MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ablfac1b Structured version   Visualization version   GIF version

Theorem ablfac1b 19673
Description: Any abelian group is the direct product of factors of prime power order (with the exact order further matching the prime factorization of the group order). (Contributed by Mario Carneiro, 21-Apr-2016.)
Hypotheses
Ref Expression
ablfac1.b 𝐵 = (Base‘𝐺)
ablfac1.o 𝑂 = (od‘𝐺)
ablfac1.s 𝑆 = (𝑝𝐴 ↦ {𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵)))})
ablfac1.g (𝜑𝐺 ∈ Abel)
ablfac1.f (𝜑𝐵 ∈ Fin)
ablfac1.1 (𝜑𝐴 ⊆ ℙ)
Assertion
Ref Expression
ablfac1b (𝜑𝐺dom DProd 𝑆)
Distinct variable groups:   𝑥,𝑝,𝐵   𝜑,𝑝,𝑥   𝐴,𝑝,𝑥   𝑂,𝑝,𝑥   𝐺,𝑝,𝑥
Allowed substitution hints:   𝑆(𝑥,𝑝)

Proof of Theorem ablfac1b
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2738 . 2 (Cntz‘𝐺) = (Cntz‘𝐺)
2 eqid 2738 . 2 (0g𝐺) = (0g𝐺)
3 eqid 2738 . 2 (mrCls‘(SubGrp‘𝐺)) = (mrCls‘(SubGrp‘𝐺))
4 ablfac1.g . . 3 (𝜑𝐺 ∈ Abel)
5 ablgrp 19391 . . 3 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
64, 5syl 17 . 2 (𝜑𝐺 ∈ Grp)
7 ablfac1.1 . . 3 (𝜑𝐴 ⊆ ℙ)
8 prmex 16382 . . . 4 ℙ ∈ V
98ssex 5245 . . 3 (𝐴 ⊆ ℙ → 𝐴 ∈ V)
107, 9syl 17 . 2 (𝜑𝐴 ∈ V)
114adantr 481 . . . 4 ((𝜑𝑝𝐴) → 𝐺 ∈ Abel)
127sselda 3921 . . . . . . 7 ((𝜑𝑝𝐴) → 𝑝 ∈ ℙ)
13 prmnn 16379 . . . . . . 7 (𝑝 ∈ ℙ → 𝑝 ∈ ℕ)
1412, 13syl 17 . . . . . 6 ((𝜑𝑝𝐴) → 𝑝 ∈ ℕ)
15 ablfac1.b . . . . . . . . . . 11 𝐵 = (Base‘𝐺)
1615grpbn0 18608 . . . . . . . . . 10 (𝐺 ∈ Grp → 𝐵 ≠ ∅)
176, 16syl 17 . . . . . . . . 9 (𝜑𝐵 ≠ ∅)
18 ablfac1.f . . . . . . . . . 10 (𝜑𝐵 ∈ Fin)
19 hashnncl 14081 . . . . . . . . . 10 (𝐵 ∈ Fin → ((♯‘𝐵) ∈ ℕ ↔ 𝐵 ≠ ∅))
2018, 19syl 17 . . . . . . . . 9 (𝜑 → ((♯‘𝐵) ∈ ℕ ↔ 𝐵 ≠ ∅))
2117, 20mpbird 256 . . . . . . . 8 (𝜑 → (♯‘𝐵) ∈ ℕ)
2221adantr 481 . . . . . . 7 ((𝜑𝑝𝐴) → (♯‘𝐵) ∈ ℕ)
2312, 22pccld 16551 . . . . . 6 ((𝜑𝑝𝐴) → (𝑝 pCnt (♯‘𝐵)) ∈ ℕ0)
2414, 23nnexpcld 13960 . . . . 5 ((𝜑𝑝𝐴) → (𝑝↑(𝑝 pCnt (♯‘𝐵))) ∈ ℕ)
2524nnzd 12425 . . . 4 ((𝜑𝑝𝐴) → (𝑝↑(𝑝 pCnt (♯‘𝐵))) ∈ ℤ)
26 ablfac1.o . . . . 5 𝑂 = (od‘𝐺)
2726, 15oddvdssubg 19456 . . . 4 ((𝐺 ∈ Abel ∧ (𝑝↑(𝑝 pCnt (♯‘𝐵))) ∈ ℤ) → {𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵)))} ∈ (SubGrp‘𝐺))
2811, 25, 27syl2anc 584 . . 3 ((𝜑𝑝𝐴) → {𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵)))} ∈ (SubGrp‘𝐺))
29 ablfac1.s . . 3 𝑆 = (𝑝𝐴 ↦ {𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵)))})
3028, 29fmptd 6988 . 2 (𝜑𝑆:𝐴⟶(SubGrp‘𝐺))
314adantr 481 . . 3 ((𝜑 ∧ (𝑎𝐴𝑏𝐴𝑎𝑏)) → 𝐺 ∈ Abel)
3230adantr 481 . . . 4 ((𝜑 ∧ (𝑎𝐴𝑏𝐴𝑎𝑏)) → 𝑆:𝐴⟶(SubGrp‘𝐺))
33 simpr1 1193 . . . 4 ((𝜑 ∧ (𝑎𝐴𝑏𝐴𝑎𝑏)) → 𝑎𝐴)
3432, 33ffvelrnd 6962 . . 3 ((𝜑 ∧ (𝑎𝐴𝑏𝐴𝑎𝑏)) → (𝑆𝑎) ∈ (SubGrp‘𝐺))
35 simpr2 1194 . . . 4 ((𝜑 ∧ (𝑎𝐴𝑏𝐴𝑎𝑏)) → 𝑏𝐴)
3632, 35ffvelrnd 6962 . . 3 ((𝜑 ∧ (𝑎𝐴𝑏𝐴𝑎𝑏)) → (𝑆𝑏) ∈ (SubGrp‘𝐺))
371, 31, 34, 36ablcntzd 19458 . 2 ((𝜑 ∧ (𝑎𝐴𝑏𝐴𝑎𝑏)) → (𝑆𝑎) ⊆ ((Cntz‘𝐺)‘(𝑆𝑏)))
38 id 22 . . . . . . . . . 10 (𝑝 = 𝑎𝑝 = 𝑎)
39 oveq1 7282 . . . . . . . . . 10 (𝑝 = 𝑎 → (𝑝 pCnt (♯‘𝐵)) = (𝑎 pCnt (♯‘𝐵)))
4038, 39oveq12d 7293 . . . . . . . . 9 (𝑝 = 𝑎 → (𝑝↑(𝑝 pCnt (♯‘𝐵))) = (𝑎↑(𝑎 pCnt (♯‘𝐵))))
4140breq2d 5086 . . . . . . . 8 (𝑝 = 𝑎 → ((𝑂𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵))) ↔ (𝑂𝑥) ∥ (𝑎↑(𝑎 pCnt (♯‘𝐵)))))
4241rabbidv 3414 . . . . . . 7 (𝑝 = 𝑎 → {𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵)))} = {𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑎↑(𝑎 pCnt (♯‘𝐵)))})
4315fvexi 6788 . . . . . . . 8 𝐵 ∈ V
4443rabex 5256 . . . . . . 7 {𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵)))} ∈ V
4542, 29, 44fvmpt3i 6880 . . . . . 6 (𝑎𝐴 → (𝑆𝑎) = {𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑎↑(𝑎 pCnt (♯‘𝐵)))})
4645adantl 482 . . . . 5 ((𝜑𝑎𝐴) → (𝑆𝑎) = {𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑎↑(𝑎 pCnt (♯‘𝐵)))})
47 eqimss 3977 . . . . 5 ((𝑆𝑎) = {𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑎↑(𝑎 pCnt (♯‘𝐵)))} → (𝑆𝑎) ⊆ {𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑎↑(𝑎 pCnt (♯‘𝐵)))})
4846, 47syl 17 . . . 4 ((𝜑𝑎𝐴) → (𝑆𝑎) ⊆ {𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑎↑(𝑎 pCnt (♯‘𝐵)))})
494adantr 481 . . . . . 6 ((𝜑𝑎𝐴) → 𝐺 ∈ Abel)
50 eqid 2738 . . . . . . 7 (Base‘𝐺) = (Base‘𝐺)
5150subgacs 18789 . . . . . 6 (𝐺 ∈ Grp → (SubGrp‘𝐺) ∈ (ACS‘(Base‘𝐺)))
52 acsmre 17361 . . . . . 6 ((SubGrp‘𝐺) ∈ (ACS‘(Base‘𝐺)) → (SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)))
5349, 5, 51, 524syl 19 . . . . 5 ((𝜑𝑎𝐴) → (SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)))
54 df-ima 5602 . . . . . . 7 (𝑆 “ (𝐴 ∖ {𝑎})) = ran (𝑆 ↾ (𝐴 ∖ {𝑎}))
557sselda 3921 . . . . . . . . . . . . . . . . 17 ((𝜑𝑎𝐴) → 𝑎 ∈ ℙ)
5655ad2antrr 723 . . . . . . . . . . . . . . . 16 ((((𝜑𝑎𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥𝐵) → 𝑎 ∈ ℙ)
5721ad3antrrr 727 . . . . . . . . . . . . . . . 16 ((((𝜑𝑎𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥𝐵) → (♯‘𝐵) ∈ ℕ)
58 pcdvds 16565 . . . . . . . . . . . . . . . 16 ((𝑎 ∈ ℙ ∧ (♯‘𝐵) ∈ ℕ) → (𝑎↑(𝑎 pCnt (♯‘𝐵))) ∥ (♯‘𝐵))
5956, 57, 58syl2anc 584 . . . . . . . . . . . . . . 15 ((((𝜑𝑎𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥𝐵) → (𝑎↑(𝑎 pCnt (♯‘𝐵))) ∥ (♯‘𝐵))
607ad3antrrr 727 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑎𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥𝐵) → 𝐴 ⊆ ℙ)
61 eldifi 4061 . . . . . . . . . . . . . . . . . 18 (𝑝 ∈ (𝐴 ∖ {𝑎}) → 𝑝𝐴)
6261ad2antlr 724 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑎𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥𝐵) → 𝑝𝐴)
6360, 62sseldd 3922 . . . . . . . . . . . . . . . 16 ((((𝜑𝑎𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥𝐵) → 𝑝 ∈ ℙ)
64 pcdvds 16565 . . . . . . . . . . . . . . . 16 ((𝑝 ∈ ℙ ∧ (♯‘𝐵) ∈ ℕ) → (𝑝↑(𝑝 pCnt (♯‘𝐵))) ∥ (♯‘𝐵))
6563, 57, 64syl2anc 584 . . . . . . . . . . . . . . 15 ((((𝜑𝑎𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥𝐵) → (𝑝↑(𝑝 pCnt (♯‘𝐵))) ∥ (♯‘𝐵))
66 eqid 2738 . . . . . . . . . . . . . . . . . . . . 21 (𝑎↑(𝑎 pCnt (♯‘𝐵))) = (𝑎↑(𝑎 pCnt (♯‘𝐵)))
67 eqid 2738 . . . . . . . . . . . . . . . . . . . . 21 ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵)))) = ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵))))
6815, 26, 29, 4, 18, 7, 66, 67ablfac1lem 19671 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑎𝐴) → (((𝑎↑(𝑎 pCnt (♯‘𝐵))) ∈ ℕ ∧ ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵)))) ∈ ℕ) ∧ ((𝑎↑(𝑎 pCnt (♯‘𝐵))) gcd ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵))))) = 1 ∧ (♯‘𝐵) = ((𝑎↑(𝑎 pCnt (♯‘𝐵))) · ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵)))))))
6968simp1d 1141 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑎𝐴) → ((𝑎↑(𝑎 pCnt (♯‘𝐵))) ∈ ℕ ∧ ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵)))) ∈ ℕ))
7069simpld 495 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑎𝐴) → (𝑎↑(𝑎 pCnt (♯‘𝐵))) ∈ ℕ)
7170ad2antrr 723 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑎𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥𝐵) → (𝑎↑(𝑎 pCnt (♯‘𝐵))) ∈ ℕ)
7271nnzd 12425 . . . . . . . . . . . . . . . 16 ((((𝜑𝑎𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥𝐵) → (𝑎↑(𝑎 pCnt (♯‘𝐵))) ∈ ℤ)
7363, 13syl 17 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑎𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥𝐵) → 𝑝 ∈ ℕ)
7463, 57pccld 16551 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑎𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥𝐵) → (𝑝 pCnt (♯‘𝐵)) ∈ ℕ0)
7573, 74nnexpcld 13960 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑎𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥𝐵) → (𝑝↑(𝑝 pCnt (♯‘𝐵))) ∈ ℕ)
7675nnzd 12425 . . . . . . . . . . . . . . . 16 ((((𝜑𝑎𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥𝐵) → (𝑝↑(𝑝 pCnt (♯‘𝐵))) ∈ ℤ)
7757nnzd 12425 . . . . . . . . . . . . . . . 16 ((((𝜑𝑎𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥𝐵) → (♯‘𝐵) ∈ ℤ)
78 eldifsni 4723 . . . . . . . . . . . . . . . . . . . 20 (𝑝 ∈ (𝐴 ∖ {𝑎}) → 𝑝𝑎)
7978ad2antlr 724 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑎𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥𝐵) → 𝑝𝑎)
8079necomd 2999 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑎𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥𝐵) → 𝑎𝑝)
81 prmrp 16417 . . . . . . . . . . . . . . . . . . 19 ((𝑎 ∈ ℙ ∧ 𝑝 ∈ ℙ) → ((𝑎 gcd 𝑝) = 1 ↔ 𝑎𝑝))
8256, 63, 81syl2anc 584 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑎𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥𝐵) → ((𝑎 gcd 𝑝) = 1 ↔ 𝑎𝑝))
8380, 82mpbird 256 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑎𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥𝐵) → (𝑎 gcd 𝑝) = 1)
84 prmz 16380 . . . . . . . . . . . . . . . . . . 19 (𝑎 ∈ ℙ → 𝑎 ∈ ℤ)
8556, 84syl 17 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑎𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥𝐵) → 𝑎 ∈ ℤ)
86 prmz 16380 . . . . . . . . . . . . . . . . . . 19 (𝑝 ∈ ℙ → 𝑝 ∈ ℤ)
8763, 86syl 17 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑎𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥𝐵) → 𝑝 ∈ ℤ)
8856, 57pccld 16551 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑎𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥𝐵) → (𝑎 pCnt (♯‘𝐵)) ∈ ℕ0)
89 rpexp12i 16429 . . . . . . . . . . . . . . . . . 18 ((𝑎 ∈ ℤ ∧ 𝑝 ∈ ℤ ∧ ((𝑎 pCnt (♯‘𝐵)) ∈ ℕ0 ∧ (𝑝 pCnt (♯‘𝐵)) ∈ ℕ0)) → ((𝑎 gcd 𝑝) = 1 → ((𝑎↑(𝑎 pCnt (♯‘𝐵))) gcd (𝑝↑(𝑝 pCnt (♯‘𝐵)))) = 1))
9085, 87, 88, 74, 89syl112anc 1373 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑎𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥𝐵) → ((𝑎 gcd 𝑝) = 1 → ((𝑎↑(𝑎 pCnt (♯‘𝐵))) gcd (𝑝↑(𝑝 pCnt (♯‘𝐵)))) = 1))
9183, 90mpd 15 . . . . . . . . . . . . . . . 16 ((((𝜑𝑎𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥𝐵) → ((𝑎↑(𝑎 pCnt (♯‘𝐵))) gcd (𝑝↑(𝑝 pCnt (♯‘𝐵)))) = 1)
92 coprmdvds2 16359 . . . . . . . . . . . . . . . 16 ((((𝑎↑(𝑎 pCnt (♯‘𝐵))) ∈ ℤ ∧ (𝑝↑(𝑝 pCnt (♯‘𝐵))) ∈ ℤ ∧ (♯‘𝐵) ∈ ℤ) ∧ ((𝑎↑(𝑎 pCnt (♯‘𝐵))) gcd (𝑝↑(𝑝 pCnt (♯‘𝐵)))) = 1) → (((𝑎↑(𝑎 pCnt (♯‘𝐵))) ∥ (♯‘𝐵) ∧ (𝑝↑(𝑝 pCnt (♯‘𝐵))) ∥ (♯‘𝐵)) → ((𝑎↑(𝑎 pCnt (♯‘𝐵))) · (𝑝↑(𝑝 pCnt (♯‘𝐵)))) ∥ (♯‘𝐵)))
9372, 76, 77, 91, 92syl31anc 1372 . . . . . . . . . . . . . . 15 ((((𝜑𝑎𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥𝐵) → (((𝑎↑(𝑎 pCnt (♯‘𝐵))) ∥ (♯‘𝐵) ∧ (𝑝↑(𝑝 pCnt (♯‘𝐵))) ∥ (♯‘𝐵)) → ((𝑎↑(𝑎 pCnt (♯‘𝐵))) · (𝑝↑(𝑝 pCnt (♯‘𝐵)))) ∥ (♯‘𝐵)))
9459, 65, 93mp2and 696 . . . . . . . . . . . . . 14 ((((𝜑𝑎𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥𝐵) → ((𝑎↑(𝑎 pCnt (♯‘𝐵))) · (𝑝↑(𝑝 pCnt (♯‘𝐵)))) ∥ (♯‘𝐵))
9568simp3d 1143 . . . . . . . . . . . . . . 15 ((𝜑𝑎𝐴) → (♯‘𝐵) = ((𝑎↑(𝑎 pCnt (♯‘𝐵))) · ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵))))))
9695ad2antrr 723 . . . . . . . . . . . . . 14 ((((𝜑𝑎𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥𝐵) → (♯‘𝐵) = ((𝑎↑(𝑎 pCnt (♯‘𝐵))) · ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵))))))
9794, 96breqtrd 5100 . . . . . . . . . . . . 13 ((((𝜑𝑎𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥𝐵) → ((𝑎↑(𝑎 pCnt (♯‘𝐵))) · (𝑝↑(𝑝 pCnt (♯‘𝐵)))) ∥ ((𝑎↑(𝑎 pCnt (♯‘𝐵))) · ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵))))))
9869simprd 496 . . . . . . . . . . . . . . . 16 ((𝜑𝑎𝐴) → ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵)))) ∈ ℕ)
9998ad2antrr 723 . . . . . . . . . . . . . . 15 ((((𝜑𝑎𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥𝐵) → ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵)))) ∈ ℕ)
10099nnzd 12425 . . . . . . . . . . . . . 14 ((((𝜑𝑎𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥𝐵) → ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵)))) ∈ ℤ)
10171nnne0d 12023 . . . . . . . . . . . . . 14 ((((𝜑𝑎𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥𝐵) → (𝑎↑(𝑎 pCnt (♯‘𝐵))) ≠ 0)
102 dvdscmulr 15994 . . . . . . . . . . . . . 14 (((𝑝↑(𝑝 pCnt (♯‘𝐵))) ∈ ℤ ∧ ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵)))) ∈ ℤ ∧ ((𝑎↑(𝑎 pCnt (♯‘𝐵))) ∈ ℤ ∧ (𝑎↑(𝑎 pCnt (♯‘𝐵))) ≠ 0)) → (((𝑎↑(𝑎 pCnt (♯‘𝐵))) · (𝑝↑(𝑝 pCnt (♯‘𝐵)))) ∥ ((𝑎↑(𝑎 pCnt (♯‘𝐵))) · ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵))))) ↔ (𝑝↑(𝑝 pCnt (♯‘𝐵))) ∥ ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵))))))
10376, 100, 72, 101, 102syl112anc 1373 . . . . . . . . . . . . 13 ((((𝜑𝑎𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥𝐵) → (((𝑎↑(𝑎 pCnt (♯‘𝐵))) · (𝑝↑(𝑝 pCnt (♯‘𝐵)))) ∥ ((𝑎↑(𝑎 pCnt (♯‘𝐵))) · ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵))))) ↔ (𝑝↑(𝑝 pCnt (♯‘𝐵))) ∥ ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵))))))
10497, 103mpbid 231 . . . . . . . . . . . 12 ((((𝜑𝑎𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥𝐵) → (𝑝↑(𝑝 pCnt (♯‘𝐵))) ∥ ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵)))))
10515, 26odcl 19144 . . . . . . . . . . . . . . 15 (𝑥𝐵 → (𝑂𝑥) ∈ ℕ0)
106105adantl 482 . . . . . . . . . . . . . 14 ((((𝜑𝑎𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥𝐵) → (𝑂𝑥) ∈ ℕ0)
107106nn0zd 12424 . . . . . . . . . . . . 13 ((((𝜑𝑎𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥𝐵) → (𝑂𝑥) ∈ ℤ)
108 dvdstr 16003 . . . . . . . . . . . . 13 (((𝑂𝑥) ∈ ℤ ∧ (𝑝↑(𝑝 pCnt (♯‘𝐵))) ∈ ℤ ∧ ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵)))) ∈ ℤ) → (((𝑂𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵))) ∧ (𝑝↑(𝑝 pCnt (♯‘𝐵))) ∥ ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵))))) → (𝑂𝑥) ∥ ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵))))))
109107, 76, 100, 108syl3anc 1370 . . . . . . . . . . . 12 ((((𝜑𝑎𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥𝐵) → (((𝑂𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵))) ∧ (𝑝↑(𝑝 pCnt (♯‘𝐵))) ∥ ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵))))) → (𝑂𝑥) ∥ ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵))))))
110104, 109mpan2d 691 . . . . . . . . . . 11 ((((𝜑𝑎𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥𝐵) → ((𝑂𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵))) → (𝑂𝑥) ∥ ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵))))))
111110ss2rabdv 4009 . . . . . . . . . 10 (((𝜑𝑎𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) → {𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵)))} ⊆ {𝑥𝐵 ∣ (𝑂𝑥) ∥ ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵))))})
11244elpw 4537 . . . . . . . . . 10 ({𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵)))} ∈ 𝒫 {𝑥𝐵 ∣ (𝑂𝑥) ∥ ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵))))} ↔ {𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵)))} ⊆ {𝑥𝐵 ∣ (𝑂𝑥) ∥ ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵))))})
113111, 112sylibr 233 . . . . . . . . 9 (((𝜑𝑎𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) → {𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵)))} ∈ 𝒫 {𝑥𝐵 ∣ (𝑂𝑥) ∥ ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵))))})
11429reseq1i 5887 . . . . . . . . . 10 (𝑆 ↾ (𝐴 ∖ {𝑎})) = ((𝑝𝐴 ↦ {𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵)))}) ↾ (𝐴 ∖ {𝑎}))
115 difss 4066 . . . . . . . . . . 11 (𝐴 ∖ {𝑎}) ⊆ 𝐴
116 resmpt 5945 . . . . . . . . . . 11 ((𝐴 ∖ {𝑎}) ⊆ 𝐴 → ((𝑝𝐴 ↦ {𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵)))}) ↾ (𝐴 ∖ {𝑎})) = (𝑝 ∈ (𝐴 ∖ {𝑎}) ↦ {𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵)))}))
117115, 116ax-mp 5 . . . . . . . . . 10 ((𝑝𝐴 ↦ {𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵)))}) ↾ (𝐴 ∖ {𝑎})) = (𝑝 ∈ (𝐴 ∖ {𝑎}) ↦ {𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵)))})
118114, 117eqtri 2766 . . . . . . . . 9 (𝑆 ↾ (𝐴 ∖ {𝑎})) = (𝑝 ∈ (𝐴 ∖ {𝑎}) ↦ {𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵)))})
119113, 118fmptd 6988 . . . . . . . 8 ((𝜑𝑎𝐴) → (𝑆 ↾ (𝐴 ∖ {𝑎})):(𝐴 ∖ {𝑎})⟶𝒫 {𝑥𝐵 ∣ (𝑂𝑥) ∥ ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵))))})
120119frnd 6608 . . . . . . 7 ((𝜑𝑎𝐴) → ran (𝑆 ↾ (𝐴 ∖ {𝑎})) ⊆ 𝒫 {𝑥𝐵 ∣ (𝑂𝑥) ∥ ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵))))})
12154, 120eqsstrid 3969 . . . . . 6 ((𝜑𝑎𝐴) → (𝑆 “ (𝐴 ∖ {𝑎})) ⊆ 𝒫 {𝑥𝐵 ∣ (𝑂𝑥) ∥ ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵))))})
122 sspwuni 5029 . . . . . 6 ((𝑆 “ (𝐴 ∖ {𝑎})) ⊆ 𝒫 {𝑥𝐵 ∣ (𝑂𝑥) ∥ ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵))))} ↔ (𝑆 “ (𝐴 ∖ {𝑎})) ⊆ {𝑥𝐵 ∣ (𝑂𝑥) ∥ ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵))))})
