Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pl42lem3N Structured version   Visualization version   GIF version

Theorem pl42lem3N 38034
Description: Lemma for pl42N 38036. (Contributed by NM, 8-Apr-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
pl42lem.b 𝐡 = (Baseβ€˜πΎ)
pl42lem.l ≀ = (leβ€˜πΎ)
pl42lem.j ∨ = (joinβ€˜πΎ)
pl42lem.m ∧ = (meetβ€˜πΎ)
pl42lem.o βŠ₯ = (ocβ€˜πΎ)
pl42lem.f 𝐹 = (pmapβ€˜πΎ)
pl42lem.p + = (+π‘ƒβ€˜πΎ)
Assertion
Ref Expression
pl42lem3N (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ (𝑍 ∈ 𝐡 ∧ π‘Š ∈ 𝐡 ∧ 𝑉 ∈ 𝐡)) β†’ (((((πΉβ€˜π‘‹) + (πΉβ€˜π‘Œ)) ∩ (πΉβ€˜π‘)) + (πΉβ€˜π‘Š)) ∩ (πΉβ€˜π‘‰)) βŠ† ((((πΉβ€˜π‘‹) + (πΉβ€˜π‘Œ)) + (πΉβ€˜π‘Š)) ∩ (((πΉβ€˜π‘‹) + (πΉβ€˜π‘Œ)) + (πΉβ€˜π‘‰))))

Proof of Theorem pl42lem3N
StepHypRef Expression
1 simpl1 1191 . . 3 (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ (𝑍 ∈ 𝐡 ∧ π‘Š ∈ 𝐡 ∧ 𝑉 ∈ 𝐡)) β†’ 𝐾 ∈ HL)
2 simpl2 1192 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ (𝑍 ∈ 𝐡 ∧ π‘Š ∈ 𝐡 ∧ 𝑉 ∈ 𝐡)) β†’ 𝑋 ∈ 𝐡)
3 pl42lem.b . . . . . 6 𝐡 = (Baseβ€˜πΎ)
4 eqid 2736 . . . . . 6 (Atomsβ€˜πΎ) = (Atomsβ€˜πΎ)
5 pl42lem.f . . . . . 6 𝐹 = (pmapβ€˜πΎ)
63, 4, 5pmapssat 37812 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡) β†’ (πΉβ€˜π‘‹) βŠ† (Atomsβ€˜πΎ))
71, 2, 6syl2anc 585 . . . 4 (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ (𝑍 ∈ 𝐡 ∧ π‘Š ∈ 𝐡 ∧ 𝑉 ∈ 𝐡)) β†’ (πΉβ€˜π‘‹) βŠ† (Atomsβ€˜πΎ))
8 simpl3 1193 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ (𝑍 ∈ 𝐡 ∧ π‘Š ∈ 𝐡 ∧ 𝑉 ∈ 𝐡)) β†’ π‘Œ ∈ 𝐡)
93, 4, 5pmapssat 37812 . . . . 5 ((𝐾 ∈ HL ∧ π‘Œ ∈ 𝐡) β†’ (πΉβ€˜π‘Œ) βŠ† (Atomsβ€˜πΎ))
101, 8, 9syl2anc 585 . . . 4 (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ (𝑍 ∈ 𝐡 ∧ π‘Š ∈ 𝐡 ∧ 𝑉 ∈ 𝐡)) β†’ (πΉβ€˜π‘Œ) βŠ† (Atomsβ€˜πΎ))
11 pl42lem.p . . . . 5 + = (+π‘ƒβ€˜πΎ)
124, 11paddssat 37867 . . . 4 ((𝐾 ∈ HL ∧ (πΉβ€˜π‘‹) βŠ† (Atomsβ€˜πΎ) ∧ (πΉβ€˜π‘Œ) βŠ† (Atomsβ€˜πΎ)) β†’ ((πΉβ€˜π‘‹) + (πΉβ€˜π‘Œ)) βŠ† (Atomsβ€˜πΎ))
131, 7, 10, 12syl3anc 1371 . . 3 (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ (𝑍 ∈ 𝐡 ∧ π‘Š ∈ 𝐡 ∧ 𝑉 ∈ 𝐡)) β†’ ((πΉβ€˜π‘‹) + (πΉβ€˜π‘Œ)) βŠ† (Atomsβ€˜πΎ))
14 simpr2 1195 . . . 4 (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ (𝑍 ∈ 𝐡 ∧ π‘Š ∈ 𝐡 ∧ 𝑉 ∈ 𝐡)) β†’ π‘Š ∈ 𝐡)
153, 4, 5pmapssat 37812 . . . 4 ((𝐾 ∈ HL ∧ π‘Š ∈ 𝐡) β†’ (πΉβ€˜π‘Š) βŠ† (Atomsβ€˜πΎ))
161, 14, 15syl2anc 585 . . 3 (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ (𝑍 ∈ 𝐡 ∧ π‘Š ∈ 𝐡 ∧ 𝑉 ∈ 𝐡)) β†’ (πΉβ€˜π‘Š) βŠ† (Atomsβ€˜πΎ))
17 inss1 4168 . . . 4 (((πΉβ€˜π‘‹) + (πΉβ€˜π‘Œ)) ∩ (πΉβ€˜π‘)) βŠ† ((πΉβ€˜π‘‹) + (πΉβ€˜π‘Œ))
184, 11paddss1 37870 . . . 4 ((𝐾 ∈ HL ∧ ((πΉβ€˜π‘‹) + (πΉβ€˜π‘Œ)) βŠ† (Atomsβ€˜πΎ) ∧ (πΉβ€˜π‘Š) βŠ† (Atomsβ€˜πΎ)) β†’ ((((πΉβ€˜π‘‹) + (πΉβ€˜π‘Œ)) ∩ (πΉβ€˜π‘)) βŠ† ((πΉβ€˜π‘‹) + (πΉβ€˜π‘Œ)) β†’ ((((πΉβ€˜π‘‹) + (πΉβ€˜π‘Œ)) ∩ (πΉβ€˜π‘)) + (πΉβ€˜π‘Š)) βŠ† (((πΉβ€˜π‘‹) + (πΉβ€˜π‘Œ)) + (πΉβ€˜π‘Š))))
1917, 18mpi 20 . . 3 ((𝐾 ∈ HL ∧ ((πΉβ€˜π‘‹) + (πΉβ€˜π‘Œ)) βŠ† (Atomsβ€˜πΎ) ∧ (πΉβ€˜π‘Š) βŠ† (Atomsβ€˜πΎ)) β†’ ((((πΉβ€˜π‘‹) + (πΉβ€˜π‘Œ)) ∩ (πΉβ€˜π‘)) + (πΉβ€˜π‘Š)) βŠ† (((πΉβ€˜π‘‹) + (πΉβ€˜π‘Œ)) + (πΉβ€˜π‘Š)))
201, 13, 16, 19syl3anc 1371 . 2 (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ (𝑍 ∈ 𝐡 ∧ π‘Š ∈ 𝐡 ∧ 𝑉 ∈ 𝐡)) β†’ ((((πΉβ€˜π‘‹) + (πΉβ€˜π‘Œ)) ∩ (πΉβ€˜π‘)) + (πΉβ€˜π‘Š)) βŠ† (((πΉβ€˜π‘‹) + (πΉβ€˜π‘Œ)) + (πΉβ€˜π‘Š)))
21 simpr3 1196 . . . 4 (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ (𝑍 ∈ 𝐡 ∧ π‘Š ∈ 𝐡 ∧ 𝑉 ∈ 𝐡)) β†’ 𝑉 ∈ 𝐡)
223, 4, 5pmapssat 37812 . . . 4 ((𝐾 ∈ HL ∧ 𝑉 ∈ 𝐡) β†’ (πΉβ€˜π‘‰) βŠ† (Atomsβ€˜πΎ))
231, 21, 22syl2anc 585 . . 3 (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ (𝑍 ∈ 𝐡 ∧ π‘Š ∈ 𝐡 ∧ 𝑉 ∈ 𝐡)) β†’ (πΉβ€˜π‘‰) βŠ† (Atomsβ€˜πΎ))
244, 11sspadd2 37869 . . 3 ((𝐾 ∈ HL ∧ (πΉβ€˜π‘‰) βŠ† (Atomsβ€˜πΎ) ∧ ((πΉβ€˜π‘‹) + (πΉβ€˜π‘Œ)) βŠ† (Atomsβ€˜πΎ)) β†’ (πΉβ€˜π‘‰) βŠ† (((πΉβ€˜π‘‹) + (πΉβ€˜π‘Œ)) + (πΉβ€˜π‘‰)))
251, 23, 13, 24syl3anc 1371 . 2 (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ (𝑍 ∈ 𝐡 ∧ π‘Š ∈ 𝐡 ∧ 𝑉 ∈ 𝐡)) β†’ (πΉβ€˜π‘‰) βŠ† (((πΉβ€˜π‘‹) + (πΉβ€˜π‘Œ)) + (πΉβ€˜π‘‰)))
26 ss2in 4176 . 2 ((((((πΉβ€˜π‘‹) + (πΉβ€˜π‘Œ)) ∩ (πΉβ€˜π‘)) + (πΉβ€˜π‘Š)) βŠ† (((πΉβ€˜π‘‹) + (πΉβ€˜π‘Œ)) + (πΉβ€˜π‘Š)) ∧ (πΉβ€˜π‘‰) βŠ† (((πΉβ€˜π‘‹) + (πΉβ€˜π‘Œ)) + (πΉβ€˜π‘‰))) β†’ (((((πΉβ€˜π‘‹) + (πΉβ€˜π‘Œ)) ∩ (πΉβ€˜π‘)) + (πΉβ€˜π‘Š)) ∩ (πΉβ€˜π‘‰)) βŠ† ((((πΉβ€˜π‘‹) + (πΉβ€˜π‘Œ)) + (πΉβ€˜π‘Š)) ∩ (((πΉβ€˜π‘‹) + (πΉβ€˜π‘Œ)) + (πΉβ€˜π‘‰))))
2720, 25, 26syl2anc 585 1 (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ (𝑍 ∈ 𝐡 ∧ π‘Š ∈ 𝐡 ∧ 𝑉 ∈ 𝐡)) β†’ (((((πΉβ€˜π‘‹) + (πΉβ€˜π‘Œ)) ∩ (πΉβ€˜π‘)) + (πΉβ€˜π‘Š)) ∩ (πΉβ€˜π‘‰)) βŠ† ((((πΉβ€˜π‘‹) + (πΉβ€˜π‘Œ)) + (πΉβ€˜π‘Š)) ∩ (((πΉβ€˜π‘‹) + (πΉβ€˜π‘Œ)) + (πΉβ€˜π‘‰))))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 397   ∧ w3a 1087   = wceq 1539   ∈ wcel 2104   ∩ cin 3891   βŠ† wss 3892  β€˜cfv 6454  (class class class)co 7303  Basecbs 16953  lecple 17010  occoc 17011  joincjn 18070  meetcmee 18071  Atomscatm 37316  HLchlt 37403  pmapcpmap 37550  +𝑃cpadd 37848
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-rep 5218  ax-sep 5232  ax-nul 5239  ax-pow 5297  ax-pr 5361  ax-un 7616
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3286  df-rab 3287  df-v 3439  df-sbc 3722  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-iun 4933  df-br 5082  df-opab 5144  df-mpt 5165  df-id 5496  df-xp 5602  df-rel 5603  df-cnv 5604  df-co 5605  df-dm 5606  df-rn 5607  df-res 5608  df-ima 5609  df-iota 6406  df-fun 6456  df-fn 6457  df-f 6458  df-f1 6459  df-fo 6460  df-f1o 6461  df-fv 6462  df-ov 7306  df-oprab 7307  df-mpo 7308  df-1st 7859  df-2nd 7860  df-pmap 37557  df-padd 37849
This theorem is referenced by:  pl42lem4N  38035
  Copyright terms: Public domain W3C validator