Step | Hyp | Ref
| Expression |
1 | | eqid 2738 |
. 2
⊢
(Cntz‘𝐺) =
(Cntz‘𝐺) |
2 | | eqid 2738 |
. 2
⊢
(0g‘𝐺) = (0g‘𝐺) |
3 | | eqid 2738 |
. 2
⊢
(mrCls‘(SubGrp‘𝐺)) = (mrCls‘(SubGrp‘𝐺)) |
4 | | ablfac1.g |
. . 3
⊢ (𝜑 → 𝐺 ∈ Abel) |
5 | | ablgrp 19391 |
. . 3
⊢ (𝐺 ∈ Abel → 𝐺 ∈ Grp) |
6 | 4, 5 | syl 17 |
. 2
⊢ (𝜑 → 𝐺 ∈ Grp) |
7 | | ablfac1.1 |
. . 3
⊢ (𝜑 → 𝐴 ⊆ ℙ) |
8 | | prmex 16382 |
. . . 4
⊢ ℙ
∈ V |
9 | 8 | ssex 5245 |
. . 3
⊢ (𝐴 ⊆ ℙ → 𝐴 ∈ V) |
10 | 7, 9 | syl 17 |
. 2
⊢ (𝜑 → 𝐴 ∈ V) |
11 | 4 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ 𝑝 ∈ 𝐴) → 𝐺 ∈ Abel) |
12 | 7 | sselda 3921 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑝 ∈ 𝐴) → 𝑝 ∈ ℙ) |
13 | | prmnn 16379 |
. . . . . . 7
⊢ (𝑝 ∈ ℙ → 𝑝 ∈
ℕ) |
14 | 12, 13 | syl 17 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑝 ∈ 𝐴) → 𝑝 ∈ ℕ) |
15 | | ablfac1.b |
. . . . . . . . . . 11
⊢ 𝐵 = (Base‘𝐺) |
16 | 15 | grpbn0 18608 |
. . . . . . . . . 10
⊢ (𝐺 ∈ Grp → 𝐵 ≠ ∅) |
17 | 6, 16 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝐵 ≠ ∅) |
18 | | ablfac1.f |
. . . . . . . . . 10
⊢ (𝜑 → 𝐵 ∈ Fin) |
19 | | hashnncl 14081 |
. . . . . . . . . 10
⊢ (𝐵 ∈ Fin →
((♯‘𝐵) ∈
ℕ ↔ 𝐵 ≠
∅)) |
20 | 18, 19 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → ((♯‘𝐵) ∈ ℕ ↔ 𝐵 ≠ ∅)) |
21 | 17, 20 | mpbird 256 |
. . . . . . . 8
⊢ (𝜑 → (♯‘𝐵) ∈
ℕ) |
22 | 21 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑝 ∈ 𝐴) → (♯‘𝐵) ∈ ℕ) |
23 | 12, 22 | pccld 16551 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑝 ∈ 𝐴) → (𝑝 pCnt (♯‘𝐵)) ∈
ℕ0) |
24 | 14, 23 | nnexpcld 13960 |
. . . . 5
⊢ ((𝜑 ∧ 𝑝 ∈ 𝐴) → (𝑝↑(𝑝 pCnt (♯‘𝐵))) ∈ ℕ) |
25 | 24 | nnzd 12425 |
. . . 4
⊢ ((𝜑 ∧ 𝑝 ∈ 𝐴) → (𝑝↑(𝑝 pCnt (♯‘𝐵))) ∈ ℤ) |
26 | | ablfac1.o |
. . . . 5
⊢ 𝑂 = (od‘𝐺) |
27 | 26, 15 | oddvdssubg 19456 |
. . . 4
⊢ ((𝐺 ∈ Abel ∧ (𝑝↑(𝑝 pCnt (♯‘𝐵))) ∈ ℤ) → {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵)))} ∈ (SubGrp‘𝐺)) |
28 | 11, 25, 27 | syl2anc 584 |
. . 3
⊢ ((𝜑 ∧ 𝑝 ∈ 𝐴) → {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵)))} ∈ (SubGrp‘𝐺)) |
29 | | ablfac1.s |
. . 3
⊢ 𝑆 = (𝑝 ∈ 𝐴 ↦ {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵)))}) |
30 | 28, 29 | fmptd 6988 |
. 2
⊢ (𝜑 → 𝑆:𝐴⟶(SubGrp‘𝐺)) |
31 | 4 | adantr 481 |
. . 3
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ∧ 𝑎 ≠ 𝑏)) → 𝐺 ∈ Abel) |
32 | 30 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ∧ 𝑎 ≠ 𝑏)) → 𝑆:𝐴⟶(SubGrp‘𝐺)) |
33 | | simpr1 1193 |
. . . 4
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ∧ 𝑎 ≠ 𝑏)) → 𝑎 ∈ 𝐴) |
34 | 32, 33 | ffvelrnd 6962 |
. . 3
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ∧ 𝑎 ≠ 𝑏)) → (𝑆‘𝑎) ∈ (SubGrp‘𝐺)) |
35 | | simpr2 1194 |
. . . 4
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ∧ 𝑎 ≠ 𝑏)) → 𝑏 ∈ 𝐴) |
36 | 32, 35 | ffvelrnd 6962 |
. . 3
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ∧ 𝑎 ≠ 𝑏)) → (𝑆‘𝑏) ∈ (SubGrp‘𝐺)) |
37 | 1, 31, 34, 36 | ablcntzd 19458 |
. 2
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ∧ 𝑎 ≠ 𝑏)) → (𝑆‘𝑎) ⊆ ((Cntz‘𝐺)‘(𝑆‘𝑏))) |
38 | | id 22 |
. . . . . . . . . 10
⊢ (𝑝 = 𝑎 → 𝑝 = 𝑎) |
39 | | oveq1 7282 |
. . . . . . . . . 10
⊢ (𝑝 = 𝑎 → (𝑝 pCnt (♯‘𝐵)) = (𝑎 pCnt (♯‘𝐵))) |
40 | 38, 39 | oveq12d 7293 |
. . . . . . . . 9
⊢ (𝑝 = 𝑎 → (𝑝↑(𝑝 pCnt (♯‘𝐵))) = (𝑎↑(𝑎 pCnt (♯‘𝐵)))) |
41 | 40 | breq2d 5086 |
. . . . . . . 8
⊢ (𝑝 = 𝑎 → ((𝑂‘𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵))) ↔ (𝑂‘𝑥) ∥ (𝑎↑(𝑎 pCnt (♯‘𝐵))))) |
42 | 41 | rabbidv 3414 |
. . . . . . 7
⊢ (𝑝 = 𝑎 → {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵)))} = {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ (𝑎↑(𝑎 pCnt (♯‘𝐵)))}) |
43 | 15 | fvexi 6788 |
. . . . . . . 8
⊢ 𝐵 ∈ V |
44 | 43 | rabex 5256 |
. . . . . . 7
⊢ {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵)))} ∈ V |
45 | 42, 29, 44 | fvmpt3i 6880 |
. . . . . 6
⊢ (𝑎 ∈ 𝐴 → (𝑆‘𝑎) = {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ (𝑎↑(𝑎 pCnt (♯‘𝐵)))}) |
46 | 45 | adantl 482 |
. . . . 5
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → (𝑆‘𝑎) = {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ (𝑎↑(𝑎 pCnt (♯‘𝐵)))}) |
47 | | eqimss 3977 |
. . . . 5
⊢ ((𝑆‘𝑎) = {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ (𝑎↑(𝑎 pCnt (♯‘𝐵)))} → (𝑆‘𝑎) ⊆ {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ (𝑎↑(𝑎 pCnt (♯‘𝐵)))}) |
48 | 46, 47 | syl 17 |
. . . 4
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → (𝑆‘𝑎) ⊆ {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ (𝑎↑(𝑎 pCnt (♯‘𝐵)))}) |
49 | 4 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → 𝐺 ∈ Abel) |
50 | | eqid 2738 |
. . . . . . 7
⊢
(Base‘𝐺) =
(Base‘𝐺) |
51 | 50 | subgacs 18789 |
. . . . . 6
⊢ (𝐺 ∈ Grp →
(SubGrp‘𝐺) ∈
(ACS‘(Base‘𝐺))) |
52 | | acsmre 17361 |
. . . . . 6
⊢
((SubGrp‘𝐺)
∈ (ACS‘(Base‘𝐺)) → (SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺))) |
53 | 49, 5, 51, 52 | 4syl 19 |
. . . . 5
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → (SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺))) |
54 | | df-ima 5602 |
. . . . . . 7
⊢ (𝑆 “ (𝐴 ∖ {𝑎})) = ran (𝑆 ↾ (𝐴 ∖ {𝑎})) |
55 | 7 | sselda 3921 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → 𝑎 ∈ ℙ) |
56 | 55 | ad2antrr 723 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥 ∈ 𝐵) → 𝑎 ∈ ℙ) |
57 | 21 | ad3antrrr 727 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥 ∈ 𝐵) → (♯‘𝐵) ∈ ℕ) |
58 | | pcdvds 16565 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑎 ∈ ℙ ∧
(♯‘𝐵) ∈
ℕ) → (𝑎↑(𝑎 pCnt (♯‘𝐵))) ∥ (♯‘𝐵)) |
59 | 56, 57, 58 | syl2anc 584 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥 ∈ 𝐵) → (𝑎↑(𝑎 pCnt (♯‘𝐵))) ∥ (♯‘𝐵)) |
60 | 7 | ad3antrrr 727 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥 ∈ 𝐵) → 𝐴 ⊆ ℙ) |
61 | | eldifi 4061 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑝 ∈ (𝐴 ∖ {𝑎}) → 𝑝 ∈ 𝐴) |
62 | 61 | ad2antlr 724 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥 ∈ 𝐵) → 𝑝 ∈ 𝐴) |
63 | 60, 62 | sseldd 3922 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥 ∈ 𝐵) → 𝑝 ∈ ℙ) |
64 | | pcdvds 16565 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑝 ∈ ℙ ∧
(♯‘𝐵) ∈
ℕ) → (𝑝↑(𝑝 pCnt (♯‘𝐵))) ∥ (♯‘𝐵)) |
65 | 63, 57, 64 | syl2anc 584 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥 ∈ 𝐵) → (𝑝↑(𝑝 pCnt (♯‘𝐵))) ∥ (♯‘𝐵)) |
66 | | eqid 2738 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑎↑(𝑎 pCnt (♯‘𝐵))) = (𝑎↑(𝑎 pCnt (♯‘𝐵))) |
67 | | eqid 2738 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((♯‘𝐵) /
(𝑎↑(𝑎 pCnt (♯‘𝐵)))) = ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵)))) |
68 | 15, 26, 29, 4, 18, 7, 66, 67 | ablfac1lem 19671 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → (((𝑎↑(𝑎 pCnt (♯‘𝐵))) ∈ ℕ ∧
((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵)))) ∈ ℕ) ∧ ((𝑎↑(𝑎 pCnt (♯‘𝐵))) gcd ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵))))) = 1 ∧ (♯‘𝐵) = ((𝑎↑(𝑎 pCnt (♯‘𝐵))) · ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵))))))) |
69 | 68 | simp1d 1141 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → ((𝑎↑(𝑎 pCnt (♯‘𝐵))) ∈ ℕ ∧
((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵)))) ∈ ℕ)) |
70 | 69 | simpld 495 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → (𝑎↑(𝑎 pCnt (♯‘𝐵))) ∈ ℕ) |
71 | 70 | ad2antrr 723 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥 ∈ 𝐵) → (𝑎↑(𝑎 pCnt (♯‘𝐵))) ∈ ℕ) |
72 | 71 | nnzd 12425 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥 ∈ 𝐵) → (𝑎↑(𝑎 pCnt (♯‘𝐵))) ∈ ℤ) |
73 | 63, 13 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥 ∈ 𝐵) → 𝑝 ∈ ℕ) |
74 | 63, 57 | pccld 16551 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥 ∈ 𝐵) → (𝑝 pCnt (♯‘𝐵)) ∈
ℕ0) |
75 | 73, 74 | nnexpcld 13960 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥 ∈ 𝐵) → (𝑝↑(𝑝 pCnt (♯‘𝐵))) ∈ ℕ) |
76 | 75 | nnzd 12425 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥 ∈ 𝐵) → (𝑝↑(𝑝 pCnt (♯‘𝐵))) ∈ ℤ) |
77 | 57 | nnzd 12425 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥 ∈ 𝐵) → (♯‘𝐵) ∈ ℤ) |
78 | | eldifsni 4723 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑝 ∈ (𝐴 ∖ {𝑎}) → 𝑝 ≠ 𝑎) |
79 | 78 | ad2antlr 724 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥 ∈ 𝐵) → 𝑝 ≠ 𝑎) |
80 | 79 | necomd 2999 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥 ∈ 𝐵) → 𝑎 ≠ 𝑝) |
81 | | prmrp 16417 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑎 ∈ ℙ ∧ 𝑝 ∈ ℙ) → ((𝑎 gcd 𝑝) = 1 ↔ 𝑎 ≠ 𝑝)) |
82 | 56, 63, 81 | syl2anc 584 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥 ∈ 𝐵) → ((𝑎 gcd 𝑝) = 1 ↔ 𝑎 ≠ 𝑝)) |
83 | 80, 82 | mpbird 256 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥 ∈ 𝐵) → (𝑎 gcd 𝑝) = 1) |
84 | | prmz 16380 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑎 ∈ ℙ → 𝑎 ∈
ℤ) |
85 | 56, 84 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥 ∈ 𝐵) → 𝑎 ∈ ℤ) |
86 | | prmz 16380 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑝 ∈ ℙ → 𝑝 ∈
ℤ) |
87 | 63, 86 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥 ∈ 𝐵) → 𝑝 ∈ ℤ) |
88 | 56, 57 | pccld 16551 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥 ∈ 𝐵) → (𝑎 pCnt (♯‘𝐵)) ∈
ℕ0) |
89 | | rpexp12i 16429 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑎 ∈ ℤ ∧ 𝑝 ∈ ℤ ∧ ((𝑎 pCnt (♯‘𝐵)) ∈ ℕ0
∧ (𝑝 pCnt
(♯‘𝐵)) ∈
ℕ0)) → ((𝑎 gcd 𝑝) = 1 → ((𝑎↑(𝑎 pCnt (♯‘𝐵))) gcd (𝑝↑(𝑝 pCnt (♯‘𝐵)))) = 1)) |
90 | 85, 87, 88, 74, 89 | syl112anc 1373 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥 ∈ 𝐵) → ((𝑎 gcd 𝑝) = 1 → ((𝑎↑(𝑎 pCnt (♯‘𝐵))) gcd (𝑝↑(𝑝 pCnt (♯‘𝐵)))) = 1)) |
91 | 83, 90 | mpd 15 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥 ∈ 𝐵) → ((𝑎↑(𝑎 pCnt (♯‘𝐵))) gcd (𝑝↑(𝑝 pCnt (♯‘𝐵)))) = 1) |
92 | | coprmdvds2 16359 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑎↑(𝑎 pCnt (♯‘𝐵))) ∈ ℤ ∧ (𝑝↑(𝑝 pCnt (♯‘𝐵))) ∈ ℤ ∧
(♯‘𝐵) ∈
ℤ) ∧ ((𝑎↑(𝑎 pCnt (♯‘𝐵))) gcd (𝑝↑(𝑝 pCnt (♯‘𝐵)))) = 1) → (((𝑎↑(𝑎 pCnt (♯‘𝐵))) ∥ (♯‘𝐵) ∧ (𝑝↑(𝑝 pCnt (♯‘𝐵))) ∥ (♯‘𝐵)) → ((𝑎↑(𝑎 pCnt (♯‘𝐵))) · (𝑝↑(𝑝 pCnt (♯‘𝐵)))) ∥ (♯‘𝐵))) |
93 | 72, 76, 77, 91, 92 | syl31anc 1372 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥 ∈ 𝐵) → (((𝑎↑(𝑎 pCnt (♯‘𝐵))) ∥ (♯‘𝐵) ∧ (𝑝↑(𝑝 pCnt (♯‘𝐵))) ∥ (♯‘𝐵)) → ((𝑎↑(𝑎 pCnt (♯‘𝐵))) · (𝑝↑(𝑝 pCnt (♯‘𝐵)))) ∥ (♯‘𝐵))) |
94 | 59, 65, 93 | mp2and 696 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥 ∈ 𝐵) → ((𝑎↑(𝑎 pCnt (♯‘𝐵))) · (𝑝↑(𝑝 pCnt (♯‘𝐵)))) ∥ (♯‘𝐵)) |
95 | 68 | simp3d 1143 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → (♯‘𝐵) = ((𝑎↑(𝑎 pCnt (♯‘𝐵))) · ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵)))))) |
96 | 95 | ad2antrr 723 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥 ∈ 𝐵) → (♯‘𝐵) = ((𝑎↑(𝑎 pCnt (♯‘𝐵))) · ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵)))))) |
97 | 94, 96 | breqtrd 5100 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥 ∈ 𝐵) → ((𝑎↑(𝑎 pCnt (♯‘𝐵))) · (𝑝↑(𝑝 pCnt (♯‘𝐵)))) ∥ ((𝑎↑(𝑎 pCnt (♯‘𝐵))) · ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵)))))) |
98 | 69 | simprd 496 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵)))) ∈ ℕ) |
99 | 98 | ad2antrr 723 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥 ∈ 𝐵) → ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵)))) ∈ ℕ) |
100 | 99 | nnzd 12425 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥 ∈ 𝐵) → ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵)))) ∈ ℤ) |
101 | 71 | nnne0d 12023 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥 ∈ 𝐵) → (𝑎↑(𝑎 pCnt (♯‘𝐵))) ≠ 0) |
102 | | dvdscmulr 15994 |
. . . . . . . . . . . . . 14
⊢ (((𝑝↑(𝑝 pCnt (♯‘𝐵))) ∈ ℤ ∧
((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵)))) ∈ ℤ ∧ ((𝑎↑(𝑎 pCnt (♯‘𝐵))) ∈ ℤ ∧ (𝑎↑(𝑎 pCnt (♯‘𝐵))) ≠ 0)) → (((𝑎↑(𝑎 pCnt (♯‘𝐵))) · (𝑝↑(𝑝 pCnt (♯‘𝐵)))) ∥ ((𝑎↑(𝑎 pCnt (♯‘𝐵))) · ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵))))) ↔ (𝑝↑(𝑝 pCnt (♯‘𝐵))) ∥ ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵)))))) |
103 | 76, 100, 72, 101, 102 | syl112anc 1373 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥 ∈ 𝐵) → (((𝑎↑(𝑎 pCnt (♯‘𝐵))) · (𝑝↑(𝑝 pCnt (♯‘𝐵)))) ∥ ((𝑎↑(𝑎 pCnt (♯‘𝐵))) · ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵))))) ↔ (𝑝↑(𝑝 pCnt (♯‘𝐵))) ∥ ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵)))))) |
104 | 97, 103 | mpbid 231 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥 ∈ 𝐵) → (𝑝↑(𝑝 pCnt (♯‘𝐵))) ∥ ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵))))) |
105 | 15, 26 | odcl 19144 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ∈ 𝐵 → (𝑂‘𝑥) ∈
ℕ0) |
106 | 105 | adantl 482 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥 ∈ 𝐵) → (𝑂‘𝑥) ∈
ℕ0) |
107 | 106 | nn0zd 12424 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥 ∈ 𝐵) → (𝑂‘𝑥) ∈ ℤ) |
108 | | dvdstr 16003 |
. . . . . . . . . . . . 13
⊢ (((𝑂‘𝑥) ∈ ℤ ∧ (𝑝↑(𝑝 pCnt (♯‘𝐵))) ∈ ℤ ∧
((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵)))) ∈ ℤ) → (((𝑂‘𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵))) ∧ (𝑝↑(𝑝 pCnt (♯‘𝐵))) ∥ ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵))))) → (𝑂‘𝑥) ∥ ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵)))))) |
109 | 107, 76, 100, 108 | syl3anc 1370 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥 ∈ 𝐵) → (((𝑂‘𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵))) ∧ (𝑝↑(𝑝 pCnt (♯‘𝐵))) ∥ ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵))))) → (𝑂‘𝑥) ∥ ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵)))))) |
110 | 104, 109 | mpan2d 691 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥 ∈ 𝐵) → ((𝑂‘𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵))) → (𝑂‘𝑥) ∥ ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵)))))) |
111 | 110 | ss2rabdv 4009 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) → {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵)))} ⊆ {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵))))}) |
112 | 44 | elpw 4537 |
. . . . . . . . . 10
⊢ ({𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵)))} ∈ 𝒫 {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵))))} ↔ {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵)))} ⊆ {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵))))}) |
113 | 111, 112 | sylibr 233 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) → {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵)))} ∈ 𝒫 {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵))))}) |
114 | 29 | reseq1i 5887 |
. . . . . . . . . 10
⊢ (𝑆 ↾ (𝐴 ∖ {𝑎})) = ((𝑝 ∈ 𝐴 ↦ {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵)))}) ↾ (𝐴 ∖ {𝑎})) |
115 | | difss 4066 |
. . . . . . . . . . 11
⊢ (𝐴 ∖ {𝑎}) ⊆ 𝐴 |
116 | | resmpt 5945 |
. . . . . . . . . . 11
⊢ ((𝐴 ∖ {𝑎}) ⊆ 𝐴 → ((𝑝 ∈ 𝐴 ↦ {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵)))}) ↾ (𝐴 ∖ {𝑎})) = (𝑝 ∈ (𝐴 ∖ {𝑎}) ↦ {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵)))})) |
117 | 115, 116 | ax-mp 5 |
. . . . . . . . . 10
⊢ ((𝑝 ∈ 𝐴 ↦ {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵)))}) ↾ (𝐴 ∖ {𝑎})) = (𝑝 ∈ (𝐴 ∖ {𝑎}) ↦ {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵)))}) |
118 | 114, 117 | eqtri 2766 |
. . . . . . . . 9
⊢ (𝑆 ↾ (𝐴 ∖ {𝑎})) = (𝑝 ∈ (𝐴 ∖ {𝑎}) ↦ {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵)))}) |
119 | 113, 118 | fmptd 6988 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → (𝑆 ↾ (𝐴 ∖ {𝑎})):(𝐴 ∖ {𝑎})⟶𝒫 {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵))))}) |
120 | 119 | frnd 6608 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → ran (𝑆 ↾ (𝐴 ∖ {𝑎})) ⊆ 𝒫 {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵))))}) |
121 | 54, 120 | eqsstrid 3969 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → (𝑆 “ (𝐴 ∖ {𝑎})) ⊆ 𝒫 {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵))))}) |
122 | | sspwuni 5029 |
. . . . . 6
⊢ ((𝑆 “ (𝐴 ∖ {𝑎})) ⊆ 𝒫 {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵))))} ↔ ∪
(𝑆 “ (𝐴 ∖ {𝑎})) ⊆ {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵))))}) |
123 | 121, 122 | sylib 217 |
. . . . 5
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → ∪ (𝑆 “ (𝐴 ∖ {𝑎})) ⊆ {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵))))}) |
124 | 98 | nnzd 12425 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵)))) ∈ ℤ) |
125 | 26, 15 | oddvdssubg 19456 |
. . . . . 6
⊢ ((𝐺 ∈ Abel ∧
((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵)))) ∈ ℤ) → {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵))))} ∈ (SubGrp‘𝐺)) |
126 | 49, 124, 125 | syl2anc 584 |
. . . . 5
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵))))} ∈ (SubGrp‘𝐺)) |
127 | 3 | mrcsscl 17329 |
. . . . 5
⊢
(((SubGrp‘𝐺)
∈ (Moore‘(Base‘𝐺)) ∧ ∪ (𝑆 “ (𝐴 ∖ {𝑎})) ⊆ {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵))))} ∧ {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵))))} ∈ (SubGrp‘𝐺)) → ((mrCls‘(SubGrp‘𝐺))‘∪ (𝑆
“ (𝐴 ∖ {𝑎}))) ⊆ {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵))))}) |
128 | 53, 123, 126, 127 | syl3anc 1370 |
. . . 4
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → ((mrCls‘(SubGrp‘𝐺))‘∪ (𝑆
“ (𝐴 ∖ {𝑎}))) ⊆ {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵))))}) |
129 | | ss2in 4170 |
. . . 4
⊢ (((𝑆‘𝑎) ⊆ {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ (𝑎↑(𝑎 pCnt (♯‘𝐵)))} ∧ ((mrCls‘(SubGrp‘𝐺))‘∪ (𝑆
“ (𝐴 ∖ {𝑎}))) ⊆ {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵))))}) → ((𝑆‘𝑎) ∩ ((mrCls‘(SubGrp‘𝐺))‘∪ (𝑆
“ (𝐴 ∖ {𝑎})))) ⊆ ({𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ (𝑎↑(𝑎 pCnt (♯‘𝐵)))} ∩ {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵))))})) |
130 | 48, 128, 129 | syl2anc 584 |
. . 3
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → ((𝑆‘𝑎) ∩ ((mrCls‘(SubGrp‘𝐺))‘∪ (𝑆
“ (𝐴 ∖ {𝑎})))) ⊆ ({𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ (𝑎↑(𝑎 pCnt (♯‘𝐵)))} ∩ {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵))))})) |
131 | | eqid 2738 |
. . . . 5
⊢ {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ (𝑎↑(𝑎 pCnt (♯‘𝐵)))} = {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ (𝑎↑(𝑎 pCnt (♯‘𝐵)))} |
132 | | eqid 2738 |
. . . . 5
⊢ {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵))))} = {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵))))} |
133 | 68 | simp2d 1142 |
. . . . 5
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → ((𝑎↑(𝑎 pCnt (♯‘𝐵))) gcd ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵))))) = 1) |
134 | | eqid 2738 |
. . . . 5
⊢
(LSSum‘𝐺) =
(LSSum‘𝐺) |
135 | 15, 26, 131, 132, 49, 70, 98, 133, 95, 2, 134 | ablfacrp 19669 |
. . . 4
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → (({𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ (𝑎↑(𝑎 pCnt (♯‘𝐵)))} ∩ {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵))))}) = {(0g‘𝐺)} ∧ ({𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ (𝑎↑(𝑎 pCnt (♯‘𝐵)))} (LSSum‘𝐺){𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵))))}) = 𝐵)) |
136 | 135 | simpld 495 |
. . 3
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → ({𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ (𝑎↑(𝑎 pCnt (♯‘𝐵)))} ∩ {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵))))}) = {(0g‘𝐺)}) |
137 | 130, 136 | sseqtrd 3961 |
. 2
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → ((𝑆‘𝑎) ∩ ((mrCls‘(SubGrp‘𝐺))‘∪ (𝑆
“ (𝐴 ∖ {𝑎})))) ⊆
{(0g‘𝐺)}) |
138 | 1, 2, 3, 6, 10, 30, 37, 137 | dmdprdd 19602 |
1
⊢ (𝜑 → 𝐺dom DProd 𝑆) |