Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pl42lem3N Structured version   Visualization version   GIF version

Theorem pl42lem3N 39975
Description: Lemma for pl42N 39977. (Contributed by NM, 8-Apr-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
pl42lem.b 𝐵 = (Base‘𝐾)
pl42lem.l = (le‘𝐾)
pl42lem.j = (join‘𝐾)
pl42lem.m = (meet‘𝐾)
pl42lem.o = (oc‘𝐾)
pl42lem.f 𝐹 = (pmap‘𝐾)
pl42lem.p + = (+𝑃𝐾)
Assertion
Ref Expression
pl42lem3N (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵)) → (((((𝐹𝑋) + (𝐹𝑌)) ∩ (𝐹𝑍)) + (𝐹𝑊)) ∩ (𝐹𝑉)) ⊆ ((((𝐹𝑋) + (𝐹𝑌)) + (𝐹𝑊)) ∩ (((𝐹𝑋) + (𝐹𝑌)) + (𝐹𝑉))))

Proof of Theorem pl42lem3N
StepHypRef Expression
1 simpl1 1192 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵)) → 𝐾 ∈ HL)
2 simpl2 1193 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵)) → 𝑋𝐵)
3 pl42lem.b . . . . . 6 𝐵 = (Base‘𝐾)
4 eqid 2729 . . . . . 6 (Atoms‘𝐾) = (Atoms‘𝐾)
5 pl42lem.f . . . . . 6 𝐹 = (pmap‘𝐾)
63, 4, 5pmapssat 39753 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝐵) → (𝐹𝑋) ⊆ (Atoms‘𝐾))
71, 2, 6syl2anc 584 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵)) → (𝐹𝑋) ⊆ (Atoms‘𝐾))
8 simpl3 1194 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵)) → 𝑌𝐵)
93, 4, 5pmapssat 39753 . . . . 5 ((𝐾 ∈ HL ∧ 𝑌𝐵) → (𝐹𝑌) ⊆ (Atoms‘𝐾))
101, 8, 9syl2anc 584 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵)) → (𝐹𝑌) ⊆ (Atoms‘𝐾))
11 pl42lem.p . . . . 5 + = (+𝑃𝐾)
124, 11paddssat 39808 . . . 4 ((𝐾 ∈ HL ∧ (𝐹𝑋) ⊆ (Atoms‘𝐾) ∧ (𝐹𝑌) ⊆ (Atoms‘𝐾)) → ((𝐹𝑋) + (𝐹𝑌)) ⊆ (Atoms‘𝐾))
131, 7, 10, 12syl3anc 1373 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵)) → ((𝐹𝑋) + (𝐹𝑌)) ⊆ (Atoms‘𝐾))
14 simpr2 1196 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵)) → 𝑊𝐵)
153, 4, 5pmapssat 39753 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐵) → (𝐹𝑊) ⊆ (Atoms‘𝐾))
161, 14, 15syl2anc 584 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵)) → (𝐹𝑊) ⊆ (Atoms‘𝐾))
17 inss1 4200 . . . 4 (((𝐹𝑋) + (𝐹𝑌)) ∩ (𝐹𝑍)) ⊆ ((𝐹𝑋) + (𝐹𝑌))
184, 11paddss1 39811 . . . 4 ((𝐾 ∈ HL ∧ ((𝐹𝑋) + (𝐹𝑌)) ⊆ (Atoms‘𝐾) ∧ (𝐹𝑊) ⊆ (Atoms‘𝐾)) → ((((𝐹𝑋) + (𝐹𝑌)) ∩ (𝐹𝑍)) ⊆ ((𝐹𝑋) + (𝐹𝑌)) → ((((𝐹𝑋) + (𝐹𝑌)) ∩ (𝐹𝑍)) + (𝐹𝑊)) ⊆ (((𝐹𝑋) + (𝐹𝑌)) + (𝐹𝑊))))
1917, 18mpi 20 . . 3 ((𝐾 ∈ HL ∧ ((𝐹𝑋) + (𝐹𝑌)) ⊆ (Atoms‘𝐾) ∧ (𝐹𝑊) ⊆ (Atoms‘𝐾)) → ((((𝐹𝑋) + (𝐹𝑌)) ∩ (𝐹𝑍)) + (𝐹𝑊)) ⊆ (((𝐹𝑋) + (𝐹𝑌)) + (𝐹𝑊)))
201, 13, 16, 19syl3anc 1373 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵)) → ((((𝐹𝑋) + (𝐹𝑌)) ∩ (𝐹𝑍)) + (𝐹𝑊)) ⊆ (((𝐹𝑋) + (𝐹𝑌)) + (𝐹𝑊)))
21 simpr3 1197 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵)) → 𝑉𝐵)
223, 4, 5pmapssat 39753 . . . 4 ((𝐾 ∈ HL ∧ 𝑉𝐵) → (𝐹𝑉) ⊆ (Atoms‘𝐾))
231, 21, 22syl2anc 584 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵)) → (𝐹𝑉) ⊆ (Atoms‘𝐾))
244, 11sspadd2 39810 . . 3 ((𝐾 ∈ HL ∧ (𝐹𝑉) ⊆ (Atoms‘𝐾) ∧ ((𝐹𝑋) + (𝐹𝑌)) ⊆ (Atoms‘𝐾)) → (𝐹𝑉) ⊆ (((𝐹𝑋) + (𝐹𝑌)) + (𝐹𝑉)))
251, 23, 13, 24syl3anc 1373 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵)) → (𝐹𝑉) ⊆ (((𝐹𝑋) + (𝐹𝑌)) + (𝐹𝑉)))
26 ss2in 4208 . 2 ((((((𝐹𝑋) + (𝐹𝑌)) ∩ (𝐹𝑍)) + (𝐹𝑊)) ⊆ (((𝐹𝑋) + (𝐹𝑌)) + (𝐹𝑊)) ∧ (𝐹𝑉) ⊆ (((𝐹𝑋) + (𝐹𝑌)) + (𝐹𝑉))) → (((((𝐹𝑋) + (𝐹𝑌)) ∩ (𝐹𝑍)) + (𝐹𝑊)) ∩ (𝐹𝑉)) ⊆ ((((𝐹𝑋) + (𝐹𝑌)) + (𝐹𝑊)) ∩ (((𝐹𝑋) + (𝐹𝑌)) + (𝐹𝑉))))
2720, 25, 26syl2anc 584 1 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵)) → (((((𝐹𝑋) + (𝐹𝑌)) ∩ (𝐹𝑍)) + (𝐹𝑊)) ∩ (𝐹𝑉)) ⊆ ((((𝐹𝑋) + (𝐹𝑌)) + (𝐹𝑊)) ∩ (((𝐹𝑋) + (𝐹𝑌)) + (𝐹𝑉))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  cin 3913  wss 3914  cfv 6511  (class class class)co 7387  Basecbs 17179  lecple 17227  occoc 17228  joincjn 18272  meetcmee 18273  Atomscatm 39256  HLchlt 39343  pmapcpmap 39491  +𝑃cpadd 39789
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-1st 7968  df-2nd 7969  df-pmap 39498  df-padd 39790
This theorem is referenced by:  pl42lem4N  39976
  Copyright terms: Public domain W3C validator