MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ablfac1b Structured version   Visualization version   GIF version

Theorem ablfac1b 20002
Description: Any abelian group is the direct product of factors of prime power order (with the exact order further matching the prime factorization of the group order). (Contributed by Mario Carneiro, 21-Apr-2016.)
Hypotheses
Ref Expression
ablfac1.b 𝐵 = (Base‘𝐺)
ablfac1.o 𝑂 = (od‘𝐺)
ablfac1.s 𝑆 = (𝑝𝐴 ↦ {𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵)))})
ablfac1.g (𝜑𝐺 ∈ Abel)
ablfac1.f (𝜑𝐵 ∈ Fin)
ablfac1.1 (𝜑𝐴 ⊆ ℙ)
Assertion
Ref Expression
ablfac1b (𝜑𝐺dom DProd 𝑆)
Distinct variable groups:   𝑥,𝑝,𝐵   𝜑,𝑝,𝑥   𝐴,𝑝,𝑥   𝑂,𝑝,𝑥   𝐺,𝑝,𝑥
Allowed substitution hints:   𝑆(𝑥,𝑝)

Proof of Theorem ablfac1b
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2729 . 2 (Cntz‘𝐺) = (Cntz‘𝐺)
2 eqid 2729 . 2 (0g𝐺) = (0g𝐺)
3 eqid 2729 . 2 (mrCls‘(SubGrp‘𝐺)) = (mrCls‘(SubGrp‘𝐺))
4 ablfac1.g . . 3 (𝜑𝐺 ∈ Abel)
5 ablgrp 19715 . . 3 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
64, 5syl 17 . 2 (𝜑𝐺 ∈ Grp)
7 ablfac1.1 . . 3 (𝜑𝐴 ⊆ ℙ)
8 prmex 16647 . . . 4 ℙ ∈ V
98ssex 5276 . . 3 (𝐴 ⊆ ℙ → 𝐴 ∈ V)
107, 9syl 17 . 2 (𝜑𝐴 ∈ V)
114adantr 480 . . . 4 ((𝜑𝑝𝐴) → 𝐺 ∈ Abel)
127sselda 3946 . . . . . . 7 ((𝜑𝑝𝐴) → 𝑝 ∈ ℙ)
13 prmnn 16644 . . . . . . 7 (𝑝 ∈ ℙ → 𝑝 ∈ ℕ)
1412, 13syl 17 . . . . . 6 ((𝜑𝑝𝐴) → 𝑝 ∈ ℕ)
15 ablfac1.b . . . . . . . . . . 11 𝐵 = (Base‘𝐺)
1615grpbn0 18898 . . . . . . . . . 10 (𝐺 ∈ Grp → 𝐵 ≠ ∅)
176, 16syl 17 . . . . . . . . 9 (𝜑𝐵 ≠ ∅)
18 ablfac1.f . . . . . . . . . 10 (𝜑𝐵 ∈ Fin)
19 hashnncl 14331 . . . . . . . . . 10 (𝐵 ∈ Fin → ((♯‘𝐵) ∈ ℕ ↔ 𝐵 ≠ ∅))
2018, 19syl 17 . . . . . . . . 9 (𝜑 → ((♯‘𝐵) ∈ ℕ ↔ 𝐵 ≠ ∅))
2117, 20mpbird 257 . . . . . . . 8 (𝜑 → (♯‘𝐵) ∈ ℕ)
2221adantr 480 . . . . . . 7 ((𝜑𝑝𝐴) → (♯‘𝐵) ∈ ℕ)
2312, 22pccld 16821 . . . . . 6 ((𝜑𝑝𝐴) → (𝑝 pCnt (♯‘𝐵)) ∈ ℕ0)
2414, 23nnexpcld 14210 . . . . 5 ((𝜑𝑝𝐴) → (𝑝↑(𝑝 pCnt (♯‘𝐵))) ∈ ℕ)
2524nnzd 12556 . . . 4 ((𝜑𝑝𝐴) → (𝑝↑(𝑝 pCnt (♯‘𝐵))) ∈ ℤ)
26 ablfac1.o . . . . 5 𝑂 = (od‘𝐺)
2726, 15oddvdssubg 19785 . . . 4 ((𝐺 ∈ Abel ∧ (𝑝↑(𝑝 pCnt (♯‘𝐵))) ∈ ℤ) → {𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵)))} ∈ (SubGrp‘𝐺))
2811, 25, 27syl2anc 584 . . 3 ((𝜑𝑝𝐴) → {𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵)))} ∈ (SubGrp‘𝐺))
29 ablfac1.s . . 3 𝑆 = (𝑝𝐴 ↦ {𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵)))})
3028, 29fmptd 7086 . 2 (𝜑𝑆:𝐴⟶(SubGrp‘𝐺))
314adantr 480 . . 3 ((𝜑 ∧ (𝑎𝐴𝑏𝐴𝑎𝑏)) → 𝐺 ∈ Abel)
3230adantr 480 . . . 4 ((𝜑 ∧ (𝑎𝐴𝑏𝐴𝑎𝑏)) → 𝑆:𝐴⟶(SubGrp‘𝐺))
33 simpr1 1195 . . . 4 ((𝜑 ∧ (𝑎𝐴𝑏𝐴𝑎𝑏)) → 𝑎𝐴)
3432, 33ffvelcdmd 7057 . . 3 ((𝜑 ∧ (𝑎𝐴𝑏𝐴𝑎𝑏)) → (𝑆𝑎) ∈ (SubGrp‘𝐺))
35 simpr2 1196 . . . 4 ((𝜑 ∧ (𝑎𝐴𝑏𝐴𝑎𝑏)) → 𝑏𝐴)
3632, 35ffvelcdmd 7057 . . 3 ((𝜑 ∧ (𝑎𝐴𝑏𝐴𝑎𝑏)) → (𝑆𝑏) ∈ (SubGrp‘𝐺))
371, 31, 34, 36ablcntzd 19787 . 2 ((𝜑 ∧ (𝑎𝐴𝑏𝐴𝑎𝑏)) → (𝑆𝑎) ⊆ ((Cntz‘𝐺)‘(𝑆𝑏)))
38 id 22 . . . . . . . . . 10 (𝑝 = 𝑎𝑝 = 𝑎)
39 oveq1 7394 . . . . . . . . . 10 (𝑝 = 𝑎 → (𝑝 pCnt (♯‘𝐵)) = (𝑎 pCnt (♯‘𝐵)))
4038, 39oveq12d 7405 . . . . . . . . 9 (𝑝 = 𝑎 → (𝑝↑(𝑝 pCnt (♯‘𝐵))) = (𝑎↑(𝑎 pCnt (♯‘𝐵))))
4140breq2d 5119 . . . . . . . 8 (𝑝 = 𝑎 → ((𝑂𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵))) ↔ (𝑂𝑥) ∥ (𝑎↑(𝑎 pCnt (♯‘𝐵)))))
4241rabbidv 3413 . . . . . . 7 (𝑝 = 𝑎 → {𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵)))} = {𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑎↑(𝑎 pCnt (♯‘𝐵)))})
4315fvexi 6872 . . . . . . . 8 𝐵 ∈ V
4443rabex 5294 . . . . . . 7 {𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵)))} ∈ V
4542, 29, 44fvmpt3i 6973 . . . . . 6 (𝑎𝐴 → (𝑆𝑎) = {𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑎↑(𝑎 pCnt (♯‘𝐵)))})
4645adantl 481 . . . . 5 ((𝜑𝑎𝐴) → (𝑆𝑎) = {𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑎↑(𝑎 pCnt (♯‘𝐵)))})
47 eqimss 4005 . . . . 5 ((𝑆𝑎) = {𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑎↑(𝑎 pCnt (♯‘𝐵)))} → (𝑆𝑎) ⊆ {𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑎↑(𝑎 pCnt (♯‘𝐵)))})
4846, 47syl 17 . . . 4 ((𝜑𝑎𝐴) → (𝑆𝑎) ⊆ {𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑎↑(𝑎 pCnt (♯‘𝐵)))})
494adantr 480 . . . . . 6 ((𝜑𝑎𝐴) → 𝐺 ∈ Abel)
50 eqid 2729 . . . . . . 7 (Base‘𝐺) = (Base‘𝐺)
5150subgacs 19093 . . . . . 6 (𝐺 ∈ Grp → (SubGrp‘𝐺) ∈ (ACS‘(Base‘𝐺)))
52 acsmre 17613 . . . . . 6 ((SubGrp‘𝐺) ∈ (ACS‘(Base‘𝐺)) → (SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)))
5349, 5, 51, 524syl 19 . . . . 5 ((𝜑𝑎𝐴) → (SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)))
54 df-ima 5651 . . . . . . 7 (𝑆 “ (𝐴 ∖ {𝑎})) = ran (𝑆 ↾ (𝐴 ∖ {𝑎}))
557sselda 3946 . . . . . . . . . . . . . . . . 17 ((𝜑𝑎𝐴) → 𝑎 ∈ ℙ)
5655ad2antrr 726 . . . . . . . . . . . . . . . 16 ((((𝜑𝑎𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥𝐵) → 𝑎 ∈ ℙ)
5721ad3antrrr 730 . . . . . . . . . . . . . . . 16 ((((𝜑𝑎𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥𝐵) → (♯‘𝐵) ∈ ℕ)
58 pcdvds 16835 . . . . . . . . . . . . . . . 16 ((𝑎 ∈ ℙ ∧ (♯‘𝐵) ∈ ℕ) → (𝑎↑(𝑎 pCnt (♯‘𝐵))) ∥ (♯‘𝐵))
5956, 57, 58syl2anc 584 . . . . . . . . . . . . . . 15 ((((𝜑𝑎𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥𝐵) → (𝑎↑(𝑎 pCnt (♯‘𝐵))) ∥ (♯‘𝐵))
607ad3antrrr 730 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑎𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥𝐵) → 𝐴 ⊆ ℙ)
61 eldifi 4094 . . . . . . . . . . . . . . . . . 18 (𝑝 ∈ (𝐴 ∖ {𝑎}) → 𝑝𝐴)
6261ad2antlr 727 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑎𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥𝐵) → 𝑝𝐴)
6360, 62sseldd 3947 . . . . . . . . . . . . . . . 16 ((((𝜑𝑎𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥𝐵) → 𝑝 ∈ ℙ)
64 pcdvds 16835 . . . . . . . . . . . . . . . 16 ((𝑝 ∈ ℙ ∧ (♯‘𝐵) ∈ ℕ) → (𝑝↑(𝑝 pCnt (♯‘𝐵))) ∥ (♯‘𝐵))
6563, 57, 64syl2anc 584 . . . . . . . . . . . . . . 15 ((((𝜑𝑎𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥𝐵) → (𝑝↑(𝑝 pCnt (♯‘𝐵))) ∥ (♯‘𝐵))
66 eqid 2729 . . . . . . . . . . . . . . . . . . . . 21 (𝑎↑(𝑎 pCnt (♯‘𝐵))) = (𝑎↑(𝑎 pCnt (♯‘𝐵)))
67 eqid 2729 . . . . . . . . . . . . . . . . . . . . 21 ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵)))) = ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵))))
6815, 26, 29, 4, 18, 7, 66, 67ablfac1lem 20000 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑎𝐴) → (((𝑎↑(𝑎 pCnt (♯‘𝐵))) ∈ ℕ ∧ ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵)))) ∈ ℕ) ∧ ((𝑎↑(𝑎 pCnt (♯‘𝐵))) gcd ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵))))) = 1 ∧ (♯‘𝐵) = ((𝑎↑(𝑎 pCnt (♯‘𝐵))) · ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵)))))))
6968simp1d 1142 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑎𝐴) → ((𝑎↑(𝑎 pCnt (♯‘𝐵))) ∈ ℕ ∧ ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵)))) ∈ ℕ))
7069simpld 494 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑎𝐴) → (𝑎↑(𝑎 pCnt (♯‘𝐵))) ∈ ℕ)
7170ad2antrr 726 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑎𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥𝐵) → (𝑎↑(𝑎 pCnt (♯‘𝐵))) ∈ ℕ)
7271nnzd 12556 . . . . . . . . . . . . . . . 16 ((((𝜑𝑎𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥𝐵) → (𝑎↑(𝑎 pCnt (♯‘𝐵))) ∈ ℤ)
7363, 13syl 17 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑎𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥𝐵) → 𝑝 ∈ ℕ)
7463, 57pccld 16821 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑎𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥𝐵) → (𝑝 pCnt (♯‘𝐵)) ∈ ℕ0)
7573, 74nnexpcld 14210 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑎𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥𝐵) → (𝑝↑(𝑝 pCnt (♯‘𝐵))) ∈ ℕ)
7675nnzd 12556 . . . . . . . . . . . . . . . 16 ((((𝜑𝑎𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥𝐵) → (𝑝↑(𝑝 pCnt (♯‘𝐵))) ∈ ℤ)
7757nnzd 12556 . . . . . . . . . . . . . . . 16 ((((𝜑𝑎𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥𝐵) → (♯‘𝐵) ∈ ℤ)
78 eldifsni 4754 . . . . . . . . . . . . . . . . . . . 20 (𝑝 ∈ (𝐴 ∖ {𝑎}) → 𝑝𝑎)
7978ad2antlr 727 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑎𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥𝐵) → 𝑝𝑎)
8079necomd 2980 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑎𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥𝐵) → 𝑎𝑝)
81 prmrp 16682 . . . . . . . . . . . . . . . . . . 19 ((𝑎 ∈ ℙ ∧ 𝑝 ∈ ℙ) → ((𝑎 gcd 𝑝) = 1 ↔ 𝑎𝑝))
8256, 63, 81syl2anc 584 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑎𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥𝐵) → ((𝑎 gcd 𝑝) = 1 ↔ 𝑎𝑝))
8380, 82mpbird 257 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑎𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥𝐵) → (𝑎 gcd 𝑝) = 1)
84 prmz 16645 . . . . . . . . . . . . . . . . . . 19 (𝑎 ∈ ℙ → 𝑎 ∈ ℤ)
8556, 84syl 17 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑎𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥𝐵) → 𝑎 ∈ ℤ)
86 prmz 16645 . . . . . . . . . . . . . . . . . . 19 (𝑝 ∈ ℙ → 𝑝 ∈ ℤ)
8763, 86syl 17 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑎𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥𝐵) → 𝑝 ∈ ℤ)
8856, 57pccld 16821 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑎𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥𝐵) → (𝑎 pCnt (♯‘𝐵)) ∈ ℕ0)
89 rpexp12i 16694 . . . . . . . . . . . . . . . . . 18 ((𝑎 ∈ ℤ ∧ 𝑝 ∈ ℤ ∧ ((𝑎 pCnt (♯‘𝐵)) ∈ ℕ0 ∧ (𝑝 pCnt (♯‘𝐵)) ∈ ℕ0)) → ((𝑎 gcd 𝑝) = 1 → ((𝑎↑(𝑎 pCnt (♯‘𝐵))) gcd (𝑝↑(𝑝 pCnt (♯‘𝐵)))) = 1))
9085, 87, 88, 74, 89syl112anc 1376 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑎𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥𝐵) → ((𝑎 gcd 𝑝) = 1 → ((𝑎↑(𝑎 pCnt (♯‘𝐵))) gcd (𝑝↑(𝑝 pCnt (♯‘𝐵)))) = 1))
9183, 90mpd 15 . . . . . . . . . . . . . . . 16 ((((𝜑𝑎𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥𝐵) → ((𝑎↑(𝑎 pCnt (♯‘𝐵))) gcd (𝑝↑(𝑝 pCnt (♯‘𝐵)))) = 1)
92 coprmdvds2 16624 . . . . . . . . . . . . . . . 16 ((((𝑎↑(𝑎 pCnt (♯‘𝐵))) ∈ ℤ ∧ (𝑝↑(𝑝 pCnt (♯‘𝐵))) ∈ ℤ ∧ (♯‘𝐵) ∈ ℤ) ∧ ((𝑎↑(𝑎 pCnt (♯‘𝐵))) gcd (𝑝↑(𝑝 pCnt (♯‘𝐵)))) = 1) → (((𝑎↑(𝑎 pCnt (♯‘𝐵))) ∥ (♯‘𝐵) ∧ (𝑝↑(𝑝 pCnt (♯‘𝐵))) ∥ (♯‘𝐵)) → ((𝑎↑(𝑎 pCnt (♯‘𝐵))) · (𝑝↑(𝑝 pCnt (♯‘𝐵)))) ∥ (♯‘𝐵)))
9372, 76, 77, 91, 92syl31anc 1375 . . . . . . . . . . . . . . 15 ((((𝜑𝑎𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥𝐵) → (((𝑎↑(𝑎 pCnt (♯‘𝐵))) ∥ (♯‘𝐵) ∧ (𝑝↑(𝑝 pCnt (♯‘𝐵))) ∥ (♯‘𝐵)) → ((𝑎↑(𝑎 pCnt (♯‘𝐵))) · (𝑝↑(𝑝 pCnt (♯‘𝐵)))) ∥ (♯‘𝐵)))
9459, 65, 93mp2and 699 . . . . . . . . . . . . . 14 ((((𝜑𝑎𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥𝐵) → ((𝑎↑(𝑎 pCnt (♯‘𝐵))) · (𝑝↑(𝑝 pCnt (♯‘𝐵)))) ∥ (♯‘𝐵))
9568simp3d 1144 . . . . . . . . . . . . . . 15 ((𝜑𝑎𝐴) → (♯‘𝐵) = ((𝑎↑(𝑎 pCnt (♯‘𝐵))) · ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵))))))
9695ad2antrr 726 . . . . . . . . . . . . . 14 ((((𝜑𝑎𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥𝐵) → (♯‘𝐵) = ((𝑎↑(𝑎 pCnt (♯‘𝐵))) · ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵))))))
9794, 96breqtrd 5133 . . . . . . . . . . . . 13 ((((𝜑𝑎𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥𝐵) → ((𝑎↑(𝑎 pCnt (♯‘𝐵))) · (𝑝↑(𝑝 pCnt (♯‘𝐵)))) ∥ ((𝑎↑(𝑎 pCnt (♯‘𝐵))) · ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵))))))
9869simprd 495 . . . . . . . . . . . . . . . 16 ((𝜑𝑎𝐴) → ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵)))) ∈ ℕ)
9998ad2antrr 726 . . . . . . . . . . . . . . 15 ((((𝜑𝑎𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥𝐵) → ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵)))) ∈ ℕ)
10099nnzd 12556 . . . . . . . . . . . . . 14 ((((𝜑𝑎𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥𝐵) → ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵)))) ∈ ℤ)
10171nnne0d 12236 . . . . . . . . . . . . . 14 ((((𝜑𝑎𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥𝐵) → (𝑎↑(𝑎 pCnt (♯‘𝐵))) ≠ 0)
102 dvdscmulr 16254 . . . . . . . . . . . . . 14 (((𝑝↑(𝑝 pCnt (♯‘𝐵))) ∈ ℤ ∧ ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵)))) ∈ ℤ ∧ ((𝑎↑(𝑎 pCnt (♯‘𝐵))) ∈ ℤ ∧ (𝑎↑(𝑎 pCnt (♯‘𝐵))) ≠ 0)) → (((𝑎↑(𝑎 pCnt (♯‘𝐵))) · (𝑝↑(𝑝 pCnt (♯‘𝐵)))) ∥ ((𝑎↑(𝑎 pCnt (♯‘𝐵))) · ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵))))) ↔ (𝑝↑(𝑝 pCnt (♯‘𝐵))) ∥ ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵))))))
10376, 100, 72, 101, 102syl112anc 1376 . . . . . . . . . . . . 13 ((((𝜑𝑎𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥𝐵) → (((𝑎↑(𝑎 pCnt (♯‘𝐵))) · (𝑝↑(𝑝 pCnt (♯‘𝐵)))) ∥ ((𝑎↑(𝑎 pCnt (♯‘𝐵))) · ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵))))) ↔ (𝑝↑(𝑝 pCnt (♯‘𝐵))) ∥ ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵))))))
10497, 103mpbid 232 . . . . . . . . . . . 12 ((((𝜑𝑎𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥𝐵) → (𝑝↑(𝑝 pCnt (♯‘𝐵))) ∥ ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵)))))
10515, 26odcl 19466 . . . . . . . . . . . . . . 15 (𝑥𝐵 → (𝑂𝑥) ∈ ℕ0)
106105adantl 481 . . . . . . . . . . . . . 14 ((((𝜑𝑎𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥𝐵) → (𝑂𝑥) ∈ ℕ0)
107106nn0zd 12555 . . . . . . . . . . . . 13 ((((𝜑𝑎𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥𝐵) → (𝑂𝑥) ∈ ℤ)
108 dvdstr 16264 . . . . . . . . . . . . 13 (((𝑂𝑥) ∈ ℤ ∧ (𝑝↑(𝑝 pCnt (♯‘𝐵))) ∈ ℤ ∧ ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵)))) ∈ ℤ) → (((𝑂𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵))) ∧ (𝑝↑(𝑝 pCnt (♯‘𝐵))) ∥ ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵))))) → (𝑂𝑥) ∥ ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵))))))
109107, 76, 100, 108syl3anc 1373 . . . . . . . . . . . 12 ((((𝜑𝑎𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥𝐵) → (((𝑂𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵))) ∧ (𝑝↑(𝑝 pCnt (♯‘𝐵))) ∥ ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵))))) → (𝑂𝑥) ∥ ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵))))))
110104, 109mpan2d 694 . . . . . . . . . . 11 ((((𝜑𝑎𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥𝐵) → ((𝑂𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵))) → (𝑂𝑥) ∥ ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵))))))
111110ss2rabdv 4039 . . . . . . . . . 10 (((𝜑𝑎𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) → {𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵)))} ⊆ {𝑥𝐵 ∣ (𝑂𝑥) ∥ ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵))))})
11244elpw 4567 . . . . . . . . . 10 ({𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵)))} ∈ 𝒫 {𝑥𝐵 ∣ (𝑂𝑥) ∥ ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵))))} ↔ {𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵)))} ⊆ {𝑥𝐵 ∣ (𝑂𝑥) ∥ ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵))))})
113111, 112sylibr 234 . . . . . . . . 9 (((𝜑𝑎𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) → {𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵)))} ∈ 𝒫 {𝑥𝐵 ∣ (𝑂𝑥) ∥ ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵))))})
11429reseq1i 5946 . . . . . . . . . 10 (𝑆 ↾ (𝐴 ∖ {𝑎})) = ((𝑝𝐴 ↦ {𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵)))}) ↾ (𝐴 ∖ {𝑎}))
115 difss 4099 . . . . . . . . . . 11 (𝐴 ∖ {𝑎}) ⊆ 𝐴
116 resmpt 6008 . . . . . . . . . . 11 ((𝐴 ∖ {𝑎}) ⊆ 𝐴 → ((𝑝𝐴 ↦ {𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵)))}) ↾ (𝐴 ∖ {𝑎})) = (𝑝 ∈ (𝐴 ∖ {𝑎}) ↦ {𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵)))}))
117115, 116ax-mp 5 . . . . . . . . . 10 ((𝑝𝐴 ↦ {𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵)))}) ↾ (𝐴 ∖ {𝑎})) = (𝑝 ∈ (𝐴 ∖ {𝑎}) ↦ {𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵)))})
118114, 117eqtri 2752 . . . . . . . . 9 (𝑆 ↾ (𝐴 ∖ {𝑎})) = (𝑝 ∈ (𝐴 ∖ {𝑎}) ↦ {𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵)))})
119113, 118fmptd 7086 . . . . . . . 8 ((𝜑𝑎𝐴) → (𝑆 ↾ (𝐴 ∖ {𝑎})):(𝐴 ∖ {𝑎})⟶𝒫 {𝑥𝐵 ∣ (𝑂𝑥) ∥ ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵))))})
120119frnd 6696 . . . . . . 7 ((𝜑𝑎𝐴) → ran (𝑆 ↾ (𝐴 ∖ {𝑎})) ⊆ 𝒫 {𝑥𝐵 ∣ (𝑂𝑥) ∥ ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵))))})
12154, 120eqsstrid 3985 . . . . . 6 ((𝜑𝑎𝐴) → (𝑆 “ (𝐴 ∖ {𝑎})) ⊆ 𝒫 {𝑥𝐵 ∣ (𝑂𝑥) ∥ ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵))))})
122 sspwuni 5064 . . . . . 6 ((𝑆 “ (𝐴 ∖ {𝑎})) ⊆ 𝒫 {𝑥𝐵 ∣ (𝑂𝑥) ∥ ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵))))} ↔ (𝑆 “ (𝐴 ∖ {𝑎})) ⊆ {𝑥𝐵 ∣ (𝑂𝑥) ∥ ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵))))})
123121, 122sylib 218 . . . . 5 ((𝜑𝑎𝐴) → (𝑆 “ (𝐴 ∖ {𝑎})) ⊆ {𝑥𝐵 ∣ (𝑂𝑥) ∥ ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵))))})
12498nnzd 12556 . . . . . 6 ((𝜑𝑎𝐴) → ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵)))) ∈ ℤ)
12526, 15oddvdssubg 19785 . . . . . 6 ((𝐺 ∈ Abel ∧ ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵)))) ∈ ℤ) → {𝑥𝐵 ∣ (𝑂𝑥) ∥ ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵))))} ∈ (SubGrp‘𝐺))
12649, 124, 125syl2anc 584 . . . . 5 ((𝜑𝑎𝐴) → {𝑥𝐵 ∣ (𝑂𝑥) ∥ ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵))))} ∈ (SubGrp‘𝐺))
1273mrcsscl 17581 . . . . 5 (((SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)) ∧ (𝑆 “ (𝐴 ∖ {𝑎})) ⊆ {𝑥𝐵 ∣ (𝑂𝑥) ∥ ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵))))} ∧ {𝑥𝐵 ∣ (𝑂𝑥) ∥ ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵))))} ∈ (SubGrp‘𝐺)) → ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐴 ∖ {𝑎}))) ⊆ {𝑥𝐵 ∣ (𝑂𝑥) ∥ ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵))))})
12853, 123, 126, 127syl3anc 1373 . . . 4 ((𝜑𝑎𝐴) → ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐴 ∖ {𝑎}))) ⊆ {𝑥𝐵 ∣ (𝑂𝑥) ∥ ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵))))})
129 ss2in 4208 . . . 4 (((𝑆𝑎) ⊆ {𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑎↑(𝑎 pCnt (♯‘𝐵)))} ∧ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐴 ∖ {𝑎}))) ⊆ {𝑥𝐵 ∣ (𝑂𝑥) ∥ ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵))))}) → ((𝑆𝑎) ∩ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐴 ∖ {𝑎})))) ⊆ ({𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑎↑(𝑎 pCnt (♯‘𝐵)))} ∩ {𝑥𝐵 ∣ (𝑂𝑥) ∥ ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵))))}))
13048, 128, 129syl2anc 584 . . 3 ((𝜑𝑎𝐴) → ((𝑆𝑎) ∩ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐴 ∖ {𝑎})))) ⊆ ({𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑎↑(𝑎 pCnt (♯‘𝐵)))} ∩ {𝑥𝐵 ∣ (𝑂𝑥) ∥ ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵))))}))
131 eqid 2729 . . . . 5 {𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑎↑(𝑎 pCnt (♯‘𝐵)))} = {𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑎↑(𝑎 pCnt (♯‘𝐵)))}
132 eqid 2729 . . . . 5 {𝑥𝐵 ∣ (𝑂𝑥) ∥ ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵))))} = {𝑥𝐵 ∣ (𝑂𝑥) ∥ ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵))))}
13368simp2d 1143 . . . . 5 ((𝜑𝑎𝐴) → ((𝑎↑(𝑎 pCnt (♯‘𝐵))) gcd ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵))))) = 1)
134 eqid 2729 . . . . 5 (LSSum‘𝐺) = (LSSum‘𝐺)
13515, 26, 131, 132, 49, 70, 98, 133, 95, 2, 134ablfacrp 19998 . . . 4 ((𝜑𝑎𝐴) → (({𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑎↑(𝑎 pCnt (♯‘𝐵)))} ∩ {𝑥𝐵 ∣ (𝑂𝑥) ∥ ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵))))}) = {(0g𝐺)} ∧ ({𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑎↑(𝑎 pCnt (♯‘𝐵)))} (LSSum‘𝐺){𝑥𝐵 ∣ (𝑂𝑥) ∥ ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵))))}) = 𝐵))
136135simpld 494 . . 3 ((𝜑𝑎𝐴) → ({𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑎↑(𝑎 pCnt (♯‘𝐵)))} ∩ {𝑥𝐵 ∣ (𝑂𝑥) ∥ ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵))))}) = {(0g𝐺)})
137130, 136sseqtrd 3983 . 2 ((𝜑𝑎𝐴) → ((𝑆𝑎) ∩ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐴 ∖ {𝑎})))) ⊆ {(0g𝐺)})
1381, 2, 3, 6, 10, 30, 37, 137dmdprdd 19931 1 (𝜑𝐺dom DProd 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  {crab 3405  Vcvv 3447  cdif 3911  cin 3913  wss 3914  c0 4296  𝒫 cpw 4563  {csn 4589   cuni 4871   class class class wbr 5107  cmpt 5188  dom cdm 5638  ran crn 5639  cres 5640  cima 5641  wf 6507  cfv 6511  (class class class)co 7387  Fincfn 8918  0cc0 11068  1c1 11069   · cmul 11073   / cdiv 11835  cn 12186  0cn0 12442  cz 12529  cexp 14026  chash 14295  cdvds 16222   gcd cgcd 16464  cprime 16641   pCnt cpc 16807  Basecbs 17179  0gc0g 17402  Moorecmre 17543  mrClscmrc 17544  ACScacs 17546  Grpcgrp 18865  SubGrpcsubg 19052  Cntzccntz 19247  odcod 19454  LSSumclsm 19564  Abelcabl 19711   DProd cdprd 19925
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-disj 5075  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-oadd 8438  df-omul 8439  df-er 8671  df-ec 8673  df-qs 8677  df-map 8801  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-sup 9393  df-inf 9394  df-oi 9463  df-card 9892  df-acn 9895  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-n0 12443  df-z 12530  df-uz 12794  df-q 12908  df-rp 12952  df-fz 13469  df-fzo 13616  df-fl 13754  df-mod 13832  df-seq 13967  df-exp 14027  df-hash 14296  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-clim 15454  df-sum 15653  df-dvds 16223  df-gcd 16465  df-prm 16642  df-pc 16808  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-0g 17404  df-mre 17547  df-mrc 17548  df-acs 17550  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-submnd 18711  df-grp 18868  df-minusg 18869  df-sbg 18870  df-mulg 19000  df-subg 19055  df-eqg 19057  df-cntz 19249  df-od 19458  df-lsm 19566  df-cmn 19712  df-abl 19713  df-dprd 19927
This theorem is referenced by:  ablfac1c  20003  ablfac1eu  20005  ablfaclem2  20018  ablfaclem3  20019
  Copyright terms: Public domain W3C validator