MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  undomOLD Structured version   Visualization version   GIF version

Theorem undomOLD 9126
Description: Obsolete version of undom 9125 as of 4-Dec-2024. (Contributed by NM, 3-Sep-2004.) (Revised by Mario Carneiro, 26-Apr-2015.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
undomOLD (((𝐴𝐵𝐶𝐷) ∧ (𝐵𝐷) = ∅) → (𝐴𝐶) ≼ (𝐵𝐷))

Proof of Theorem undomOLD
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reldom 9009 . . . . . . 7 Rel ≼
21brrelex2i 5757 . . . . . 6 (𝐴𝐵𝐵 ∈ V)
3 domeng 9022 . . . . . 6 (𝐵 ∈ V → (𝐴𝐵 ↔ ∃𝑥(𝐴𝑥𝑥𝐵)))
42, 3syl 17 . . . . 5 (𝐴𝐵 → (𝐴𝐵 ↔ ∃𝑥(𝐴𝑥𝑥𝐵)))
54ibi 267 . . . 4 (𝐴𝐵 → ∃𝑥(𝐴𝑥𝑥𝐵))
61brrelex1i 5756 . . . . . . 7 (𝐶𝐷𝐶 ∈ V)
7 difss 4159 . . . . . . 7 (𝐶𝐴) ⊆ 𝐶
8 ssdomg 9060 . . . . . . 7 (𝐶 ∈ V → ((𝐶𝐴) ⊆ 𝐶 → (𝐶𝐴) ≼ 𝐶))
96, 7, 8mpisyl 21 . . . . . 6 (𝐶𝐷 → (𝐶𝐴) ≼ 𝐶)
10 domtr 9067 . . . . . 6 (((𝐶𝐴) ≼ 𝐶𝐶𝐷) → (𝐶𝐴) ≼ 𝐷)
119, 10mpancom 687 . . . . 5 (𝐶𝐷 → (𝐶𝐴) ≼ 𝐷)
121brrelex2i 5757 . . . . . . 7 ((𝐶𝐴) ≼ 𝐷𝐷 ∈ V)
13 domeng 9022 . . . . . . 7 (𝐷 ∈ V → ((𝐶𝐴) ≼ 𝐷 ↔ ∃𝑦((𝐶𝐴) ≈ 𝑦𝑦𝐷)))
1412, 13syl 17 . . . . . 6 ((𝐶𝐴) ≼ 𝐷 → ((𝐶𝐴) ≼ 𝐷 ↔ ∃𝑦((𝐶𝐴) ≈ 𝑦𝑦𝐷)))
1514ibi 267 . . . . 5 ((𝐶𝐴) ≼ 𝐷 → ∃𝑦((𝐶𝐴) ≈ 𝑦𝑦𝐷))
1611, 15syl 17 . . . 4 (𝐶𝐷 → ∃𝑦((𝐶𝐴) ≈ 𝑦𝑦𝐷))
175, 16anim12i 612 . . 3 ((𝐴𝐵𝐶𝐷) → (∃𝑥(𝐴𝑥𝑥𝐵) ∧ ∃𝑦((𝐶𝐴) ≈ 𝑦𝑦𝐷)))
1817adantr 480 . 2 (((𝐴𝐵𝐶𝐷) ∧ (𝐵𝐷) = ∅) → (∃𝑥(𝐴𝑥𝑥𝐵) ∧ ∃𝑦((𝐶𝐴) ≈ 𝑦𝑦𝐷)))
19 exdistrv 1955 . . 3 (∃𝑥𝑦((𝐴𝑥𝑥𝐵) ∧ ((𝐶𝐴) ≈ 𝑦𝑦𝐷)) ↔ (∃𝑥(𝐴𝑥𝑥𝐵) ∧ ∃𝑦((𝐶𝐴) ≈ 𝑦𝑦𝐷)))
20 simprll 778 . . . . . . 7 ((((𝐴𝐵𝐶𝐷) ∧ (𝐵𝐷) = ∅) ∧ ((𝐴𝑥𝑥𝐵) ∧ ((𝐶𝐴) ≈ 𝑦𝑦𝐷))) → 𝐴𝑥)
21 simprrl 780 . . . . . . 7 ((((𝐴𝐵𝐶𝐷) ∧ (𝐵𝐷) = ∅) ∧ ((𝐴𝑥𝑥𝐵) ∧ ((𝐶𝐴) ≈ 𝑦𝑦𝐷))) → (𝐶𝐴) ≈ 𝑦)
22 disjdif 4495 . . . . . . . 8 (𝐴 ∩ (𝐶𝐴)) = ∅
2322a1i 11 . . . . . . 7 ((((𝐴𝐵𝐶𝐷) ∧ (𝐵𝐷) = ∅) ∧ ((𝐴𝑥𝑥𝐵) ∧ ((𝐶𝐴) ≈ 𝑦𝑦𝐷))) → (𝐴 ∩ (𝐶𝐴)) = ∅)
24 ss2in 4266 . . . . . . . . . 10 ((𝑥𝐵𝑦𝐷) → (𝑥𝑦) ⊆ (𝐵𝐷))
2524ad2ant2l 745 . . . . . . . . 9 (((𝐴𝑥𝑥𝐵) ∧ ((𝐶𝐴) ≈ 𝑦𝑦𝐷)) → (𝑥𝑦) ⊆ (𝐵𝐷))
2625adantl 481 . . . . . . . 8 ((((𝐴𝐵𝐶𝐷) ∧ (𝐵𝐷) = ∅) ∧ ((𝐴𝑥𝑥𝐵) ∧ ((𝐶𝐴) ≈ 𝑦𝑦𝐷))) → (𝑥𝑦) ⊆ (𝐵𝐷))
27 simplr 768 . . . . . . . 8 ((((𝐴𝐵𝐶𝐷) ∧ (𝐵𝐷) = ∅) ∧ ((𝐴𝑥𝑥𝐵) ∧ ((𝐶𝐴) ≈ 𝑦𝑦𝐷))) → (𝐵𝐷) = ∅)
28 sseq0 4426 . . . . . . . 8 (((𝑥𝑦) ⊆ (𝐵𝐷) ∧ (𝐵𝐷) = ∅) → (𝑥𝑦) = ∅)
2926, 27, 28syl2anc 583 . . . . . . 7 ((((𝐴𝐵𝐶𝐷) ∧ (𝐵𝐷) = ∅) ∧ ((𝐴𝑥𝑥𝐵) ∧ ((𝐶𝐴) ≈ 𝑦𝑦𝐷))) → (𝑥𝑦) = ∅)
30 undif2 4500 . . . . . . . 8 (𝐴 ∪ (𝐶𝐴)) = (𝐴𝐶)
31 unen 9112 . . . . . . . 8 (((𝐴𝑥 ∧ (𝐶𝐴) ≈ 𝑦) ∧ ((𝐴 ∩ (𝐶𝐴)) = ∅ ∧ (𝑥𝑦) = ∅)) → (𝐴 ∪ (𝐶𝐴)) ≈ (𝑥𝑦))
3230, 31eqbrtrrid 5202 . . . . . . 7 (((𝐴𝑥 ∧ (𝐶𝐴) ≈ 𝑦) ∧ ((𝐴 ∩ (𝐶𝐴)) = ∅ ∧ (𝑥𝑦) = ∅)) → (𝐴𝐶) ≈ (𝑥𝑦))
3320, 21, 23, 29, 32syl22anc 838 . . . . . 6 ((((𝐴𝐵𝐶𝐷) ∧ (𝐵𝐷) = ∅) ∧ ((𝐴𝑥𝑥𝐵) ∧ ((𝐶𝐴) ≈ 𝑦𝑦𝐷))) → (𝐴𝐶) ≈ (𝑥𝑦))
342ad3antrrr 729 . . . . . . . 8 ((((𝐴𝐵𝐶𝐷) ∧ (𝐵𝐷) = ∅) ∧ ((𝐴𝑥𝑥𝐵) ∧ ((𝐶𝐴) ≈ 𝑦𝑦𝐷))) → 𝐵 ∈ V)
351brrelex2i 5757 . . . . . . . . 9 (𝐶𝐷𝐷 ∈ V)
3635ad3antlr 730 . . . . . . . 8 ((((𝐴𝐵𝐶𝐷) ∧ (𝐵𝐷) = ∅) ∧ ((𝐴𝑥𝑥𝐵) ∧ ((𝐶𝐴) ≈ 𝑦𝑦𝐷))) → 𝐷 ∈ V)
37 unexg 7778 . . . . . . . 8 ((𝐵 ∈ V ∧ 𝐷 ∈ V) → (𝐵𝐷) ∈ V)
3834, 36, 37syl2anc 583 . . . . . . 7 ((((𝐴𝐵𝐶𝐷) ∧ (𝐵𝐷) = ∅) ∧ ((𝐴𝑥𝑥𝐵) ∧ ((𝐶𝐴) ≈ 𝑦𝑦𝐷))) → (𝐵𝐷) ∈ V)
39 unss12 4211 . . . . . . . . 9 ((𝑥𝐵𝑦𝐷) → (𝑥𝑦) ⊆ (𝐵𝐷))
4039ad2ant2l 745 . . . . . . . 8 (((𝐴𝑥𝑥𝐵) ∧ ((𝐶𝐴) ≈ 𝑦𝑦𝐷)) → (𝑥𝑦) ⊆ (𝐵𝐷))
4140adantl 481 . . . . . . 7 ((((𝐴𝐵𝐶𝐷) ∧ (𝐵𝐷) = ∅) ∧ ((𝐴𝑥𝑥𝐵) ∧ ((𝐶𝐴) ≈ 𝑦𝑦𝐷))) → (𝑥𝑦) ⊆ (𝐵𝐷))
42 ssdomg 9060 . . . . . . 7 ((𝐵𝐷) ∈ V → ((𝑥𝑦) ⊆ (𝐵𝐷) → (𝑥𝑦) ≼ (𝐵𝐷)))
4338, 41, 42sylc 65 . . . . . 6 ((((𝐴𝐵𝐶𝐷) ∧ (𝐵𝐷) = ∅) ∧ ((𝐴𝑥𝑥𝐵) ∧ ((𝐶𝐴) ≈ 𝑦𝑦𝐷))) → (𝑥𝑦) ≼ (𝐵𝐷))
44 endomtr 9072 . . . . . 6 (((𝐴𝐶) ≈ (𝑥𝑦) ∧ (𝑥𝑦) ≼ (𝐵𝐷)) → (𝐴𝐶) ≼ (𝐵𝐷))
4533, 43, 44syl2anc 583 . . . . 5 ((((𝐴𝐵𝐶𝐷) ∧ (𝐵𝐷) = ∅) ∧ ((𝐴𝑥𝑥𝐵) ∧ ((𝐶𝐴) ≈ 𝑦𝑦𝐷))) → (𝐴𝐶) ≼ (𝐵𝐷))
4645ex 412 . . . 4 (((𝐴𝐵𝐶𝐷) ∧ (𝐵𝐷) = ∅) → (((𝐴𝑥𝑥𝐵) ∧ ((𝐶𝐴) ≈ 𝑦𝑦𝐷)) → (𝐴𝐶) ≼ (𝐵𝐷)))
4746exlimdvv 1933 . . 3 (((𝐴𝐵𝐶𝐷) ∧ (𝐵𝐷) = ∅) → (∃𝑥𝑦((𝐴𝑥𝑥𝐵) ∧ ((𝐶𝐴) ≈ 𝑦𝑦𝐷)) → (𝐴𝐶) ≼ (𝐵𝐷)))
4819, 47biimtrrid 243 . 2 (((𝐴𝐵𝐶𝐷) ∧ (𝐵𝐷) = ∅) → ((∃𝑥(𝐴𝑥𝑥𝐵) ∧ ∃𝑦((𝐶𝐴) ≈ 𝑦𝑦𝐷)) → (𝐴𝐶) ≼ (𝐵𝐷)))
4918, 48mpd 15 1 (((𝐴𝐵𝐶𝐷) ∧ (𝐵𝐷) = ∅) → (𝐴𝐶) ≼ (𝐵𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wex 1777  wcel 2108  Vcvv 3488  cdif 3973  cun 3974  cin 3975  wss 3976  c0 4352   class class class wbr 5166  cen 9000  cdom 9001
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-en 9004  df-dom 9005
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator