MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  undomOLD Structured version   Visualization version   GIF version

Theorem undomOLD 9074
Description: Obsolete version of undom 9073 as of 4-Dec-2024. (Contributed by NM, 3-Sep-2004.) (Revised by Mario Carneiro, 26-Apr-2015.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
undomOLD (((𝐴𝐵𝐶𝐷) ∧ (𝐵𝐷) = ∅) → (𝐴𝐶) ≼ (𝐵𝐷))

Proof of Theorem undomOLD
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reldom 8965 . . . . . . 7 Rel ≼
21brrelex2i 5711 . . . . . 6 (𝐴𝐵𝐵 ∈ V)
3 domeng 8977 . . . . . 6 (𝐵 ∈ V → (𝐴𝐵 ↔ ∃𝑥(𝐴𝑥𝑥𝐵)))
42, 3syl 17 . . . . 5 (𝐴𝐵 → (𝐴𝐵 ↔ ∃𝑥(𝐴𝑥𝑥𝐵)))
54ibi 267 . . . 4 (𝐴𝐵 → ∃𝑥(𝐴𝑥𝑥𝐵))
61brrelex1i 5710 . . . . . . 7 (𝐶𝐷𝐶 ∈ V)
7 difss 4111 . . . . . . 7 (𝐶𝐴) ⊆ 𝐶
8 ssdomg 9014 . . . . . . 7 (𝐶 ∈ V → ((𝐶𝐴) ⊆ 𝐶 → (𝐶𝐴) ≼ 𝐶))
96, 7, 8mpisyl 21 . . . . . 6 (𝐶𝐷 → (𝐶𝐴) ≼ 𝐶)
10 domtr 9021 . . . . . 6 (((𝐶𝐴) ≼ 𝐶𝐶𝐷) → (𝐶𝐴) ≼ 𝐷)
119, 10mpancom 688 . . . . 5 (𝐶𝐷 → (𝐶𝐴) ≼ 𝐷)
121brrelex2i 5711 . . . . . . 7 ((𝐶𝐴) ≼ 𝐷𝐷 ∈ V)
13 domeng 8977 . . . . . . 7 (𝐷 ∈ V → ((𝐶𝐴) ≼ 𝐷 ↔ ∃𝑦((𝐶𝐴) ≈ 𝑦𝑦𝐷)))
1412, 13syl 17 . . . . . 6 ((𝐶𝐴) ≼ 𝐷 → ((𝐶𝐴) ≼ 𝐷 ↔ ∃𝑦((𝐶𝐴) ≈ 𝑦𝑦𝐷)))
1514ibi 267 . . . . 5 ((𝐶𝐴) ≼ 𝐷 → ∃𝑦((𝐶𝐴) ≈ 𝑦𝑦𝐷))
1611, 15syl 17 . . . 4 (𝐶𝐷 → ∃𝑦((𝐶𝐴) ≈ 𝑦𝑦𝐷))
175, 16anim12i 613 . . 3 ((𝐴𝐵𝐶𝐷) → (∃𝑥(𝐴𝑥𝑥𝐵) ∧ ∃𝑦((𝐶𝐴) ≈ 𝑦𝑦𝐷)))
1817adantr 480 . 2 (((𝐴𝐵𝐶𝐷) ∧ (𝐵𝐷) = ∅) → (∃𝑥(𝐴𝑥𝑥𝐵) ∧ ∃𝑦((𝐶𝐴) ≈ 𝑦𝑦𝐷)))
