Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pl42lem3N Structured version   Visualization version   GIF version

Theorem pl42lem3N 37607
Description: Lemma for pl42N 37609. (Contributed by NM, 8-Apr-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
pl42lem.b 𝐵 = (Base‘𝐾)
pl42lem.l = (le‘𝐾)
pl42lem.j = (join‘𝐾)
pl42lem.m = (meet‘𝐾)
pl42lem.o = (oc‘𝐾)
pl42lem.f 𝐹 = (pmap‘𝐾)
pl42lem.p + = (+𝑃𝐾)
Assertion
Ref Expression
pl42lem3N (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵)) → (((((𝐹𝑋) + (𝐹𝑌)) ∩ (𝐹𝑍)) + (𝐹𝑊)) ∩ (𝐹𝑉)) ⊆ ((((𝐹𝑋) + (𝐹𝑌)) + (𝐹𝑊)) ∩ (((𝐹𝑋) + (𝐹𝑌)) + (𝐹𝑉))))

Proof of Theorem pl42lem3N
StepHypRef Expression
1 simpl1 1192 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵)) → 𝐾 ∈ HL)
2 simpl2 1193 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵)) → 𝑋𝐵)
3 pl42lem.b . . . . . 6 𝐵 = (Base‘𝐾)
4 eqid 2738 . . . . . 6 (Atoms‘𝐾) = (Atoms‘𝐾)
5 pl42lem.f . . . . . 6 𝐹 = (pmap‘𝐾)
63, 4, 5pmapssat 37385 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝐵) → (𝐹𝑋) ⊆ (Atoms‘𝐾))
71, 2, 6syl2anc 587 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵)) → (𝐹𝑋) ⊆ (Atoms‘𝐾))
8 simpl3 1194 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵)) → 𝑌𝐵)
93, 4, 5pmapssat 37385 . . . . 5 ((𝐾 ∈ HL ∧ 𝑌𝐵) → (𝐹𝑌) ⊆ (Atoms‘𝐾))
101, 8, 9syl2anc 587 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵)) → (𝐹𝑌) ⊆ (Atoms‘𝐾))
11 pl42lem.p . . . . 5 + = (+𝑃𝐾)
124, 11paddssat 37440 . . . 4 ((𝐾 ∈ HL ∧ (𝐹𝑋) ⊆ (Atoms‘𝐾) ∧ (𝐹𝑌) ⊆ (Atoms‘𝐾)) → ((𝐹𝑋) + (𝐹𝑌)) ⊆ (Atoms‘𝐾))
131, 7, 10, 12syl3anc 1372 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵)) → ((𝐹𝑋) + (𝐹𝑌)) ⊆ (Atoms‘𝐾))
14 simpr2 1196 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵)) → 𝑊𝐵)
153, 4, 5pmapssat 37385 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐵) → (𝐹𝑊) ⊆ (Atoms‘𝐾))
161, 14, 15syl2anc 587 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵)) → (𝐹𝑊) ⊆ (Atoms‘𝐾))
17 inss1 4117 . . . 4 (((𝐹𝑋) + (𝐹𝑌)) ∩ (𝐹𝑍)) ⊆ ((𝐹𝑋) + (𝐹𝑌))
184, 11paddss1 37443 . . . 4 ((𝐾 ∈ HL ∧ ((𝐹𝑋) + (𝐹𝑌)) ⊆ (Atoms‘𝐾) ∧ (𝐹𝑊) ⊆ (Atoms‘𝐾)) → ((((𝐹𝑋) + (𝐹𝑌)) ∩ (𝐹𝑍)) ⊆ ((𝐹𝑋) + (𝐹𝑌)) → ((((𝐹𝑋) + (𝐹𝑌)) ∩ (𝐹𝑍)) + (𝐹𝑊)) ⊆ (((𝐹𝑋) + (𝐹𝑌)) + (𝐹𝑊))))
1917, 18mpi 20 . . 3 ((𝐾 ∈ HL ∧ ((𝐹𝑋) + (𝐹𝑌)) ⊆ (Atoms‘𝐾) ∧ (𝐹𝑊) ⊆ (Atoms‘𝐾)) → ((((𝐹𝑋) + (𝐹𝑌)) ∩ (𝐹𝑍)) + (𝐹𝑊)) ⊆ (((𝐹𝑋) + (𝐹𝑌)) + (𝐹𝑊)))
201, 13, 16, 19syl3anc 1372 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵)) → ((((𝐹𝑋) + (𝐹𝑌)) ∩ (𝐹𝑍)) + (𝐹𝑊)) ⊆ (((𝐹𝑋) + (𝐹𝑌)) + (𝐹𝑊)))
21 simpr3 1197 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵)) → 𝑉𝐵)
223, 4, 5pmapssat 37385 . . . 4 ((𝐾 ∈ HL ∧ 𝑉𝐵) → (𝐹𝑉) ⊆ (Atoms‘𝐾))
231, 21, 22syl2anc 587 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵)) → (𝐹𝑉) ⊆ (Atoms‘𝐾))
244, 11sspadd2 37442 . . 3 ((𝐾 ∈ HL ∧ (𝐹𝑉) ⊆ (Atoms‘𝐾) ∧ ((𝐹𝑋) + (𝐹𝑌)) ⊆ (Atoms‘𝐾)) → (𝐹𝑉) ⊆ (((𝐹𝑋) + (𝐹𝑌)) + (𝐹𝑉)))
251, 23, 13, 24syl3anc 1372 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵)) → (𝐹𝑉) ⊆ (((𝐹𝑋) + (𝐹𝑌)) + (𝐹𝑉)))
26 ss2in 4125 . 2 ((((((𝐹𝑋) + (𝐹𝑌)) ∩ (𝐹𝑍)) + (𝐹𝑊)) ⊆ (((𝐹𝑋) + (𝐹𝑌)) + (𝐹𝑊)) ∧ (𝐹𝑉) ⊆ (((𝐹𝑋) + (𝐹𝑌)) + (𝐹𝑉))) → (((((𝐹𝑋) + (𝐹𝑌)) ∩ (𝐹𝑍)) + (𝐹𝑊)) ∩ (𝐹𝑉)) ⊆ ((((𝐹𝑋) + (𝐹𝑌)) + (𝐹𝑊)) ∩ (((𝐹𝑋) + (𝐹𝑌)) + (𝐹𝑉))))
2720, 25, 26syl2anc 587 1 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵)) → (((((𝐹𝑋) + (𝐹𝑌)) ∩ (𝐹𝑍)) + (𝐹𝑊)) ∩ (𝐹𝑉)) ⊆ ((((𝐹𝑋) + (𝐹𝑌)) + (𝐹𝑊)) ∩ (((𝐹𝑋) + (𝐹𝑌)) + (𝐹𝑉))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1088   = wceq 1542  wcel 2113  cin 3840  wss 3841  cfv 6333  (class class class)co 7164  Basecbs 16579  lecple 16668  occoc 16669  joincjn 17663  meetcmee 17664  Atomscatm 36889  HLchlt 36976  pmapcpmap 37123  +𝑃cpadd 37421
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1916  ax-6 1974  ax-7 2019  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2161  ax-12 2178  ax-ext 2710  ax-rep 5151  ax-sep 5164  ax-nul 5171  ax-pow 5229  ax-pr 5293  ax-un 7473
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2074  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-ral 3058  df-rex 3059  df-reu 3060  df-rab 3062  df-v 3399  df-sbc 3680  df-csb 3789  df-dif 3844  df-un 3846  df-in 3848  df-ss 3858  df-nul 4210  df-if 4412  df-pw 4487  df-sn 4514  df-pr 4516  df-op 4520  df-uni 4794  df-iun 4880  df-br 5028  df-opab 5090  df-mpt 5108  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6291  df-fun 6335  df-fn 6336  df-f 6337  df-f1 6338  df-fo 6339  df-f1o 6340  df-fv 6341  df-ov 7167  df-oprab 7168  df-mpo 7169  df-1st 7707  df-2nd 7708  df-pmap 37130  df-padd 37422
This theorem is referenced by:  pl42lem4N  37608
  Copyright terms: Public domain W3C validator