Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pl42lem3N Structured version   Visualization version   GIF version

Theorem pl42lem3N 39938
Description: Lemma for pl42N 39940. (Contributed by NM, 8-Apr-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
pl42lem.b 𝐵 = (Base‘𝐾)
pl42lem.l = (le‘𝐾)
pl42lem.j = (join‘𝐾)
pl42lem.m = (meet‘𝐾)
pl42lem.o = (oc‘𝐾)
pl42lem.f 𝐹 = (pmap‘𝐾)
pl42lem.p + = (+𝑃𝐾)
Assertion
Ref Expression
pl42lem3N (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵)) → (((((𝐹𝑋) + (𝐹𝑌)) ∩ (𝐹𝑍)) + (𝐹𝑊)) ∩ (𝐹𝑉)) ⊆ ((((𝐹𝑋) + (𝐹𝑌)) + (𝐹𝑊)) ∩ (((𝐹𝑋) + (𝐹𝑌)) + (𝐹𝑉))))

Proof of Theorem pl42lem3N
StepHypRef Expression
1 simpl1 1191 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵)) → 𝐾 ∈ HL)
2 simpl2 1192 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵)) → 𝑋𝐵)
3 pl42lem.b . . . . . 6 𝐵 = (Base‘𝐾)
4 eqid 2740 . . . . . 6 (Atoms‘𝐾) = (Atoms‘𝐾)
5 pl42lem.f . . . . . 6 𝐹 = (pmap‘𝐾)
63, 4, 5pmapssat 39716 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝐵) → (𝐹𝑋) ⊆ (Atoms‘𝐾))
71, 2, 6syl2anc 583 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵)) → (𝐹𝑋) ⊆ (Atoms‘𝐾))
8 simpl3 1193 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵)) → 𝑌𝐵)
93, 4, 5pmapssat 39716 . . . . 5 ((𝐾 ∈ HL ∧ 𝑌𝐵) → (𝐹𝑌) ⊆ (Atoms‘𝐾))
101, 8, 9syl2anc 583 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵)) → (𝐹𝑌) ⊆ (Atoms‘𝐾))
11 pl42lem.p . . . . 5 + = (+𝑃𝐾)
124, 11paddssat 39771 . . . 4 ((𝐾 ∈ HL ∧ (𝐹𝑋) ⊆ (Atoms‘𝐾) ∧ (𝐹𝑌) ⊆ (Atoms‘𝐾)) → ((𝐹𝑋) + (𝐹𝑌)) ⊆ (Atoms‘𝐾))
131, 7, 10, 12syl3anc 1371 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵)) → ((𝐹𝑋) + (𝐹𝑌)) ⊆ (Atoms‘𝐾))
14 simpr2 1195 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵)) → 𝑊𝐵)
153, 4, 5pmapssat 39716 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐵) → (𝐹𝑊) ⊆ (Atoms‘𝐾))
161, 14, 15syl2anc 583 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵)) → (𝐹𝑊) ⊆ (Atoms‘𝐾))
17 inss1 4258 . . . 4 (((𝐹𝑋) + (𝐹𝑌)) ∩ (𝐹𝑍)) ⊆ ((𝐹𝑋) + (𝐹𝑌))
184, 11paddss1 39774 . . . 4 ((𝐾 ∈ HL ∧ ((𝐹𝑋) + (𝐹𝑌)) ⊆ (Atoms‘𝐾) ∧ (𝐹𝑊) ⊆ (Atoms‘𝐾)) → ((((𝐹𝑋) + (𝐹𝑌)) ∩ (𝐹𝑍)) ⊆ ((𝐹𝑋) + (𝐹𝑌)) → ((((𝐹𝑋) + (𝐹𝑌)) ∩ (𝐹𝑍)) + (𝐹𝑊)) ⊆ (((𝐹𝑋) + (𝐹𝑌)) + (𝐹𝑊))))
1917, 18mpi 20 . . 3 ((𝐾 ∈ HL ∧ ((𝐹𝑋) + (𝐹𝑌)) ⊆ (Atoms‘𝐾) ∧ (𝐹𝑊) ⊆ (Atoms‘𝐾)) → ((((𝐹𝑋) + (𝐹𝑌)) ∩ (𝐹𝑍)) + (𝐹𝑊)) ⊆ (((𝐹𝑋) + (𝐹𝑌)) + (𝐹𝑊)))
201, 13, 16, 19syl3anc 1371 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵)) → ((((𝐹𝑋) + (𝐹𝑌)) ∩ (𝐹𝑍)) + (𝐹𝑊)) ⊆ (((𝐹𝑋) + (𝐹𝑌)) + (𝐹𝑊)))
21 simpr3 1196 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵)) → 𝑉𝐵)
223, 4, 5pmapssat 39716 . . . 4 ((𝐾 ∈ HL ∧ 𝑉𝐵) → (𝐹𝑉) ⊆ (Atoms‘𝐾))
231, 21, 22syl2anc 583 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵)) → (𝐹𝑉) ⊆ (Atoms‘𝐾))
244, 11sspadd2 39773 . . 3 ((𝐾 ∈ HL ∧ (𝐹𝑉) ⊆ (Atoms‘𝐾) ∧ ((𝐹𝑋) + (𝐹𝑌)) ⊆ (Atoms‘𝐾)) → (𝐹𝑉) ⊆ (((𝐹𝑋) + (𝐹𝑌)) + (𝐹𝑉)))
251, 23, 13, 24syl3anc 1371 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵)) → (𝐹𝑉) ⊆ (((𝐹𝑋) + (𝐹𝑌)) + (𝐹𝑉)))
26 ss2in 4266 . 2 ((((((𝐹𝑋) + (𝐹𝑌)) ∩ (𝐹𝑍)) + (𝐹𝑊)) ⊆ (((𝐹𝑋) + (𝐹𝑌)) + (𝐹𝑊)) ∧ (𝐹𝑉) ⊆ (((𝐹𝑋) + (𝐹𝑌)) + (𝐹𝑉))) → (((((𝐹𝑋) + (𝐹𝑌)) ∩ (𝐹𝑍)) + (𝐹𝑊)) ∩ (𝐹𝑉)) ⊆ ((((𝐹𝑋) + (𝐹𝑌)) + (𝐹𝑊)) ∩ (((𝐹𝑋) + (𝐹𝑌)) + (𝐹𝑉))))
2720, 25, 26syl2anc 583 1 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵)) → (((((𝐹𝑋) + (𝐹𝑌)) ∩ (𝐹𝑍)) + (𝐹𝑊)) ∩ (𝐹𝑉)) ⊆ ((((𝐹𝑋) + (𝐹𝑌)) + (𝐹𝑊)) ∩ (((𝐹𝑋) + (𝐹𝑌)) + (𝐹𝑉))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1537  wcel 2108  cin 3975  wss 3976  cfv 6573  (class class class)co 7448  Basecbs 17258  lecple 17318  occoc 17319  joincjn 18381  meetcmee 18382  Atomscatm 39219  HLchlt 39306  pmapcpmap 39454  +𝑃cpadd 39752
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031  df-pmap 39461  df-padd 39753
This theorem is referenced by:  pl42lem4N  39939
  Copyright terms: Public domain W3C validator