19 exdistrv 1955 . . 3 (∃𝑥𝑦((𝐴𝑥𝑥𝐵) ∧ ((𝐶𝐴) ≈ 𝑦𝑦𝐷)) ↔ (∃𝑥(𝐴𝑥𝑥𝐵) ∧ ∃𝑦((𝐶𝐴) ≈ 𝑦𝑦𝐷)))
20 simprll 778 . . . . . . 7 ((((𝐴𝐵𝐶𝐷) ∧ (𝐵𝐷) = ∅) ∧ ((𝐴𝑥𝑥𝐵) ∧ ((𝐶𝐴) ≈ 𝑦𝑦𝐷))) → 𝐴𝑥)
21 simprrl 780 . . . . . . 7 ((((𝐴𝐵𝐶𝐷) ∧ (𝐵𝐷) = ∅) ∧ ((𝐴𝑥𝑥𝐵) ∧ ((𝐶𝐴) ≈ 𝑦𝑦𝐷))) → (𝐶𝐴) ≈ 𝑦)
22 disjdif 4447 . . . . . . . 8 (𝐴 ∩ (𝐶𝐴)) = ∅
2322a1i 11 . . . . . . 7 ((((𝐴𝐵𝐶𝐷) ∧ (𝐵𝐷) = ∅) ∧ ((𝐴𝑥𝑥𝐵) ∧ ((𝐶𝐴) ≈ 𝑦𝑦𝐷))) → (𝐴 ∩ (𝐶𝐴)) = ∅)
24 ss2in 4220 . . . . . . . . . 10 ((𝑥𝐵𝑦𝐷) → (𝑥𝑦) ⊆ (𝐵𝐷))
2524ad2ant2l 746 . . . . . . . . 9 (((𝐴𝑥𝑥𝐵) ∧ ((𝐶𝐴) ≈ 𝑦𝑦𝐷)) → (𝑥𝑦) ⊆ (𝐵𝐷))
2625adantl 481 . . . . . . . 8 ((((𝐴𝐵𝐶𝐷) ∧ (𝐵𝐷) = ∅) ∧ ((𝐴𝑥𝑥𝐵) ∧ ((𝐶𝐴) ≈ 𝑦𝑦𝐷))) → (𝑥𝑦) ⊆ (𝐵𝐷))
27 simplr 768 . . . . . . . 8 ((((𝐴𝐵𝐶𝐷) ∧ (𝐵𝐷) = ∅) ∧ ((𝐴𝑥𝑥𝐵) ∧ ((𝐶𝐴) ≈ 𝑦𝑦𝐷))) → (𝐵𝐷) = ∅)
28 sseq0 4378 . . . . . . . 8 (((𝑥𝑦) ⊆ (𝐵𝐷) ∧ (𝐵𝐷) = ∅) → (𝑥𝑦) = ∅)
2926, 27, 28syl2anc 584 . . . . . . 7 ((((𝐴𝐵𝐶𝐷) ∧ (𝐵𝐷) = ∅) ∧ ((𝐴𝑥𝑥𝐵) ∧ ((𝐶𝐴) ≈ 𝑦𝑦𝐷))) → (𝑥𝑦) = ∅)
30 undif2 4452 . . . . . . . 8 (𝐴 ∪ (𝐶𝐴)) = (𝐴𝐶)
31 unen 9060 . . . . . . . 8 (((𝐴𝑥 ∧ (𝐶𝐴) ≈ 𝑦) ∧ ((𝐴 ∩ (𝐶𝐴)) = ∅ ∧ (𝑥𝑦) = ∅)) → (𝐴 ∪ (𝐶𝐴)) ≈ (𝑥𝑦))
3230, 31eqbrtrrid 5155 . . . . . . 7 (((𝐴𝑥 ∧ (𝐶𝐴) ≈ 𝑦) ∧ ((𝐴 ∩ (𝐶𝐴)) = ∅ ∧ (𝑥𝑦) = ∅)) → (𝐴𝐶) ≈ (𝑥𝑦))
3320, 21, 23, 29, 32syl22anc 838 . . . . . 6 ((((𝐴𝐵𝐶𝐷) ∧ (𝐵𝐷) = ∅) ∧ ((𝐴𝑥𝑥𝐵) ∧ ((𝐶𝐴) ≈ 𝑦𝑦𝐷))) → (𝐴𝐶) ≈ (𝑥𝑦))
342ad3antrrr 730 . . . . . . . 8 ((((𝐴𝐵𝐶𝐷) ∧ (𝐵𝐷) = ∅) ∧ ((𝐴𝑥𝑥𝐵) ∧ ((𝐶𝐴) ≈ 𝑦𝑦𝐷))) → 𝐵 ∈ V)
351brrelex2i 5711 . . . . . . . . 9 (𝐶𝐷𝐷 ∈ V)
3635ad3antlr 731 . . . . . . . 8 ((((𝐴𝐵𝐶𝐷) ∧ (𝐵𝐷) = ∅) ∧ ((𝐴𝑥𝑥𝐵) ∧ ((𝐶𝐴) ≈ 𝑦𝑦𝐷))) → 𝐷 ∈ V)
37 unexg 7737 . . . . . . . 8 ((𝐵 ∈ V ∧ 𝐷 ∈ V) → (𝐵𝐷) ∈ V)
3834, 36, 37syl2anc 584 . . . . . . 7 ((((𝐴𝐵𝐶𝐷) ∧ (𝐵𝐷) = ∅) ∧ ((𝐴𝑥𝑥𝐵) ∧ ((𝐶𝐴) ≈ 𝑦𝑦𝐷))) → (𝐵𝐷) ∈ V)
39 unss12 4163 . . . . . . . . 9 ((𝑥𝐵𝑦𝐷) → (𝑥𝑦) ⊆ (𝐵𝐷))
4039ad2ant2l 746 . . . . . . . 8 (((𝐴𝑥𝑥𝐵) ∧ ((𝐶𝐴) ≈ 𝑦𝑦𝐷)) → (𝑥𝑦) ⊆ (𝐵𝐷))
4140adantl 481 . . . . . . 7 ((((𝐴𝐵𝐶𝐷) ∧ (𝐵𝐷) = ∅) ∧ ((𝐴𝑥𝑥𝐵) ∧ ((𝐶𝐴) ≈ 𝑦𝑦𝐷))) → (𝑥𝑦) ⊆ (𝐵𝐷))
42 ssdomg 9014 . . . . . . 7 ((𝐵𝐷) ∈ V → ((𝑥𝑦) ⊆ (𝐵𝐷) → (𝑥𝑦) ≼ (𝐵𝐷)))
4338, 41, 42sylc 65 . . . . . 6 ((((𝐴𝐵𝐶𝐷) ∧ (𝐵𝐷) = ∅) ∧ ((𝐴𝑥𝑥𝐵) ∧ ((𝐶𝐴) ≈ 𝑦𝑦𝐷))) → (𝑥𝑦) ≼ (𝐵𝐷))
44 endomtr 9026 . . . . . 6 (((𝐴𝐶) ≈ (𝑥𝑦) ∧ (𝑥𝑦) ≼ (𝐵𝐷)) → (𝐴𝐶) ≼ (𝐵𝐷))
4533, 43, 44syl2anc 584 . . . . 5 ((((𝐴𝐵𝐶𝐷) ∧ (𝐵𝐷) = ∅) ∧ ((𝐴𝑥𝑥𝐵) ∧ ((𝐶𝐴) ≈ 𝑦𝑦𝐷))) → (𝐴𝐶) ≼ (𝐵𝐷))
4645ex 412 . . . 4 (((𝐴𝐵𝐶𝐷) ∧ (𝐵𝐷) = ∅) → (((𝐴𝑥𝑥𝐵) ∧ ((𝐶𝐴) ≈ 𝑦𝑦𝐷)) → (𝐴𝐶) ≼ (𝐵𝐷)))
4746exlimdvv 1934 . . 3 (((𝐴𝐵𝐶𝐷) ∧ (𝐵𝐷) = ∅) → (∃𝑥𝑦((𝐴𝑥𝑥𝐵) ∧ ((𝐶𝐴) ≈ 𝑦𝑦𝐷)) → (𝐴𝐶) ≼ (𝐵𝐷)))
4819, 47biimtrrid 243 . 2 (((𝐴𝐵𝐶𝐷) ∧ (𝐵𝐷) = ∅) → ((∃𝑥(𝐴𝑥𝑥𝐵) ∧ ∃𝑦((𝐶𝐴) ≈ 𝑦𝑦𝐷)) → (𝐴𝐶) ≼ (𝐵𝐷)))
4918, 48mpd 15 1 (((𝐴𝐵𝐶𝐷) ∧ (𝐵𝐷) = ∅) → (𝐴𝐶) ≼ (𝐵𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2108  Vcvv 3459  cdif 3923  cun 3924  cin 3925  wss 3926  c0 4308   class class class wbr 5119  cen 8956  cdom 8957
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-en 8960  df-dom 8961
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator