31163 . . . 4 𝐶S
278chshii 31163 . . . 4 𝐷S
2813chshii 31163 . . . 4 𝐹S
2914chshii 31163 . . . 4 𝐺S
3018chshii 31163 . . . 4 𝑅S
3119chshii 31163 . . . 4 𝑆S
3224, 25, 26, 27, 28, 29, 30, 315oalem7 31596 . . 3 (((𝐴 + 𝐵) ∩ (𝐶 + 𝐷)) ∩ ((𝐹 + 𝐺) ∩ (𝑅 + 𝑆))) ⊆ (𝐵 + (𝐴 ∩ (𝐶 + ((((𝐴 + 𝐶) ∩ (𝐵 + 𝐷)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)))) ∩ ((((𝐴 + 𝐹) ∩ (𝐵 + 𝐺)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)))) + (((𝐶 + 𝐹) ∩ (𝐷 + 𝐺)) ∩ (((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)))))))))
3323, 32eqsstrri 3997 . 2 (((𝐴 𝐵) ∩ (𝐶 𝐷)) ∩ ((𝐹 𝐺) ∩ (𝑅 𝑆))) ⊆ (𝐵 + (𝐴 ∩ (𝐶 + ((((𝐴 + 𝐶) ∩ (𝐵 + 𝐷)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)))) ∩ ((((𝐴 + 𝐹) ∩ (𝐵 + 𝐺)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)))) + (((𝐶 + 𝐹) ∩ (𝐷 + 𝐺)) ∩ (((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)))))))))
3424, 26shscli 31253 . . . . . . . . 9 (𝐴 + 𝐶) ∈ S
3525, 27shscli 31253 . . . . . . . . 9 (𝐵 + 𝐷) ∈ S
3634, 35shincli 31298 . . . . . . . 8 ((𝐴 + 𝐶) ∩ (𝐵 + 𝐷)) ∈ S
3724, 30shscli 31253 . . . . . . . . . 10 (𝐴 + 𝑅) ∈ S
3825, 31shscli 31253 . . . . . . . . . 10 (𝐵 + 𝑆) ∈ S
3937, 38shincli 31298 . . . . . . . . 9 ((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) ∈ S
4026, 30shscli 31253 . . . . . . . . . 10 (𝐶 + 𝑅) ∈ S
4127, 31shscli 31253 . . . . . . . . . 10 (𝐷 + 𝑆) ∈ S
4240, 41shincli 31298 . . . . . . . . 9 ((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)) ∈ S
4339, 42shscli 31253 . . . . . . . 8 (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐶 + 𝑅) ∩ (𝐷 + 𝑆))) ∈ S
4436, 43shincli 31298 . . . . . . 7 (((𝐴 + 𝐶) ∩ (𝐵 + 𝐷)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)))) ∈ S
4524, 28shscli 31253 . . . . . . . . . 10 (𝐴 + 𝐹) ∈ S
4625, 29shscli 31253 . . . . . . . . . 10 (𝐵 + 𝐺) ∈ S
4745, 46shincli 31298 . . . . . . . . 9 ((𝐴 + 𝐹) ∩ (𝐵 + 𝐺)) ∈ S
4828, 30shscli 31253 . . . . . . . . . . 11 (𝐹 + 𝑅) ∈ S
4929, 31shscli 31253 . . . . . . . . . . 11 (𝐺 + 𝑆) ∈ S
5048, 49shincli 31298 . . . . . . . . . 10 ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)) ∈ S
5139, 50shscli 31253 . . . . . . . . 9 (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆))) ∈ S
5247, 51shincli 31298 . . . . . . . 8 (((𝐴 + 𝐹) ∩ (𝐵 + 𝐺)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)))) ∈ S
5326, 28shscli 31253 . . . . . . . . . 10 (𝐶 + 𝐹) ∈ S
5427, 29shscli 31253 . . . . . . . . . 10 (𝐷 + 𝐺) ∈ S
5553, 54shincli 31298 . . . . . . . . 9 ((𝐶 + 𝐹) ∩ (𝐷 + 𝐺)) ∈ S
5642, 50shscli 31253 . . . . . . . . 9 (((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆))) ∈ S
5755, 56shincli 31298 . . . . . . . 8 (((𝐶 + 𝐹) ∩ (𝐷 + 𝐺)) ∩ (((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)))) ∈ S
5852, 57shscli 31253 . . . . . . 7 ((((𝐴 + 𝐹) ∩ (𝐵 + 𝐺)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)))) + (((𝐶 + 𝐹) ∩ (𝐷 + 𝐺)) ∩ (((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆))))) ∈ S
5944, 58shincli 31298 . . . . . 6 ((((𝐴 + 𝐶) ∩ (𝐵 + 𝐷)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)))) ∩ ((((𝐴 + 𝐹) ∩ (𝐵 + 𝐺)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)))) + (((𝐶 + 𝐹) ∩ (𝐷 + 𝐺)) ∩ (((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)))))) ∈ S
6026, 59shscli 31253 . . . . 5 (𝐶 + ((((𝐴 + 𝐶) ∩ (𝐵 + 𝐷)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)))) ∩ ((((𝐴 + 𝐹) ∩ (𝐵 + 𝐺)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)))) + (((𝐶 + 𝐹) ∩ (𝐷 + 𝐺)) ∩ (((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆))))))) ∈ S
6124, 60shincli 31298 . . . 4 (𝐴 ∩ (𝐶 + ((((𝐴 + 𝐶) ∩ (𝐵 + 𝐷)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)))) ∩ ((((𝐴 + 𝐹) ∩ (𝐵 + 𝐺)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)))) + (((𝐶 + 𝐹) ∩ (𝐷 + 𝐺)) ∩ (((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)))))))) ∈ S
6225, 61shsleji 31306 . . 3 (𝐵 + (𝐴 ∩ (𝐶 + ((((𝐴 + 𝐶) ∩ (𝐵 + 𝐷)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)))) ∩ ((((𝐴 + 𝐹) ∩ (𝐵 + 𝐺)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)))) + (((𝐶 + 𝐹) ∩ (𝐷 + 𝐺)) ∩ (((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆))))))))) ⊆ (𝐵 (𝐴 ∩ (𝐶 + ((((𝐴 + 𝐶) ∩ (𝐵 + 𝐷)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)))) ∩ ((((𝐴 + 𝐹) ∩ (𝐵 + 𝐺)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)))) + (((𝐶 + 𝐹) ∩ (𝐷 + 𝐺)) ∩ (((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)))))))))
6326, 59shsleji 31306 . . . . . 6 (𝐶 + ((((𝐴 + 𝐶) ∩ (𝐵 + 𝐷)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)))) ∩ ((((𝐴 + 𝐹) ∩ (𝐵 + 𝐺)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)))) + (((𝐶 + 𝐹) ∩ (𝐷 + 𝐺)) ∩ (((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆))))))) ⊆ (𝐶 ((((𝐴 + 𝐶) ∩ (𝐵 + 𝐷)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)))) ∩ ((((𝐴 + 𝐹) ∩ (𝐵 + 𝐺)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)))) + (((𝐶 + 𝐹) ∩ (𝐷 + 𝐺)) ∩ (((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)))))))
642, 7chsleji 31394 . . . . . . . . . 10 (𝐴 + 𝐶) ⊆ (𝐴 𝐶)
653, 8chsleji 31394 . . . . . . . . . 10 (𝐵 + 𝐷) ⊆ (𝐵 𝐷)
66 ss2in 4211 . . . . . . . . . 10 (((𝐴 + 𝐶) ⊆ (𝐴 𝐶) ∧ (𝐵 + 𝐷) ⊆ (𝐵 𝐷)) → ((𝐴 + 𝐶) ∩ (𝐵 + 𝐷)) ⊆ ((𝐴 𝐶) ∩ (𝐵 𝐷)))
6764, 65, 66mp2an 692 . . . . . . . . 9 ((𝐴 + 𝐶) ∩ (𝐵 + 𝐷)) ⊆ ((𝐴 𝐶) ∩ (𝐵 𝐷))
6839, 42shsleji 31306 . . . . . . . . . 10 (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐶 + 𝑅) ∩ (𝐷 + 𝑆))) ⊆ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) ∨ ((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)))
697, 18chsleji 31394 . . . . . . . . . . . . 13 (𝐶 + 𝑅) ⊆ (𝐶 𝑅)
708, 19chsleji 31394 . . . . . . . . . . . . 13 (𝐷 + 𝑆) ⊆ (𝐷 𝑆)
71 ss2in 4211 . . . . . . . . . . . . 13 (((𝐶 + 𝑅) ⊆ (𝐶 𝑅) ∧ (𝐷 + 𝑆) ⊆ (𝐷 𝑆)) → ((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)) ⊆ ((𝐶 𝑅) ∩ (𝐷 𝑆)))
7269, 70, 71mp2an 692 . . . . . . . . . . . 12 ((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)) ⊆ ((𝐶 𝑅) ∩ (𝐷 𝑆))
7326, 30shjshcli 31312 . . . . . . . . . . . . . 14 (𝐶 𝑅) ∈ S
7427, 31shjshcli 31312 . . . . . . . . . . . . . 14 (𝐷 𝑆) ∈ S
7573, 74shincli 31298 . . . . . . . . . . . . 13 ((𝐶 𝑅) ∩ (𝐷 𝑆)) ∈ S
7642, 75, 39shlej2i 31315 . . . . . . . . . . . 12 (((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)) ⊆ ((𝐶 𝑅) ∩ (𝐷 𝑆)) → (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) ∨ ((𝐶 + 𝑅) ∩ (𝐷 + 𝑆))) ⊆ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) ∨ ((𝐶 𝑅) ∩ (𝐷 𝑆))))
7772, 76ax-mp 5 . . . . . . . . . . 11 (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) ∨ ((𝐶 + 𝑅) ∩ (𝐷 + 𝑆))) ⊆ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) ∨ ((𝐶 𝑅) ∩ (𝐷 𝑆)))
782, 18chsleji 31394 . . . . . . . . . . . . 13 (𝐴 + 𝑅) ⊆ (𝐴 𝑅)
793, 19chsleji 31394 . . . . . . . . . . . . 13 (𝐵 + 𝑆) ⊆ (𝐵 𝑆)
80 ss2in 4211 . . . . . . . . . . . . 13 (((𝐴 + 𝑅) ⊆ (𝐴 𝑅) ∧ (𝐵 + 𝑆) ⊆ (𝐵 𝑆)) → ((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) ⊆ ((𝐴 𝑅) ∩ (𝐵 𝑆)))
8178, 79, 80mp2an 692 . . . . . . . . . . . 12 ((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) ⊆ ((𝐴 𝑅) ∩ (𝐵 𝑆))
8224, 30shjshcli 31312 . . . . . . . . . . . . . 14 (𝐴 𝑅) ∈ S
8325, 31shjshcli 31312 . . . . . . . . . . . . . 14 (𝐵 𝑆) ∈ S
8482, 83shincli 31298 . . . . . . . . . . . . 13 ((𝐴 𝑅) ∩ (𝐵 𝑆)) ∈ S
8539, 84, 75shlej1i 31314 . . . . . . . . . . . 12 (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) ⊆ ((𝐴 𝑅) ∩ (𝐵 𝑆)) → (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) ∨ ((𝐶 𝑅) ∩ (𝐷 𝑆))) ⊆ (((𝐴 𝑅) ∩ (𝐵 𝑆)) ∨ ((𝐶 𝑅) ∩ (𝐷 𝑆))))
8681, 85ax-mp 5 . . . . . . . . . . 11 (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) ∨ ((𝐶 𝑅) ∩ (𝐷 𝑆))) ⊆ (((𝐴 𝑅) ∩ (𝐵 𝑆)) ∨ ((𝐶 𝑅) ∩ (𝐷 𝑆)))
8777, 86sstri 3959 . . . . . . . . . 10 (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) ∨ ((𝐶 + 𝑅) ∩ (𝐷 + 𝑆))) ⊆ (((𝐴 𝑅) ∩ (𝐵 𝑆)) ∨ ((𝐶 𝑅) ∩ (𝐷 𝑆)))
8868, 87sstri 3959 . . . . . . . . 9 (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐶 + 𝑅) ∩ (𝐷 + 𝑆))) ⊆ (((𝐴 𝑅) ∩ (𝐵 𝑆)) ∨ ((𝐶 𝑅) ∩ (𝐷 𝑆)))
89 ss2in 4211 . . . . . . . . 9 ((((𝐴 + 𝐶) ∩ (𝐵 + 𝐷)) ⊆ ((𝐴 𝐶) ∩ (𝐵 𝐷)) ∧ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐶 + 𝑅) ∩ (𝐷 + 𝑆))) ⊆ (((𝐴 𝑅) ∩ (𝐵 𝑆)) ∨ ((𝐶 𝑅) ∩ (𝐷 𝑆)))) → (((𝐴 + 𝐶) ∩ (𝐵 + 𝐷)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)))) ⊆ (((𝐴 𝐶) ∩ (𝐵 𝐷)) ∩ (((𝐴 𝑅) ∩ (𝐵 𝑆)) ∨ ((𝐶 𝑅) ∩ (𝐷 𝑆)))))
9067, 88, 89mp2an 692 . . . . . . . 8 (((𝐴 + 𝐶) ∩ (𝐵 + 𝐷)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)))) ⊆ (((𝐴 𝐶) ∩ (𝐵 𝐷)) ∩ (((𝐴 𝑅) ∩ (𝐵 𝑆)) ∨ ((𝐶 𝑅) ∩ (𝐷 𝑆))))
9152, 57shsleji 31306 . . . . . . . . 9 ((((𝐴 + 𝐹) ∩ (𝐵 + 𝐺)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)))) + (((𝐶 + 𝐹) ∩ (𝐷 + 𝐺)) ∩ (((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆))))) ⊆ ((((𝐴 + 𝐹) ∩ (𝐵 + 𝐺)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)))) ∨ (((𝐶 + 𝐹) ∩ (𝐷 + 𝐺)) ∩ (((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)))))
927, 13chsleji 31394 . . . . . . . . . . . . 13 (𝐶 + 𝐹) ⊆ (𝐶 𝐹)
938, 14chsleji 31394 . . . . . . . . . . . . 13 (𝐷 + 𝐺) ⊆ (𝐷 𝐺)
94 ss2in 4211 . . . . . . . . . . . . 13 (((𝐶 + 𝐹) ⊆ (𝐶 𝐹) ∧ (𝐷 + 𝐺) ⊆ (𝐷 𝐺)) → ((𝐶 + 𝐹) ∩ (𝐷 + 𝐺)) ⊆ ((𝐶 𝐹) ∩ (𝐷 𝐺)))
9592, 93, 94mp2an 692 . . . . . . . . . . . 12 ((𝐶 + 𝐹) ∩ (𝐷 + 𝐺)) ⊆ ((𝐶 𝐹) ∩ (𝐷 𝐺))
9642, 50shsleji 31306 . . . . . . . . . . . . 13 (((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆))) ⊆ (((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)) ∨ ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)))
9713, 18chsleji 31394 . . . . . . . . . . . . . . . 16 (𝐹 + 𝑅) ⊆ (𝐹 𝑅)
9814, 19chsleji 31394 . . . . . . . . . . . . . . . 16 (𝐺 + 𝑆) ⊆ (𝐺 𝑆)
99 ss2in 4211 . . . . . . . . . . . . . . . 16 (((𝐹 + 𝑅) ⊆ (𝐹 𝑅) ∧ (𝐺 + 𝑆) ⊆ (𝐺 𝑆)) → ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)) ⊆ ((𝐹 𝑅) ∩ (𝐺 𝑆)))
10097, 98, 99mp2an 692 . . . . . . . . . . . . . . 15 ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)) ⊆ ((𝐹 𝑅) ∩ (𝐺 𝑆))
10128, 30shjshcli 31312 . . . . . . . . . . . . . . . . 17 (𝐹 𝑅) ∈ S
10229, 31shjshcli 31312 . . . . . . . . . . . . . . . . 17 (𝐺 𝑆) ∈ S
103101, 102shincli 31298 . . . . . . . . . . . . . . . 16 ((𝐹 𝑅) ∩ (𝐺 𝑆)) ∈ S
10450, 103, 42shlej2i 31315 . . . . . . . . . . . . . . 15 (((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)) ⊆ ((𝐹 𝑅) ∩ (𝐺 𝑆)) → (((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)) ∨ ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆))) ⊆ (((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)) ∨ ((𝐹 𝑅) ∩ (𝐺 𝑆))))
105100, 104ax-mp 5 . . . . . . . . . . . . . 14 (((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)) ∨ ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆))) ⊆ (((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)) ∨ ((𝐹 𝑅) ∩ (𝐺 𝑆)))
10642, 75, 103shlej1i 31314 . . . . . . . . . . . . . . 15 (((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)) ⊆ ((𝐶 𝑅) ∩ (𝐷 𝑆)) → (((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)) ∨ ((𝐹 𝑅) ∩ (𝐺 𝑆))) ⊆ (((𝐶 𝑅) ∩ (𝐷 𝑆)) ∨ ((𝐹 𝑅) ∩ (𝐺 𝑆))))
10772, 106ax-mp 5 . . . . . . . . . . . . . 14 (((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)) ∨ ((𝐹 𝑅) ∩ (𝐺 𝑆))) ⊆ (((𝐶 𝑅) ∩ (𝐷 𝑆)) ∨ ((𝐹 𝑅) ∩ (𝐺 𝑆)))
108105, 107sstri 3959 . . . . . . . . . . . . 13 (((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)) ∨ ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆))) ⊆ (((𝐶 𝑅) ∩ (𝐷 𝑆)) ∨ ((𝐹 𝑅) ∩ (𝐺 𝑆)))
10996, 108sstri 3959 . . . . . . . . . . . 12 (((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆))) ⊆ (((𝐶 𝑅) ∩ (𝐷 𝑆)) ∨ ((𝐹 𝑅) ∩ (𝐺 𝑆)))
110 ss2in 4211 . . . . . . . . . . . 12 ((((𝐶 + 𝐹) ∩ (𝐷 + 𝐺)) ⊆ ((𝐶 𝐹) ∩ (𝐷 𝐺)) ∧ (((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆))) ⊆ (((𝐶 𝑅) ∩ (𝐷 𝑆)) ∨ ((𝐹 𝑅) ∩ (𝐺 𝑆)))) → (((𝐶 + 𝐹) ∩ (𝐷 + 𝐺)) ∩ (((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)))) ⊆ (((𝐶 𝐹) ∩ (𝐷 𝐺)) ∩ (((𝐶 𝑅) ∩ (𝐷 𝑆)) ∨ ((𝐹 𝑅) ∩ (𝐺 𝑆)))))
11195, 109, 110mp2an 692 . . . . . . . . . . 11 (((𝐶 + 𝐹) ∩ (𝐷 + 𝐺)) ∩ (((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)))) ⊆ (((𝐶 𝐹) ∩ (𝐷 𝐺)) ∩ (((𝐶 𝑅) ∩ (𝐷 𝑆)) ∨ ((𝐹 𝑅) ∩ (𝐺 𝑆))))
1127, 13chjcli 31393 . . . . . . . . . . . . . . 15 (𝐶 𝐹) ∈ C
1138, 14chjcli 31393 . . . . . . . . . . . . . . 15 (𝐷 𝐺) ∈ C
114112, 113chincli 31396 . . . . . . . . . . . . . 14 ((𝐶 𝐹) ∩ (𝐷 𝐺)) ∈ C
115114chshii 31163 . . . . . . . . . . . . 13 ((𝐶 𝐹) ∩ (𝐷 𝐺)) ∈ S
11675, 103shjshcli 31312 . . . . . . . . . . . . 13 (((𝐶 𝑅) ∩ (𝐷 𝑆)) ∨ ((𝐹 𝑅) ∩ (𝐺 𝑆))) ∈ S
117115, 116shincli 31298 . . . . . . . . . . . 12 (((𝐶 𝐹) ∩ (𝐷 𝐺)) ∩ (((𝐶 𝑅) ∩ (𝐷 𝑆)) ∨ ((𝐹 𝑅) ∩ (𝐺 𝑆)))) ∈ S
11857, 117, 52shlej2i 31315 . . . . . . . . . . 11 ((((𝐶 + 𝐹) ∩ (𝐷 + 𝐺)) ∩ (((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)))) ⊆ (((𝐶 𝐹) ∩ (𝐷 𝐺)) ∩ (((𝐶 𝑅) ∩ (𝐷 𝑆)) ∨ ((𝐹 𝑅) ∩ (𝐺 𝑆)))) → ((((𝐴 + 𝐹) ∩ (𝐵 + 𝐺)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)))) ∨ (((𝐶 + 𝐹) ∩ (𝐷 + 𝐺)) ∩ (((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆))))) ⊆ ((((𝐴 + 𝐹) ∩ (𝐵 + 𝐺)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)))) ∨ (((𝐶 𝐹) ∩ (𝐷 𝐺)) ∩ (((𝐶 𝑅) ∩ (𝐷 𝑆)) ∨ ((𝐹 𝑅) ∩ (𝐺 𝑆))))))
119111, 118ax-mp 5 . . . . . . . . . 10 ((((𝐴 + 𝐹) ∩ (𝐵 + 𝐺)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)))) ∨ (((𝐶 + 𝐹) ∩ (𝐷 + 𝐺)) ∩ (((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆))))) ⊆ ((((𝐴 + 𝐹) ∩ (𝐵 + 𝐺)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)))) ∨ (((𝐶 𝐹) ∩ (𝐷 𝐺)) ∩ (((𝐶 𝑅) ∩ (𝐷 𝑆)) ∨ ((𝐹 𝑅) ∩ (𝐺 𝑆)))))
1202, 13chsleji 31394 . . . . . . . . . . . . 13 (𝐴 + 𝐹) ⊆ (𝐴 𝐹)
1213, 14chsleji 31394 . . . . . . . . . . . . 13 (𝐵 + 𝐺) ⊆ (𝐵 𝐺)
122 ss2in 4211 . . . . . . . . . . . . 13 (((𝐴 + 𝐹) ⊆ (𝐴 𝐹) ∧ (𝐵 + 𝐺) ⊆ (𝐵 𝐺)) → ((𝐴 + 𝐹) ∩ (𝐵 + 𝐺)) ⊆ ((𝐴 𝐹) ∩ (𝐵 𝐺)))
123120, 121, 122mp2an 692 . . . . . . . . . . . 12 ((𝐴 + 𝐹) ∩ (𝐵 + 𝐺)) ⊆ ((𝐴 𝐹) ∩ (𝐵 𝐺))
12439, 50shsleji 31306 . . . . . . . . . . . . 13 (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆))) ⊆ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) ∨ ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)))
12550, 103, 39shlej2i 31315 . . . . . . . . . . . . . . 15 (((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)) ⊆ ((𝐹 𝑅) ∩ (𝐺 𝑆)) → (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) ∨ ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆))) ⊆ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) ∨ ((𝐹 𝑅) ∩ (𝐺 𝑆))))
126100, 125ax-mp 5 . . . . . . . . . . . . . 14 (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) ∨ ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆))) ⊆ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) ∨ ((𝐹 𝑅) ∩ (𝐺 𝑆)))
12739, 84, 103shlej1i 31314 . . . . . . . . . . . . . . 15 (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) ⊆ ((𝐴 𝑅) ∩ (𝐵 𝑆)) → (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) ∨ ((𝐹 𝑅) ∩ (𝐺 𝑆))) ⊆ (((𝐴 𝑅) ∩ (𝐵 𝑆)) ∨ ((𝐹 𝑅) ∩ (𝐺 𝑆))))
12881, 127ax-mp 5 . . . . . . . . . . . . . 14 (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) ∨ ((𝐹 𝑅) ∩ (𝐺 𝑆))) ⊆ (((𝐴 𝑅) ∩ (𝐵 𝑆)) ∨ ((𝐹 𝑅) ∩ (𝐺 𝑆)))
129126, 128sstri 3959 . . . . . . . . . . . . 13 (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) ∨ ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆))) ⊆ (((𝐴 𝑅) ∩ (𝐵 𝑆)) ∨ ((𝐹 𝑅) ∩ (𝐺 𝑆)))
130124, 129sstri 3959 . . . . . . . . . . . 12 (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆))) ⊆ (((𝐴 𝑅) ∩ (𝐵 𝑆)) ∨ ((𝐹 𝑅) ∩ (𝐺 𝑆)))
131 ss2in 4211 . . . . . . . . . . . 12 ((((𝐴 + 𝐹) ∩ (𝐵 + 𝐺)) ⊆ ((𝐴 𝐹) ∩ (𝐵 𝐺)) ∧ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆))) ⊆ (((𝐴 𝑅) ∩ (𝐵 𝑆)) ∨ ((𝐹 𝑅) ∩ (𝐺 𝑆)))) → (((𝐴 + 𝐹) ∩ (𝐵 + 𝐺)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)))) ⊆ (((𝐴 𝐹) ∩ (𝐵 𝐺)) ∩ (((𝐴 𝑅) ∩ (𝐵 𝑆)) ∨ ((𝐹 𝑅) ∩ (𝐺 𝑆)))))
132123, 130, 131mp2an 692 . . . . . . . . . . 11 (((𝐴 + 𝐹) ∩ (𝐵 + 𝐺)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)))) ⊆ (((𝐴 𝐹) ∩ (𝐵 𝐺)) ∩ (((𝐴 𝑅) ∩ (𝐵 𝑆)) ∨ ((𝐹 𝑅) ∩ (𝐺 𝑆))))
1332, 13chjcli 31393 . . . . . . . . . . . . . . 15 (𝐴 𝐹) ∈ C
1343, 14chjcli 31393 . . . . . . . . . . . . . . 15 (𝐵 𝐺) ∈ C
135133, 134chincli 31396 . . . . . . . . . . . . . 14 ((𝐴 𝐹) ∩ (𝐵 𝐺)) ∈ C
136135chshii 31163 . . . . . . . . . . . . 13 ((𝐴 𝐹) ∩ (𝐵 𝐺)) ∈ S
13784, 103shjshcli 31312 . . . . . . . . . . . . 13 (((𝐴 𝑅) ∩ (𝐵 𝑆)) ∨ ((𝐹 𝑅) ∩ (𝐺 𝑆))) ∈ S
138136, 137shincli 31298 . . . . . . . . . . . 12 (((𝐴 𝐹) ∩ (𝐵 𝐺)) ∩ (((𝐴 𝑅) ∩ (𝐵 𝑆)) ∨ ((𝐹 𝑅) ∩ (𝐺 𝑆)))) ∈ S
13952, 138, 117shlej1i 31314 . . . . . . . . . . 11 ((((𝐴 + 𝐹) ∩ (𝐵 + 𝐺)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)))) ⊆ (((𝐴 𝐹) ∩ (𝐵 𝐺)) ∩ (((𝐴 𝑅) ∩ (𝐵 𝑆)) ∨ ((𝐹 𝑅) ∩ (𝐺 𝑆)))) → ((((𝐴 + 𝐹) ∩ (𝐵 + 𝐺)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)))) ∨ (((𝐶 𝐹) ∩ (𝐷 𝐺)) ∩ (((𝐶 𝑅) ∩ (𝐷 𝑆)) ∨ ((𝐹 𝑅) ∩ (𝐺 𝑆))))) ⊆ ((((𝐴 𝐹) ∩ (𝐵 𝐺)) ∩ (((𝐴 𝑅) ∩ (𝐵 𝑆)) ∨ ((𝐹 𝑅) ∩ (𝐺 𝑆)))) ∨ (((𝐶 𝐹) ∩ (𝐷 𝐺)) ∩ (((𝐶 𝑅) ∩ (𝐷 𝑆)) ∨ ((𝐹 𝑅) ∩ (𝐺 𝑆))))))
140132, 139ax-mp 5 . . . . . . . . . 10 ((((𝐴 + 𝐹) ∩ (𝐵 + 𝐺)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)))) ∨ (((𝐶 𝐹) ∩ (𝐷 𝐺)) ∩ (((𝐶 𝑅) ∩ (𝐷 𝑆)) ∨ ((𝐹 𝑅) ∩ (𝐺 𝑆))))) ⊆ ((((𝐴 𝐹) ∩ (𝐵 𝐺)) ∩ (((𝐴 𝑅) ∩ (𝐵 𝑆)) ∨ ((𝐹 𝑅) ∩ (𝐺 𝑆)))) ∨ (((𝐶 𝐹) ∩ (𝐷 𝐺)) ∩ (((𝐶 𝑅) ∩ (𝐷 𝑆)) ∨ ((𝐹 𝑅) ∩ (𝐺 𝑆)))))
141119, 140sstri 3959 . . . . . . . . 9 ((((𝐴 + 𝐹) ∩ (𝐵 + 𝐺)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)))) ∨ (((𝐶 + 𝐹) ∩ (𝐷 + 𝐺)) ∩ (((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆))))) ⊆ ((((𝐴 𝐹) ∩ (𝐵 𝐺)) ∩ (((𝐴 𝑅) ∩ (𝐵 𝑆)) ∨ ((𝐹 𝑅) ∩ (𝐺 𝑆)))) ∨ (((𝐶 𝐹) ∩ (𝐷 𝐺)) ∩ (((𝐶 𝑅) ∩ (𝐷 𝑆)) ∨ ((𝐹 𝑅) ∩ (𝐺 𝑆)))))
14291, 141sstri 3959 . . . . . . . 8 ((((𝐴 + 𝐹) ∩ (𝐵 + 𝐺)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)))) + (((𝐶 + 𝐹) ∩ (𝐷 + 𝐺)) ∩ (((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆))))) ⊆ ((((𝐴 𝐹) ∩ (𝐵 𝐺)) ∩ (((𝐴 𝑅) ∩ (𝐵 𝑆)) ∨ ((𝐹 𝑅) ∩ (𝐺 𝑆)))) ∨ (((𝐶 𝐹) ∩ (𝐷 𝐺)) ∩ (((𝐶 𝑅) ∩ (𝐷 𝑆)) ∨ ((𝐹 𝑅) ∩ (𝐺 𝑆)))))
143 ss2in 4211 . . . . . . . 8 (((((𝐴 + 𝐶) ∩ (𝐵 + 𝐷)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)))) ⊆ (((𝐴 𝐶) ∩ (𝐵 𝐷)) ∩ (((𝐴 𝑅) ∩ (𝐵 𝑆)) ∨ ((𝐶 𝑅) ∩ (𝐷 𝑆)))) ∧ ((((𝐴 + 𝐹) ∩ (𝐵 + 𝐺)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)))) + (((𝐶 + 𝐹) ∩ (𝐷 + 𝐺)) ∩ (((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆))))) ⊆ ((((𝐴 𝐹) ∩ (𝐵 𝐺)) ∩ (((𝐴 𝑅) ∩ (𝐵 𝑆)) ∨ ((𝐹 𝑅) ∩ (𝐺 𝑆)))) ∨ (((𝐶 𝐹) ∩ (𝐷 𝐺)) ∩ (((𝐶 𝑅) ∩ (𝐷 𝑆)) ∨ ((𝐹 𝑅) ∩ (𝐺 𝑆)))))) → ((((𝐴 + 𝐶) ∩ (𝐵 + 𝐷)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)))) ∩ ((((𝐴 + 𝐹) ∩ (𝐵 + 𝐺)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)))) + (((𝐶 + 𝐹) ∩ (𝐷 + 𝐺)) ∩ (((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)))))) ⊆ ((((𝐴 𝐶) ∩ (𝐵 𝐷)) ∩ (((𝐴 𝑅) ∩ (𝐵 𝑆)) ∨ ((𝐶 𝑅) ∩ (𝐷 𝑆)))) ∩ ((((𝐴 𝐹) ∩ (𝐵 𝐺)) ∩ (((𝐴 𝑅) ∩ (𝐵 𝑆)) ∨ ((𝐹 𝑅) ∩ (𝐺 𝑆)))) ∨ (((𝐶 𝐹) ∩ (𝐷 𝐺)) ∩ (((𝐶 𝑅) ∩ (𝐷 𝑆)) ∨ ((𝐹 𝑅) ∩ (𝐺 𝑆)))))))
14490, 142, 143mp2an 692 . . . . . . 7 ((((𝐴 + 𝐶) ∩ (𝐵 + 𝐷)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)))) ∩ ((((𝐴 + 𝐹) ∩ (𝐵 + 𝐺)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)))) + (((𝐶 + 𝐹) ∩ (𝐷 + 𝐺)) ∩ (((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)))))) ⊆ ((((𝐴 𝐶) ∩ (𝐵 𝐷)) ∩ (((𝐴 𝑅) ∩ (𝐵 𝑆)) ∨ ((𝐶 𝑅) ∩ (𝐷 𝑆)))) ∩ ((((𝐴 𝐹) ∩ (𝐵 𝐺)) ∩ (((𝐴 𝑅) ∩ (𝐵 𝑆)) ∨ ((𝐹 𝑅) ∩ (𝐺 𝑆)))) ∨ (((𝐶 𝐹) ∩ (𝐷 𝐺)) ∩ (((𝐶 𝑅) ∩ (𝐷 𝑆)) ∨ ((𝐹 𝑅) ∩ (𝐺 𝑆))))))
1452, 7chjcli 31393 . . . . . . . . . . . 12 (𝐴 𝐶) ∈ C
1463, 8chjcli 31393 . . . . . . . . . . . 12 (𝐵 𝐷) ∈ C
147145, 146chincli 31396 . . . . . . . . . . 11 ((𝐴 𝐶) ∩ (𝐵 𝐷)) ∈ C
14884, 75shjcli 31311 . . . . . . . . . . 11 (((𝐴 𝑅) ∩ (𝐵 𝑆)) ∨ ((𝐶 𝑅) ∩ (𝐷 𝑆))) ∈ C
149147, 148chincli 31396 . . . . . . . . . 10 (((𝐴 𝐶) ∩ (𝐵 𝐷)) ∩ (((𝐴 𝑅) ∩ (𝐵 𝑆)) ∨ ((𝐶 𝑅) ∩ (𝐷 𝑆)))) ∈ C
150149chshii 31163 . . . . . . . . 9 (((𝐴 𝐶) ∩ (𝐵 𝐷)) ∩ (((𝐴 𝑅) ∩ (𝐵 𝑆)) ∨ ((𝐶 𝑅) ∩ (𝐷 𝑆)))) ∈ S
151138, 117shjshcli 31312 . . . . . . . . 9 ((((𝐴 𝐹) ∩ (𝐵 𝐺)) ∩ (((𝐴 𝑅) ∩ (𝐵 𝑆)) ∨ ((𝐹 𝑅) ∩ (𝐺 𝑆)))) ∨ (((𝐶 𝐹) ∩ (𝐷 𝐺)) ∩ (((𝐶 𝑅) ∩ (𝐷 𝑆)) ∨ ((𝐹 𝑅) ∩ (𝐺 𝑆))))) ∈ S
152150, 151shincli 31298 . . . . . . . 8 ((((𝐴 𝐶) ∩ (𝐵 𝐷)) ∩ (((𝐴 𝑅) ∩ (𝐵 𝑆)) ∨ ((𝐶 𝑅) ∩ (𝐷 𝑆)))) ∩ ((((𝐴 𝐹) ∩ (𝐵 𝐺)) ∩ (((𝐴 𝑅) ∩ (𝐵 𝑆)) ∨ ((𝐹 𝑅) ∩ (𝐺 𝑆)))) ∨ (((𝐶 𝐹) ∩ (𝐷 𝐺)) ∩ (((𝐶 𝑅) ∩ (𝐷 𝑆)) ∨ ((𝐹 𝑅) ∩ (𝐺 𝑆)))))) ∈ S
15359, 152, 26shlej2i 31315 . . . . . . 7 (((((𝐴 + 𝐶) ∩ (𝐵 + 𝐷)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)))) ∩ ((((𝐴 + 𝐹) ∩ (𝐵 + 𝐺)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)))) + (((𝐶 + 𝐹) ∩ (𝐷 + 𝐺)) ∩ (((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)))))) ⊆ ((((𝐴 𝐶) ∩ (𝐵 𝐷)) ∩ (((𝐴 𝑅) ∩ (𝐵 𝑆)) ∨ ((𝐶 𝑅) ∩ (𝐷 𝑆)))) ∩ ((((𝐴 𝐹) ∩ (𝐵 𝐺)) ∩ (((𝐴 𝑅) ∩ (𝐵 𝑆)) ∨ ((𝐹 𝑅) ∩ (𝐺 𝑆)))) ∨ (((𝐶 𝐹) ∩ (𝐷 𝐺)) ∩ (((𝐶 𝑅) ∩ (𝐷 𝑆)) ∨ ((𝐹 𝑅) ∩ (𝐺 𝑆)))))) → (𝐶 ((((𝐴 + 𝐶) ∩ (𝐵 + 𝐷)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)))) ∩ ((((𝐴 + 𝐹) ∩ (𝐵 + 𝐺)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)))) + (((𝐶 + 𝐹) ∩ (𝐷 + 𝐺)) ∩ (((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆))))))) ⊆ (𝐶 ((((𝐴 𝐶) ∩ (𝐵 𝐷)) ∩ (((𝐴 𝑅) ∩ (𝐵 𝑆)) ∨ ((𝐶 𝑅) ∩ (𝐷 𝑆)))) ∩ ((((𝐴 𝐹) ∩ (𝐵 𝐺)) ∩ (((𝐴 𝑅) ∩ (𝐵 𝑆)) ∨ ((𝐹 𝑅) ∩ (𝐺 𝑆)))) ∨ (((𝐶 𝐹) ∩ (𝐷 𝐺)) ∩ (((𝐶 𝑅) ∩ (𝐷 𝑆)) ∨ ((𝐹 𝑅) ∩ (𝐺 𝑆))))))))
154144, 153ax-mp 5 . . . . . 6 (𝐶 ((((𝐴 + 𝐶) ∩ (𝐵 + 𝐷)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)))) ∩ ((((𝐴 + 𝐹) ∩ (𝐵 + 𝐺)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)))) + (((𝐶 + 𝐹) ∩ (𝐷 + 𝐺)) ∩ (((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆))))))) ⊆ (𝐶 ((((𝐴 𝐶) ∩ (𝐵 𝐷)) ∩ (((𝐴 𝑅) ∩ (𝐵 𝑆)) ∨ ((𝐶 𝑅) ∩ (𝐷 𝑆)))) ∩ ((((𝐴 𝐹) ∩ (𝐵 𝐺)) ∩ (((𝐴 𝑅) ∩ (𝐵 𝑆)) ∨ ((𝐹 𝑅) ∩ (𝐺 𝑆)))) ∨ (((𝐶 𝐹) ∩ (𝐷 𝐺)) ∩ (((𝐶 𝑅) ∩ (𝐷 𝑆)) ∨ ((𝐹 𝑅) ∩ (𝐺 𝑆)))))))
15563, 154sstri 3959 . . . . 5 (𝐶 + ((((𝐴 + 𝐶) ∩ (𝐵 + 𝐷)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)))) ∩ ((((𝐴 + 𝐹) ∩ (𝐵 + 𝐺)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)))) + (((𝐶 + 𝐹) ∩ (𝐷 + 𝐺)) ∩ (((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆))))))) ⊆ (𝐶 ((((𝐴 𝐶) ∩ (𝐵 𝐷)) ∩ (((𝐴 𝑅) ∩ (𝐵 𝑆)) ∨ ((𝐶 𝑅) ∩ (𝐷 𝑆)))) ∩ ((((𝐴 𝐹) ∩ (𝐵 𝐺)) ∩ (((𝐴 𝑅) ∩ (𝐵 𝑆)) ∨ ((𝐹 𝑅) ∩ (𝐺 𝑆)))) ∨ (((𝐶 𝐹) ∩ (𝐷 𝐺)) ∩ (((𝐶 𝑅) ∩ (𝐷 𝑆)) ∨ ((𝐹 𝑅) ∩ (𝐺 𝑆)))))))
156 sslin 4209 . . . . 5 ((𝐶 + ((((𝐴 + 𝐶) ∩ (𝐵 + 𝐷)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)))) ∩ ((((𝐴 + 𝐹) ∩ (𝐵 + 𝐺)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)))) + (((𝐶 + 𝐹) ∩ (𝐷 + 𝐺)) ∩ (((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆))))))) ⊆ (𝐶 ((((𝐴 𝐶) ∩ (𝐵 𝐷)) ∩ (((𝐴 𝑅) ∩ (𝐵 𝑆)) ∨ ((𝐶 𝑅) ∩ (𝐷 𝑆)))) ∩ ((((𝐴 𝐹) ∩ (𝐵 𝐺)) ∩ (((𝐴 𝑅) ∩ (𝐵 𝑆)) ∨ ((𝐹 𝑅) ∩ (𝐺 𝑆)))) ∨ (((𝐶 𝐹) ∩ (𝐷 𝐺)) ∩ (((𝐶 𝑅) ∩ (𝐷 𝑆)) ∨ ((𝐹 𝑅) ∩ (𝐺 𝑆))))))) → (𝐴 ∩ (𝐶 + ((((𝐴 + 𝐶) ∩ (𝐵 + 𝐷)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)))) ∩ ((((𝐴 + 𝐹) ∩ (𝐵 + 𝐺)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)))) + (((𝐶 + 𝐹) ∩ (𝐷 + 𝐺)) ∩ (((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)))))))) ⊆ (𝐴 ∩ (𝐶 ((((𝐴 𝐶) ∩ (𝐵 𝐷)) ∩ (((𝐴 𝑅) ∩ (𝐵 𝑆)) ∨ ((𝐶 𝑅) ∩ (𝐷 𝑆)))) ∩ ((((𝐴 𝐹) ∩ (𝐵 𝐺)) ∩ (((𝐴 𝑅) ∩ (𝐵 𝑆)) ∨ ((𝐹 𝑅) ∩ (𝐺 𝑆)))) ∨ (((𝐶 𝐹) ∩ (𝐷 𝐺)) ∩ (((𝐶 𝑅) ∩ (𝐷 𝑆)) ∨ ((𝐹 𝑅) ∩ (𝐺 𝑆)))))))))
157155, 156ax-mp 5 . . . 4 (𝐴 ∩ (𝐶 + ((((𝐴 + 𝐶) ∩ (𝐵 + 𝐷)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)))) ∩ ((((𝐴 + 𝐹) ∩ (𝐵 + 𝐺)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)))) + (((𝐶 + 𝐹) ∩ (𝐷 + 𝐺)) ∩ (((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)))))))) ⊆ (𝐴 ∩ (𝐶 ((((𝐴 𝐶) ∩ (𝐵 𝐷)) ∩ (((𝐴 𝑅) ∩ (𝐵 𝑆)) ∨ ((𝐶 𝑅) ∩ (𝐷 𝑆)))) ∩ ((((𝐴 𝐹) ∩ (𝐵 𝐺)) ∩ (((𝐴 𝑅) ∩ (𝐵 𝑆)) ∨ ((𝐹 𝑅) ∩ (𝐺 𝑆)))) ∨ (((𝐶 𝐹) ∩ (𝐷 𝐺)) ∩ (((𝐶 𝑅) ∩ (𝐷 𝑆)) ∨ ((𝐹 𝑅) ∩ (𝐺 𝑆))))))))
15826, 152shjshcli 31312 . . . . . 6 (𝐶 ((((𝐴 𝐶) ∩ (𝐵 𝐷)) ∩ (((𝐴 𝑅) ∩ (𝐵 𝑆)) ∨ ((𝐶 𝑅) ∩ (𝐷 𝑆)))) ∩ ((((𝐴 𝐹) ∩ (𝐵 𝐺)) ∩ (((𝐴 𝑅) ∩ (𝐵 𝑆)) ∨ ((𝐹 𝑅) ∩ (𝐺 𝑆)))) ∨ (((𝐶 𝐹) ∩ (𝐷 𝐺)) ∩ (((𝐶 𝑅) ∩ (𝐷 𝑆)) ∨ ((𝐹 𝑅) ∩ (𝐺 𝑆))))))) ∈ S
15924, 158shincli 31298 . . . . 5 (𝐴 ∩ (𝐶 ((((𝐴 𝐶) ∩ (𝐵 𝐷)) ∩ (((𝐴 𝑅) ∩ (𝐵 𝑆)) ∨ ((𝐶 𝑅) ∩ (𝐷 𝑆)))) ∩ ((((𝐴 𝐹) ∩ (𝐵 𝐺)) ∩ (((𝐴 𝑅) ∩ (𝐵 𝑆)) ∨ ((𝐹 𝑅) ∩ (𝐺 𝑆)))) ∨ (((𝐶 𝐹) ∩ (𝐷 𝐺)) ∩ (((𝐶 𝑅) ∩ (𝐷 𝑆)) ∨ ((𝐹 𝑅) ∩ (𝐺 𝑆)))))))) ∈ S
16061, 159, 25shlej2i 31315 . . . 4 ((𝐴 ∩ (𝐶 + ((((𝐴 + 𝐶) ∩ (𝐵 + 𝐷)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)))) ∩ ((((𝐴 + 𝐹) ∩ (𝐵 + 𝐺)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)))) + (((𝐶 + 𝐹) ∩ (𝐷 + 𝐺)) ∩ (((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)))))))) ⊆ (𝐴 ∩ (𝐶 ((((𝐴 𝐶) ∩ (𝐵 𝐷)) ∩ (((𝐴 𝑅) ∩ (𝐵 𝑆)) ∨ ((𝐶 𝑅) ∩ (𝐷 𝑆)))) ∩ ((((𝐴 𝐹) ∩ (𝐵 𝐺)) ∩ (((𝐴 𝑅) ∩ (𝐵 𝑆)) ∨ ((𝐹 𝑅) ∩ (𝐺 𝑆)))) ∨ (((𝐶 𝐹) ∩ (𝐷 𝐺)) ∩ (((𝐶 𝑅) ∩ (𝐷 𝑆)) ∨ ((𝐹 𝑅) ∩ (𝐺 𝑆)))))))) → (𝐵 (𝐴 ∩ (𝐶 + ((((𝐴 + 𝐶) ∩ (𝐵 + 𝐷)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)))) ∩ ((((𝐴 + 𝐹) ∩ (𝐵 + 𝐺)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)))) + (((𝐶 + 𝐹) ∩ (𝐷 + 𝐺)) ∩ (((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆))))))))) ⊆ (𝐵 (𝐴 ∩ (𝐶 ((((𝐴 𝐶) ∩ (𝐵 𝐷)) ∩ (((𝐴 𝑅) ∩ (𝐵 𝑆)) ∨ ((𝐶 𝑅) ∩ (𝐷 𝑆)))) ∩ ((((𝐴 𝐹) ∩ (𝐵 𝐺)) ∩ (((𝐴 𝑅) ∩ (𝐵 𝑆)) ∨ ((𝐹 𝑅) ∩ (𝐺 𝑆)))) ∨ (((𝐶 𝐹) ∩ (𝐷 𝐺)) ∩ (((𝐶 𝑅) ∩ (𝐷 𝑆)) ∨ ((𝐹 𝑅) ∩ (𝐺 𝑆))))))))))
161157, 160ax-mp 5 . . 3 (𝐵 (𝐴 ∩ (𝐶 + ((((𝐴 + 𝐶) ∩ (𝐵 + 𝐷)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)))) ∩ ((((𝐴 + 𝐹) ∩ (𝐵 + 𝐺)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)))) + (((𝐶 + 𝐹) ∩ (𝐷 + 𝐺)) ∩ (((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆))))))))) ⊆ (𝐵 (𝐴 ∩ (𝐶 ((((𝐴 𝐶) ∩ (𝐵 𝐷)) ∩ (((𝐴 𝑅) ∩ (𝐵 𝑆)) ∨ ((𝐶 𝑅) ∩ (𝐷 𝑆)))) ∩ ((((𝐴 𝐹) ∩ (𝐵 𝐺)) ∩ (((𝐴 𝑅) ∩ (𝐵 𝑆)) ∨ ((𝐹 𝑅) ∩ (𝐺 𝑆)))) ∨ (((𝐶 𝐹) ∩ (𝐷 𝐺)) ∩ (((𝐶 𝑅) ∩ (𝐷 𝑆)) ∨ ((𝐹 𝑅) ∩ (𝐺 𝑆)))))))))
16262, 161sstri 3959 . 2 (𝐵 + (𝐴 ∩ (𝐶 + ((((𝐴 + 𝐶) ∩ (𝐵 + 𝐷)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)))) ∩ ((((𝐴 + 𝐹) ∩ (𝐵 + 𝐺)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)))) + (((𝐶 + 𝐹) ∩ (𝐷 + 𝐺)) ∩ (((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆))))))))) ⊆ (𝐵 (𝐴 ∩ (𝐶 ((((𝐴 𝐶) ∩ (𝐵 𝐷)) ∩ (((𝐴 𝑅) ∩ (𝐵 𝑆)) ∨ ((𝐶 𝑅) ∩ (𝐷 𝑆)))) ∩ ((((𝐴 𝐹) ∩ (𝐵 𝐺)) ∩ (((𝐴 𝑅) ∩ (𝐵 𝑆)) ∨ ((𝐹 𝑅) ∩ (𝐺 𝑆)))) ∨ (((𝐶 𝐹) ∩ (𝐷 𝐺)) ∩ (((𝐶 𝑅) ∩ (𝐷 𝑆)) ∨ ((𝐹 𝑅) ∩ (𝐺 𝑆)))))))))
16333, 162sstri 3959 1 (((𝐴 𝐵) ∩ (𝐶 𝐷)) ∩ ((𝐹 𝐺) ∩ (𝑅 𝑆))) ⊆ (𝐵 (𝐴 ∩ (𝐶 ((((𝐴 𝐶) ∩ (𝐵 𝐷)) ∩ (((𝐴 𝑅) ∩ (𝐵 𝑆)) ∨ ((𝐶 𝑅) ∩ (𝐷 𝑆)))) ∩ ((((𝐴 𝐹) ∩ (𝐵 𝐺)) ∩ (((𝐴 𝑅) ∩ (𝐵 𝑆)) ∨ ((𝐹 𝑅) ∩ (𝐺 𝑆)))) ∨ (((𝐶 𝐹) ∩ (𝐷 𝐺)) ∩ (((𝐶 𝑅) ∩ (𝐷 𝑆)) ∨ ((𝐹 𝑅) ∩ (𝐺 𝑆)))))))))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2109  cin 3916  wss 3917  cfv 6514  (class class class)co 7390   C cch 30865  cort 30866   + cph 30867   chj 30869
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cc 10395  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153  ax-addf 11154  ax-mulf 11155  ax-hilex 30935  ax-hfvadd 30936  ax-hvcom 30937  ax-hvass 30938  ax-hv0cl 30939  ax-hvaddid 30940  ax-hfvmul 30941  ax-hvmulid 30942  ax-hvmulass 30943  ax-hvdistr1 30944  ax-hvdistr2 30945  ax-hvmul0 30946  ax-hfi 31015  ax-his1 31018  ax-his2 31019  ax-his3 31020  ax-his4 31021  ax-hcompl 31138
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-oadd 8441  df-omul 8442  df-er 8674  df-map 8804  df-pm 8805  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-fi 9369  df-sup 9400  df-inf 9401  df-oi 9470  df-card 9899  df-acn 9902  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-q 12915  df-rp 12959  df-xneg 13079  df-xadd 13080  df-xmul 13081  df-ioo 13317  df-ico 13319  df-icc 13320  df-fz 13476  df-fzo 13623  df-fl 13761  df-seq 13974  df-exp 14034  df-hash 14303  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-clim 15461  df-rlim 15462  df-sum 15660  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-starv 17242  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-unif 17250  df-hom 17251  df-cco 17252  df-rest 17392  df-topn 17393  df-0g 17411  df-gsum 17412  df-topgen 17413  df-pt 17414  df-prds 17417  df-xrs 17472  df-qtop 17477  df-imas 17478  df-xps 17480  df-mre 17554  df-mrc 17555  df-acs 17557  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-submnd 18718  df-mulg 19007  df-cntz 19256  df-cmn 19719  df-psmet 21263  df-xmet 21264  df-met 21265  df-bl 21266  df-mopn 21267  df-fbas 21268  df-fg 21269  df-cnfld 21272  df-top 22788  df-topon 22805  df-topsp 22827  df-bases 22840  df-cld 22913  df-ntr 22914  df-cls 22915  df-nei 22992  df-cn 23121  df-cnp 23122  df-lm 23123  df-haus 23209  df-tx 23456  df-hmeo 23649  df-fil 23740  df-fm 23832  df-flim 23833  df-flf 23834  df-xms 24215  df-ms 24216  df-tms 24217  df-cfil 25162  df-cau 25163  df-cmet 25164  df-grpo 30429  df-gid 30430  df-ginv 30431  df-gdiv 30432  df-ablo 30481  df-vc 30495  df-nv 30528  df-va 30531  df-ba 30532  df-sm 30533  df-0v 30534  df-vs 30535  df-nmcv 30536  df-ims 30537  df-dip 30637  df-ssp 30658  df-ph 30749  df-cbn 30799  df-hnorm 30904  df-hba 30905  df-hvsub 30907  df-hlim 30908  df-hcau 30909  df-sh 31143  df-ch 31157  df-oc 31188  df-ch0 31189  df-shs 31244  df-chj 31246  df-pjh 31331
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator