MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ablfac1b Structured version   Visualization version   GIF version

Theorem ablfac1b 19849
Description: Any abelian group is the direct product of factors of prime power order (with the exact order further matching the prime factorization of the group order). (Contributed by Mario Carneiro, 21-Apr-2016.)
Hypotheses
Ref Expression
ablfac1.b 𝐵 = (Base‘𝐺)
ablfac1.o 𝑂 = (od‘𝐺)
ablfac1.s 𝑆 = (𝑝𝐴 ↦ {𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵)))})
ablfac1.g (𝜑𝐺 ∈ Abel)
ablfac1.f (𝜑𝐵 ∈ Fin)
ablfac1.1 (𝜑𝐴 ⊆ ℙ)
Assertion
Ref Expression
ablfac1b (𝜑𝐺dom DProd 𝑆)
Distinct variable groups:   𝑥,𝑝,𝐵   𝜑,𝑝,𝑥   𝐴,𝑝,𝑥   𝑂,𝑝,𝑥   𝐺,𝑝,𝑥
Allowed substitution hints:   𝑆(𝑥,𝑝)

Proof of Theorem ablfac1b
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2736 . 2 (Cntz‘𝐺) = (Cntz‘𝐺)
2 eqid 2736 . 2 (0g𝐺) = (0g𝐺)
3 eqid 2736 . 2 (mrCls‘(SubGrp‘𝐺)) = (mrCls‘(SubGrp‘𝐺))
4 ablfac1.g . . 3 (𝜑𝐺 ∈ Abel)
5 ablgrp 19567 . . 3 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
64, 5syl 17 . 2 (𝜑𝐺 ∈ Grp)
7 ablfac1.1 . . 3 (𝜑𝐴 ⊆ ℙ)
8 prmex 16553 . . . 4 ℙ ∈ V
98ssex 5278 . . 3 (𝐴 ⊆ ℙ → 𝐴 ∈ V)
107, 9syl 17 . 2 (𝜑𝐴 ∈ V)
114adantr 481 . . . 4 ((𝜑𝑝𝐴) → 𝐺 ∈ Abel)
127sselda 3944 . . . . . . 7 ((𝜑𝑝𝐴) → 𝑝 ∈ ℙ)
13 prmnn 16550 . . . . . . 7 (𝑝 ∈ ℙ → 𝑝 ∈ ℕ)
1412, 13syl 17 . . . . . 6 ((𝜑𝑝𝐴) → 𝑝 ∈ ℕ)
15 ablfac1.b . . . . . . . . . . 11 𝐵 = (Base‘𝐺)
1615grpbn0 18779 . . . . . . . . . 10 (𝐺 ∈ Grp → 𝐵 ≠ ∅)
176, 16syl 17 . . . . . . . . 9 (𝜑𝐵 ≠ ∅)
18 ablfac1.f . . . . . . . . . 10 (𝜑𝐵 ∈ Fin)
19 hashnncl 14266 . . . . . . . . . 10 (𝐵 ∈ Fin → ((♯‘𝐵) ∈ ℕ ↔ 𝐵 ≠ ∅))
2018, 19syl 17 . . . . . . . . 9 (𝜑 → ((♯‘𝐵) ∈ ℕ ↔ 𝐵 ≠ ∅))
2117, 20mpbird 256 . . . . . . . 8 (𝜑 → (♯‘𝐵) ∈ ℕ)
2221adantr 481 . . . . . . 7 ((𝜑𝑝𝐴) → (♯‘𝐵) ∈ ℕ)
2312, 22pccld 16722 . . . . . 6 ((𝜑𝑝𝐴) → (𝑝 pCnt (♯‘𝐵)) ∈ ℕ0)
2414, 23nnexpcld 14148 . . . . 5 ((𝜑𝑝𝐴) → (𝑝↑(𝑝 pCnt (♯‘𝐵))) ∈ ℕ)
2524nnzd 12526 . . . 4 ((𝜑𝑝𝐴) → (𝑝↑(𝑝 pCnt (♯‘𝐵))) ∈ ℤ)
26 ablfac1.o . . . . 5 𝑂 = (od‘𝐺)
2726, 15oddvdssubg 19633 . . . 4 ((𝐺 ∈ Abel ∧ (𝑝↑(𝑝 pCnt (♯‘𝐵))) ∈ ℤ) → {𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵)))} ∈ (SubGrp‘𝐺))
2811, 25, 27syl2anc 584 . . 3 ((𝜑𝑝𝐴) → {𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵)))} ∈ (SubGrp‘𝐺))
29 ablfac1.s . . 3 𝑆 = (𝑝𝐴 ↦ {𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵)))})
3028, 29fmptd 7062 . 2 (𝜑𝑆:𝐴⟶(SubGrp‘𝐺))
314adantr 481 . . 3 ((𝜑 ∧ (𝑎𝐴𝑏𝐴𝑎𝑏)) → 𝐺 ∈ Abel)
3230adantr 481 . . . 4 ((𝜑 ∧ (𝑎𝐴𝑏𝐴𝑎𝑏)) → 𝑆:𝐴⟶(SubGrp‘𝐺))
33 simpr1 1194 . . . 4 ((𝜑 ∧ (𝑎𝐴𝑏𝐴𝑎𝑏)) → 𝑎𝐴)
3432, 33ffvelcdmd 7036 . . 3 ((𝜑 ∧ (𝑎𝐴𝑏𝐴𝑎𝑏)) → (𝑆𝑎) ∈ (SubGrp‘𝐺))
35 simpr2 1195 . . . 4 ((𝜑 ∧ (𝑎𝐴𝑏𝐴𝑎𝑏)) → 𝑏𝐴)
3632, 35ffvelcdmd 7036 . . 3 ((𝜑 ∧ (𝑎𝐴𝑏𝐴𝑎𝑏)) → (𝑆𝑏) ∈ (SubGrp‘𝐺))
371, 31, 34, 36ablcntzd 19635 . 2 ((𝜑 ∧ (𝑎𝐴𝑏𝐴𝑎𝑏)) → (𝑆𝑎) ⊆ ((Cntz‘𝐺)‘(𝑆𝑏)))
38 id 22 . . . . . . . . . 10 (𝑝 = 𝑎𝑝 = 𝑎)
39 oveq1 7364 . . . . . . . . . 10 (𝑝 = 𝑎 → (𝑝 pCnt (♯‘𝐵)) = (𝑎 pCnt (♯‘𝐵)))
4038, 39oveq12d 7375 . . . . . . . . 9 (𝑝 = 𝑎 → (𝑝↑(𝑝 pCnt (♯‘𝐵))) = (𝑎↑(𝑎 pCnt (♯‘𝐵))))
4140breq2d 5117 . . . . . . . 8 (𝑝 = 𝑎 → ((𝑂𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵))) ↔ (𝑂𝑥) ∥ (𝑎↑(𝑎 pCnt (♯‘𝐵)))))
4241rabbidv 3415 . . . . . . 7 (𝑝 = 𝑎 → {𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵)))} = {𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑎↑(𝑎 pCnt (♯‘𝐵)))})
4315fvexi 6856 . . . . . . . 8 𝐵 ∈ V
4443rabex 5289 . . . . . . 7 {𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵)))} ∈ V
4542, 29, 44fvmpt3i 6953 . . . . . 6 (𝑎𝐴 → (𝑆𝑎) = {𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑎↑(𝑎 pCnt (♯‘𝐵)))})
4645adantl 482 . . . . 5 ((𝜑𝑎𝐴) → (𝑆𝑎) = {𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑎↑(𝑎 pCnt (♯‘𝐵)))})
47 eqimss 4000 . . . . 5 ((𝑆𝑎) = {𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑎↑(𝑎 pCnt (♯‘𝐵)))} → (𝑆𝑎) ⊆ {𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑎↑(𝑎 pCnt (♯‘𝐵)))})
4846, 47syl 17 . . . 4 ((𝜑𝑎𝐴) → (𝑆𝑎) ⊆ {𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑎↑(𝑎 pCnt (♯‘𝐵)))})
494adantr 481 . . . . . 6 ((𝜑𝑎𝐴) → 𝐺 ∈ Abel)
50 eqid 2736 . . . . . . 7 (Base‘𝐺) = (Base‘𝐺)
5150subgacs 18963 . . . . . 6 (𝐺 ∈ Grp → (SubGrp‘𝐺) ∈ (ACS‘(Base‘𝐺)))
52 acsmre 17532 . . . . . 6 ((SubGrp‘𝐺) ∈ (ACS‘(Base‘𝐺)) → (SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)))
5349, 5, 51, 524syl 19 . . . . 5 ((𝜑𝑎𝐴) → (SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)))
54 df-ima 5646 . . . . . . 7 (𝑆 “ (𝐴 ∖ {𝑎})) = ran (𝑆 ↾ (𝐴 ∖ {𝑎}))
557sselda 3944 . . . . . . . . . . . . . . . . 17 ((𝜑𝑎𝐴) → 𝑎 ∈ ℙ)
5655ad2antrr 724 . . . . . . . . . . . . . . . 16 ((((𝜑𝑎𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥𝐵) → 𝑎 ∈ ℙ)
5721ad3antrrr 728 . . . . . . . . . . . . . . . 16 ((((𝜑𝑎𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥𝐵) → (♯‘𝐵) ∈ ℕ)
58 pcdvds 16736 . . . . . . . . . . . . . . . 16 ((𝑎 ∈ ℙ ∧ (♯‘𝐵) ∈ ℕ) → (𝑎↑(𝑎 pCnt (♯‘𝐵))) ∥ (♯‘𝐵))
5956, 57, 58syl2anc 584 . . . . . . . . . . . . . . 15 ((((𝜑𝑎𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥𝐵) → (𝑎↑(𝑎 pCnt (♯‘𝐵))) ∥ (♯‘𝐵))
607ad3antrrr 728 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑎𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥𝐵) → 𝐴 ⊆ ℙ)
61 eldifi 4086 . . . . . . . . . . . . . . . . . 18 (𝑝 ∈ (𝐴 ∖ {𝑎}) → 𝑝𝐴)
6261ad2antlr 725 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑎𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥𝐵) → 𝑝𝐴)
6360, 62sseldd 3945 . . . . . . . . . . . . . . . 16 ((((𝜑𝑎𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥𝐵) → 𝑝 ∈ ℙ)
64 pcdvds 16736 . . . . . . . . . . . . . . . 16 ((𝑝 ∈ ℙ ∧ (♯‘𝐵) ∈ ℕ) → (𝑝↑(𝑝 pCnt (♯‘𝐵))) ∥ (♯‘𝐵))
6563, 57, 64syl2anc 584 . . . . . . . . . . . . . . 15 ((((𝜑𝑎𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥𝐵) → (𝑝↑(𝑝 pCnt (♯‘𝐵))) ∥ (♯‘𝐵))
66 eqid 2736 . . . . . . . . . . . . . . . . . . . . 21 (𝑎↑(𝑎 pCnt (♯‘𝐵))) = (𝑎↑(𝑎 pCnt (♯‘𝐵)))
67 eqid 2736 . . . . . . . . . . . . . . . . . . . . 21 ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵)))) = ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵))))
6815, 26, 29, 4, 18, 7, 66, 67ablfac1lem 19847 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑎𝐴) → (((𝑎↑(𝑎 pCnt (♯‘𝐵))) ∈ ℕ ∧ ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵)))) ∈ ℕ) ∧ ((𝑎↑(𝑎 pCnt (♯‘𝐵))) gcd ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵))))) = 1 ∧ (♯‘𝐵) = ((𝑎↑(𝑎 pCnt (♯‘𝐵))) · ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵)))))))
6968simp1d 1142 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑎𝐴) → ((𝑎↑(𝑎 pCnt (♯‘𝐵))) ∈ ℕ ∧ ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵)))) ∈ ℕ))
7069simpld 495 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑎𝐴) → (𝑎↑(𝑎 pCnt (♯‘𝐵))) ∈ ℕ)
7170ad2antrr 724 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑎𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥𝐵) → (𝑎↑(𝑎 pCnt (♯‘𝐵))) ∈ ℕ)
7271nnzd 12526 . . . . . . . . . . . . . . . 16 ((((𝜑𝑎𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥𝐵) → (𝑎↑(𝑎 pCnt (♯‘𝐵))) ∈ ℤ)
7363, 13syl 17 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑎𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥𝐵) → 𝑝 ∈ ℕ)
7463, 57pccld 16722 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑎𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥𝐵) → (𝑝 pCnt (♯‘𝐵)) ∈ ℕ0)
7573, 74nnexpcld 14148 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑎𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥𝐵) → (𝑝↑(𝑝 pCnt (♯‘𝐵))) ∈ ℕ)
7675nnzd 12526 . . . . . . . . . . . . . . . 16 ((((𝜑𝑎𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥𝐵) → (𝑝↑(𝑝 pCnt (♯‘𝐵))) ∈ ℤ)
7757nnzd 12526 . . . . . . . . . . . . . . . 16 ((((𝜑𝑎𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥𝐵) → (♯‘𝐵) ∈ ℤ)
78 eldifsni 4750 . . . . . . . . . . . . . . . . . . . 20 (𝑝 ∈ (𝐴 ∖ {𝑎}) → 𝑝𝑎)
7978ad2antlr 725 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑎𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥𝐵) → 𝑝𝑎)
8079necomd 2999 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑎𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥𝐵) → 𝑎𝑝)
81 prmrp 16588 . . . . . . . . . . . . . . . . . . 19 ((𝑎 ∈ ℙ ∧ 𝑝 ∈ ℙ) → ((𝑎 gcd 𝑝) = 1 ↔ 𝑎𝑝))
8256, 63, 81syl2anc 584 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑎𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥𝐵) → ((𝑎 gcd 𝑝) = 1 ↔ 𝑎𝑝))
8380, 82mpbird 256 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑎𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥𝐵) → (𝑎 gcd 𝑝) = 1)
84 prmz 16551 . . . . . . . . . . . . . . . . . . 19 (𝑎 ∈ ℙ → 𝑎 ∈ ℤ)
8556, 84syl 17 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑎𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥𝐵) → 𝑎 ∈ ℤ)
86 prmz 16551 . . . . . . . . . . . . . . . . . . 19 (𝑝 ∈ ℙ → 𝑝 ∈ ℤ)
8763, 86syl 17 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑎𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥𝐵) → 𝑝 ∈ ℤ)
8856, 57pccld 16722 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑎𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥𝐵) → (𝑎 pCnt (♯‘𝐵)) ∈ ℕ0)
89 rpexp12i 16600 . . . . . . . . . . . . . . . . . 18 ((𝑎 ∈ ℤ ∧ 𝑝 ∈ ℤ ∧ ((𝑎 pCnt (♯‘𝐵)) ∈ ℕ0 ∧ (𝑝 pCnt (♯‘𝐵)) ∈ ℕ0)) → ((𝑎 gcd 𝑝) = 1 → ((𝑎↑(𝑎 pCnt (♯‘𝐵))) gcd (𝑝↑(𝑝 pCnt (♯‘𝐵)))) = 1))
9085, 87, 88, 74, 89syl112anc 1374 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑎𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥𝐵) → ((𝑎 gcd 𝑝) = 1 → ((𝑎↑(𝑎 pCnt (♯‘𝐵))) gcd (𝑝↑(𝑝 pCnt (♯‘𝐵)))) = 1))
9183, 90mpd 15 . . . . . . . . . . . . . . . 16 ((((𝜑𝑎𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥𝐵) → ((𝑎↑(𝑎 pCnt (♯‘𝐵))) gcd (𝑝↑(𝑝 pCnt (♯‘𝐵)))) = 1)
92 coprmdvds2 16530 . . . . . . . . . . . . . . . 16 ((((𝑎↑(𝑎 pCnt (♯‘𝐵))) ∈ ℤ ∧ (𝑝↑(𝑝 pCnt (♯‘𝐵))) ∈ ℤ ∧ (♯‘𝐵) ∈ ℤ) ∧ ((𝑎↑(𝑎 pCnt (♯‘𝐵))) gcd (𝑝↑(𝑝 pCnt (♯‘𝐵)))) = 1) → (((𝑎↑(𝑎 pCnt (♯‘𝐵))) ∥ (♯‘𝐵) ∧ (𝑝↑(𝑝 pCnt (♯‘𝐵))) ∥ (♯‘𝐵)) → ((𝑎↑(𝑎 pCnt (♯‘𝐵))) · (𝑝↑(𝑝 pCnt (♯‘𝐵)))) ∥ (♯‘𝐵)))
9372, 76, 77, 91, 92syl31anc 1373 . . . . . . . . . . . . . . 15 ((((𝜑𝑎𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥𝐵) → (((𝑎↑(𝑎 pCnt (♯‘𝐵))) ∥ (♯‘𝐵) ∧ (𝑝↑(𝑝 pCnt (♯‘𝐵))) ∥ (♯‘𝐵)) → ((𝑎↑(𝑎 pCnt (♯‘𝐵))) · (𝑝↑(𝑝 pCnt (♯‘𝐵)))) ∥ (♯‘𝐵)))
9459, 65, 93mp2and 697 . . . . . . . . . . . . . 14 ((((𝜑𝑎𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥𝐵) → ((𝑎↑(𝑎 pCnt (♯‘𝐵))) · (𝑝↑(𝑝 pCnt (♯‘𝐵)))) ∥ (♯‘𝐵))
9568simp3d 1144 . . . . . . . . . . . . . . 15 ((𝜑𝑎𝐴) → (♯‘𝐵) = ((𝑎↑(𝑎 pCnt (♯‘𝐵))) · ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵))))))
9695ad2antrr 724 . . . . . . . . . . . . . 14 ((((𝜑𝑎𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥𝐵) → (♯‘𝐵) = ((𝑎↑(𝑎 pCnt (♯‘𝐵))) · ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵))))))
9794, 96breqtrd 5131 . . . . . . . . . . . . 13 ((((𝜑𝑎𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥𝐵) → ((𝑎↑(𝑎 pCnt (♯‘𝐵))) · (𝑝↑(𝑝 pCnt (♯‘𝐵)))) ∥ ((𝑎↑(𝑎 pCnt (♯‘𝐵))) · ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵))))))
9869simprd 496 . . . . . . . . . . . . . . . 16 ((𝜑𝑎𝐴) → ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵)))) ∈ ℕ)
9998ad2antrr 724 . . . . . . . . . . . . . . 15 ((((𝜑𝑎𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥𝐵) → ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵)))) ∈ ℕ)
10099nnzd 12526 . . . . . . . . . . . . . 14 ((((𝜑𝑎𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥𝐵) → ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵)))) ∈ ℤ)
10171nnne0d 12203 . . . . . . . . . . . . . 14 ((((𝜑𝑎𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥𝐵) → (𝑎↑(𝑎 pCnt (♯‘𝐵))) ≠ 0)
102 dvdscmulr 16167 . . . . . . . . . . . . . 14 (((𝑝↑(𝑝 pCnt (♯‘𝐵))) ∈ ℤ ∧ ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵)))) ∈ ℤ ∧ ((𝑎↑(𝑎 pCnt (♯‘𝐵))) ∈ ℤ ∧ (𝑎↑(𝑎 pCnt (♯‘𝐵))) ≠ 0)) → (((𝑎↑(𝑎 pCnt (♯‘𝐵))) · (𝑝↑(𝑝 pCnt (♯‘𝐵)))) ∥ ((𝑎↑(𝑎 pCnt (♯‘𝐵))) · ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵))))) ↔ (𝑝↑(𝑝 pCnt (♯‘𝐵))) ∥ ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵))))))
10376, 100, 72, 101, 102syl112anc 1374 . . . . . . . . . . . . 13 ((((𝜑𝑎𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥𝐵) → (((𝑎↑(𝑎 pCnt (♯‘𝐵))) · (𝑝↑(𝑝 pCnt (♯‘𝐵)))) ∥ ((𝑎↑(𝑎 pCnt (♯‘𝐵))) · ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵))))) ↔ (𝑝↑(𝑝 pCnt (♯‘𝐵))) ∥ ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵))))))
10497, 103mpbid 231 . . . . . . . . . . . 12 ((((𝜑𝑎𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥𝐵) → (𝑝↑(𝑝 pCnt (♯‘𝐵))) ∥ ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵)))))
10515, 26odcl 19318 . . . . . . . . . . . . . . 15 (𝑥𝐵 → (𝑂𝑥) ∈ ℕ0)
106105adantl 482 . . . . . . . . . . . . . 14 ((((𝜑𝑎𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥𝐵) → (𝑂𝑥) ∈ ℕ0)
107106nn0zd 12525 . . . . . . . . . . . . 13 ((((𝜑𝑎𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥𝐵) → (𝑂𝑥) ∈ ℤ)
108 dvdstr 16176 . . . . . . . . . . . . 13 (((𝑂𝑥) ∈ ℤ ∧ (𝑝↑(𝑝 pCnt (♯‘𝐵))) ∈ ℤ ∧ ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵)))) ∈ ℤ) → (((𝑂𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵))) ∧ (𝑝↑(𝑝 pCnt (♯‘𝐵))) ∥ ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵))))) → (𝑂𝑥) ∥ ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵))))))
109107, 76, 100, 108syl3anc 1371 . . . . . . . . . . . 12 ((((𝜑𝑎𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥𝐵) → (((𝑂𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵))) ∧ (𝑝↑(𝑝 pCnt (♯‘𝐵))) ∥ ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵))))) → (𝑂𝑥) ∥ ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵))))))
110104, 109mpan2d 692 . . . . . . . . . . 11 ((((𝜑𝑎𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥𝐵) → ((𝑂𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵))) → (𝑂𝑥) ∥ ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵))))))
111110ss2rabdv 4033 . . . . . . . . . 10 (((𝜑𝑎𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) → {𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵)))} ⊆ {𝑥𝐵 ∣ (𝑂𝑥) ∥ ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵))))})
11244elpw 4564 . . . . . . . . . 10 ({𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵)))} ∈ 𝒫 {𝑥𝐵 ∣ (𝑂𝑥) ∥ ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵))))} ↔ {𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵)))} ⊆ {𝑥𝐵 ∣ (𝑂𝑥) ∥ ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵))))})
113111, 112sylibr 233 . . . . . . . . 9 (((𝜑𝑎𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) → {𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵)))} ∈ 𝒫 {𝑥𝐵 ∣ (𝑂𝑥) ∥ ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵))))})
11429reseq1i 5933 . . . . . . . . . 10 (𝑆 ↾ (𝐴 ∖ {𝑎})) = ((𝑝𝐴 ↦ {𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵)))}) ↾ (𝐴 ∖ {𝑎}))
115 difss 4091 . . . . . . . . . . 11 (𝐴 ∖ {𝑎}) ⊆ 𝐴
116 resmpt 5991 . . . . . . . . . . 11 ((𝐴 ∖ {𝑎}) ⊆ 𝐴 → ((𝑝𝐴 ↦ {𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵)))}) ↾ (𝐴 ∖ {𝑎})) = (𝑝 ∈ (𝐴 ∖ {𝑎}) ↦ {𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵)))}))
117115, 116ax-mp 5 . . . . . . . . . 10 ((𝑝𝐴 ↦ {𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵)))}) ↾ (𝐴 ∖ {𝑎})) = (𝑝 ∈ (𝐴 ∖ {𝑎}) ↦ {𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵)))})
118114, 117eqtri 2764 . . . . . . . . 9 (𝑆 ↾ (𝐴 ∖ {𝑎})) = (𝑝 ∈ (𝐴 ∖ {𝑎}) ↦ {𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵)))})
119113, 118fmptd 7062 . . . . . . . 8 ((𝜑𝑎𝐴) → (𝑆 ↾ (𝐴 ∖ {𝑎})):(𝐴 ∖ {𝑎})⟶𝒫 {𝑥𝐵 ∣ (𝑂𝑥) ∥ ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵))))})
120119frnd 6676 . . . . . . 7 ((𝜑𝑎𝐴) → ran (𝑆 ↾ (𝐴 ∖ {𝑎})) ⊆ 𝒫 {𝑥𝐵 ∣ (𝑂𝑥) ∥ ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵))))})
12154, 120eqsstrid 3992 . . . . . 6 ((𝜑𝑎𝐴) → (𝑆 “ (𝐴 ∖ {𝑎})) ⊆ 𝒫 {𝑥𝐵 ∣ (𝑂𝑥) ∥ ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵))))})
122 sspwuni 5060 . . . . . 6 ((𝑆 “ (𝐴 ∖ {𝑎})) ⊆ 𝒫 {𝑥𝐵 ∣ (𝑂𝑥) ∥ ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵))))} ↔ (𝑆 “ (𝐴 ∖ {𝑎})) ⊆ {𝑥𝐵 ∣ (𝑂𝑥) ∥ ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵))))})
123121, 122sylib 217 . . . . 5 ((𝜑𝑎𝐴) → (𝑆 “ (𝐴 ∖ {𝑎})) ⊆ {𝑥𝐵 ∣ (𝑂𝑥) ∥ ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵))))})
12498nnzd 12526 . . . . . 6 ((𝜑𝑎𝐴) → ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵)))) ∈ ℤ)
12526, 15oddvdssubg 19633 . . . . . 6 ((𝐺 ∈ Abel ∧ ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵)))) ∈ ℤ) → {𝑥𝐵 ∣ (𝑂𝑥) ∥ ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵))))} ∈ (SubGrp‘𝐺))
12649, 124, 125syl2anc 584 . . . . 5 ((𝜑𝑎𝐴) → {𝑥𝐵 ∣ (𝑂𝑥) ∥ ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵))))} ∈ (SubGrp‘𝐺))
1273mrcsscl 17500 . . . . 5 (((SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)) ∧ (𝑆 “ (𝐴 ∖ {𝑎})) ⊆ {𝑥𝐵 ∣ (𝑂𝑥) ∥ ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵))))} ∧ {𝑥𝐵 ∣ (𝑂𝑥) ∥ ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵))))} ∈ (SubGrp‘𝐺)) → ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐴 ∖ {𝑎}))) ⊆ {𝑥𝐵 ∣ (𝑂𝑥) ∥ ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵))))})
12853, 123, 126, 127syl3anc 1371 . . . 4 ((𝜑𝑎𝐴) → ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐴 ∖ {𝑎}))) ⊆ {𝑥𝐵 ∣ (𝑂𝑥) ∥ ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵))))})
129 ss2in 4196 . . . 4 (((𝑆𝑎) ⊆ {𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑎↑(𝑎 pCnt (♯‘𝐵)))} ∧ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐴 ∖ {𝑎}))) ⊆ {𝑥𝐵 ∣ (𝑂𝑥) ∥ ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵))))}) → ((𝑆𝑎) ∩ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐴 ∖ {𝑎})))) ⊆ ({𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑎↑(𝑎 pCnt (♯‘𝐵)))} ∩ {𝑥𝐵 ∣ (𝑂𝑥) ∥ ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵))))}))
13048, 128, 129syl2anc 584 . . 3 ((𝜑𝑎𝐴) → ((𝑆𝑎) ∩ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐴 ∖ {𝑎})))) ⊆ ({𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑎↑(𝑎 pCnt (♯‘𝐵)))} ∩ {𝑥𝐵 ∣ (𝑂𝑥) ∥ ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵))))}))
131 eqid 2736 . . . . 5 {𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑎↑(𝑎 pCnt (♯‘𝐵)))} = {𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑎↑(𝑎 pCnt (♯‘𝐵)))}
132 eqid 2736 . . . . 5 {𝑥𝐵 ∣ (𝑂𝑥) ∥ ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵))))} = {𝑥𝐵 ∣ (𝑂𝑥) ∥ ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵))))}
13368simp2d 1143 . . . . 5 ((𝜑𝑎𝐴) → ((𝑎↑(𝑎 pCnt (♯‘𝐵))) gcd ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵))))) = 1)
134 eqid 2736 . . . . 5 (LSSum‘𝐺) = (LSSum‘𝐺)
13515, 26, 131, 132, 49, 70, 98, 133, 95, 2, 134ablfacrp 19845 . . . 4 ((𝜑𝑎𝐴) → (({𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑎↑(𝑎 pCnt (♯‘𝐵)))} ∩ {𝑥𝐵 ∣ (𝑂𝑥) ∥ ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵))))}) = {(0g𝐺)} ∧ ({𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑎↑(𝑎 pCnt (♯‘𝐵)))} (LSSum‘𝐺){𝑥𝐵 ∣ (𝑂𝑥) ∥ ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵))))}) = 𝐵))
136135simpld 495 . . 3 ((𝜑𝑎𝐴) → ({𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑎↑(𝑎 pCnt (♯‘𝐵)))} ∩ {𝑥𝐵 ∣ (𝑂𝑥) ∥ ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵))))}) = {(0g𝐺)})
137130, 136sseqtrd 3984 . 2 ((𝜑𝑎𝐴) → ((𝑆𝑎) ∩ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐴 ∖ {𝑎})))) ⊆ {(0g𝐺)})
1381, 2, 3, 6, 10, 30, 37, 137dmdprdd 19778 1 (𝜑𝐺dom DProd 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wne 2943  {crab 3407  Vcvv 3445  cdif 3907  cin 3909  wss 3910  c0 4282  𝒫 cpw 4560  {csn 4586   cuni 4865   class class class wbr 5105  cmpt 5188  dom cdm 5633  ran crn 5634  cres 5635  cima 5636  wf 6492  cfv 6496  (class class class)co 7357  Fincfn 8883  0cc0 11051  1c1 11052   · cmul 11056   / cdiv 11812  cn 12153  0cn0 12413  cz 12499  cexp 13967  chash 14230  cdvds 16136   gcd cgcd 16374  cprime 16547   pCnt cpc 16708  Basecbs 17083  0gc0g 17321  Moorecmre 17462  mrClscmrc 17463  ACScacs 17465  Grpcgrp 18748  SubGrpcsubg 18922  Cntzccntz 19095  odcod 19306  LSSumclsm 19416  Abelcabl 19563   DProd cdprd 19772
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-inf2 9577  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-iin 4957  df-disj 5071  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-2o 8413  df-oadd 8416  df-omul 8417  df-er 8648  df-ec 8650  df-qs 8654  df-map 8767  df-ixp 8836  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-sup 9378  df-inf 9379  df-oi 9446  df-card 9875  df-acn 9878  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-n0 12414  df-z 12500  df-uz 12764  df-q 12874  df-rp 12916  df-fz 13425  df-fzo 13568  df-fl 13697  df-mod 13775  df-seq 13907  df-exp 13968  df-hash 14231  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-clim 15370  df-sum 15571  df-dvds 16137  df-gcd 16375  df-prm 16548  df-pc 16709  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-0g 17323  df-mre 17466  df-mrc 17467  df-acs 17469  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-submnd 18602  df-grp 18751  df-minusg 18752  df-sbg 18753  df-mulg 18873  df-subg 18925  df-eqg 18927  df-cntz 19097  df-od 19310  df-lsm 19418  df-cmn 19564  df-abl 19565  df-dprd 19774
This theorem is referenced by:  ablfac1c  19850  ablfac1eu  19852  ablfaclem2  19865  ablfaclem3  19866
  Copyright terms: Public domain W3C validator