Proof of Theorem pl42lem3N
Step | Hyp | Ref
| Expression |
1 | | simpl1 1189 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ∧ 𝑉 ∈ 𝐵)) → 𝐾 ∈ HL) |
2 | | simpl2 1190 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ∧ 𝑉 ∈ 𝐵)) → 𝑋 ∈ 𝐵) |
3 | | pl42lem.b |
. . . . . 6
⊢ 𝐵 = (Base‘𝐾) |
4 | | eqid 2738 |
. . . . . 6
⊢
(Atoms‘𝐾) =
(Atoms‘𝐾) |
5 | | pl42lem.f |
. . . . . 6
⊢ 𝐹 = (pmap‘𝐾) |
6 | 3, 4, 5 | pmapssat 37700 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → (𝐹‘𝑋) ⊆ (Atoms‘𝐾)) |
7 | 1, 2, 6 | syl2anc 583 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ∧ 𝑉 ∈ 𝐵)) → (𝐹‘𝑋) ⊆ (Atoms‘𝐾)) |
8 | | simpl3 1191 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ∧ 𝑉 ∈ 𝐵)) → 𝑌 ∈ 𝐵) |
9 | 3, 4, 5 | pmapssat 37700 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ 𝑌 ∈ 𝐵) → (𝐹‘𝑌) ⊆ (Atoms‘𝐾)) |
10 | 1, 8, 9 | syl2anc 583 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ∧ 𝑉 ∈ 𝐵)) → (𝐹‘𝑌) ⊆ (Atoms‘𝐾)) |
11 | | pl42lem.p |
. . . . 5
⊢ + =
(+𝑃‘𝐾) |
12 | 4, 11 | paddssat 37755 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ (𝐹‘𝑋) ⊆ (Atoms‘𝐾) ∧ (𝐹‘𝑌) ⊆ (Atoms‘𝐾)) → ((𝐹‘𝑋) + (𝐹‘𝑌)) ⊆ (Atoms‘𝐾)) |
13 | 1, 7, 10, 12 | syl3anc 1369 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ∧ 𝑉 ∈ 𝐵)) → ((𝐹‘𝑋) + (𝐹‘𝑌)) ⊆ (Atoms‘𝐾)) |
14 | | simpr2 1193 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ∧ 𝑉 ∈ 𝐵)) → 𝑊 ∈ 𝐵) |
15 | 3, 4, 5 | pmapssat 37700 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐵) → (𝐹‘𝑊) ⊆ (Atoms‘𝐾)) |
16 | 1, 14, 15 | syl2anc 583 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ∧ 𝑉 ∈ 𝐵)) → (𝐹‘𝑊) ⊆ (Atoms‘𝐾)) |
17 | | inss1 4159 |
. . . 4
⊢ (((𝐹‘𝑋) + (𝐹‘𝑌)) ∩ (𝐹‘𝑍)) ⊆ ((𝐹‘𝑋) + (𝐹‘𝑌)) |
18 | 4, 11 | paddss1 37758 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ ((𝐹‘𝑋) + (𝐹‘𝑌)) ⊆ (Atoms‘𝐾) ∧ (𝐹‘𝑊) ⊆ (Atoms‘𝐾)) → ((((𝐹‘𝑋) + (𝐹‘𝑌)) ∩ (𝐹‘𝑍)) ⊆ ((𝐹‘𝑋) + (𝐹‘𝑌)) → ((((𝐹‘𝑋) + (𝐹‘𝑌)) ∩ (𝐹‘𝑍)) + (𝐹‘𝑊)) ⊆ (((𝐹‘𝑋) + (𝐹‘𝑌)) + (𝐹‘𝑊)))) |
19 | 17, 18 | mpi 20 |
. . 3
⊢ ((𝐾 ∈ HL ∧ ((𝐹‘𝑋) + (𝐹‘𝑌)) ⊆ (Atoms‘𝐾) ∧ (𝐹‘𝑊) ⊆ (Atoms‘𝐾)) → ((((𝐹‘𝑋) + (𝐹‘𝑌)) ∩ (𝐹‘𝑍)) + (𝐹‘𝑊)) ⊆ (((𝐹‘𝑋) + (𝐹‘𝑌)) + (𝐹‘𝑊))) |
20 | 1, 13, 16, 19 | syl3anc 1369 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ∧ 𝑉 ∈ 𝐵)) → ((((𝐹‘𝑋) + (𝐹‘𝑌)) ∩ (𝐹‘𝑍)) + (𝐹‘𝑊)) ⊆ (((𝐹‘𝑋) + (𝐹‘𝑌)) + (𝐹‘𝑊))) |
21 | | simpr3 1194 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ∧ 𝑉 ∈ 𝐵)) → 𝑉 ∈ 𝐵) |
22 | 3, 4, 5 | pmapssat 37700 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ 𝑉 ∈ 𝐵) → (𝐹‘𝑉) ⊆ (Atoms‘𝐾)) |
23 | 1, 21, 22 | syl2anc 583 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ∧ 𝑉 ∈ 𝐵)) → (𝐹‘𝑉) ⊆ (Atoms‘𝐾)) |
24 | 4, 11 | sspadd2 37757 |
. . 3
⊢ ((𝐾 ∈ HL ∧ (𝐹‘𝑉) ⊆ (Atoms‘𝐾) ∧ ((𝐹‘𝑋) + (𝐹‘𝑌)) ⊆ (Atoms‘𝐾)) → (𝐹‘𝑉) ⊆ (((𝐹‘𝑋) + (𝐹‘𝑌)) + (𝐹‘𝑉))) |
25 | 1, 23, 13, 24 | syl3anc 1369 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ∧ 𝑉 ∈ 𝐵)) → (𝐹‘𝑉) ⊆ (((𝐹‘𝑋) + (𝐹‘𝑌)) + (𝐹‘𝑉))) |
26 | | ss2in 4167 |
. 2
⊢
((((((𝐹‘𝑋) + (𝐹‘𝑌)) ∩ (𝐹‘𝑍)) + (𝐹‘𝑊)) ⊆ (((𝐹‘𝑋) + (𝐹‘𝑌)) + (𝐹‘𝑊)) ∧ (𝐹‘𝑉) ⊆ (((𝐹‘𝑋) + (𝐹‘𝑌)) + (𝐹‘𝑉))) → (((((𝐹‘𝑋) + (𝐹‘𝑌)) ∩ (𝐹‘𝑍)) + (𝐹‘𝑊)) ∩ (𝐹‘𝑉)) ⊆ ((((𝐹‘𝑋) + (𝐹‘𝑌)) + (𝐹‘𝑊)) ∩ (((𝐹‘𝑋) + (𝐹‘𝑌)) + (𝐹‘𝑉)))) |
27 | 20, 25, 26 | syl2anc 583 |
1
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ∧ 𝑉 ∈ 𝐵)) → (((((𝐹‘𝑋) + (𝐹‘𝑌)) ∩ (𝐹‘𝑍)) + (𝐹‘𝑊)) ∩ (𝐹‘𝑉)) ⊆ ((((𝐹‘𝑋) + (𝐹‘𝑌)) + (𝐹‘𝑊)) ∩ (((𝐹‘𝑋) + (𝐹‘𝑌)) + (𝐹‘𝑉)))) |