123121, 122sylib 217 . . . . 5 ((𝜑𝑎𝐴) → (𝑆 “ (𝐴 ∖ {𝑎})) ⊆ {𝑥𝐵 ∣ (𝑂𝑥) ∥ ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵))))})
12498nnzd 12425 . . . . . 6 ((𝜑𝑎𝐴) → ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵)))) ∈ ℤ)
12526, 15oddvdssubg 19456 . . . . . 6 ((𝐺 ∈ Abel ∧ ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵)))) ∈ ℤ) → {𝑥𝐵 ∣ (𝑂𝑥) ∥ ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵))))} ∈ (SubGrp‘𝐺))
12649, 124, 125syl2anc 584 . . . . 5 ((𝜑𝑎𝐴) → {𝑥𝐵 ∣ (𝑂𝑥) ∥ ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵))))} ∈ (SubGrp‘𝐺))
1273mrcsscl 17329 . . . . 5 (((SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)) ∧ (𝑆 “ (𝐴 ∖ {𝑎})) ⊆ {𝑥𝐵 ∣ (𝑂𝑥) ∥ ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵))))} ∧ {𝑥𝐵 ∣ (𝑂𝑥) ∥ ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵))))} ∈ (SubGrp‘𝐺)) → ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐴 ∖ {𝑎}))) ⊆ {𝑥𝐵 ∣ (𝑂𝑥) ∥ ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵))))})
12853, 123, 126, 127syl3anc 1370 . . . 4 ((𝜑𝑎𝐴) → ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐴 ∖ {𝑎}))) ⊆ {𝑥𝐵 ∣ (𝑂𝑥) ∥ ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵))))})
129 ss2in 4170 . . . 4 (((𝑆𝑎) ⊆ {𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑎↑(𝑎 pCnt (♯‘𝐵)))} ∧ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐴 ∖ {𝑎}))) ⊆ {𝑥𝐵 ∣ (𝑂𝑥) ∥ ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵))))}) → ((𝑆𝑎) ∩ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐴 ∖ {𝑎})))) ⊆ ({𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑎↑(𝑎 pCnt (♯‘𝐵)))} ∩ {𝑥𝐵 ∣ (𝑂𝑥) ∥ ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵))))}))
13048, 128, 129syl2anc 584 . . 3 ((𝜑𝑎𝐴) → ((𝑆𝑎) ∩ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐴 ∖ {𝑎})))) ⊆ ({𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑎↑(𝑎 pCnt (♯‘𝐵)))} ∩ {𝑥𝐵 ∣ (𝑂𝑥) ∥ ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵))))}))
131 eqid 2738 . . . . 5 {𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑎↑(𝑎 pCnt (♯‘𝐵)))} = {𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑎↑(𝑎 pCnt (♯‘𝐵)))}
132 eqid 2738 . . . . 5 {𝑥𝐵 ∣ (𝑂𝑥) ∥ ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵))))} = {𝑥𝐵 ∣ (𝑂𝑥) ∥ ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵))))}
13368simp2d 1142 . . . . 5 ((𝜑𝑎𝐴) → ((𝑎↑(𝑎 pCnt (♯‘𝐵))) gcd ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵))))) = 1)
134 eqid 2738 . . . . 5 (LSSum‘𝐺) = (LSSum‘𝐺)
13515, 26, 131, 132, 49, 70, 98, 133, 95, 2, 134ablfacrp 19669 . . . 4 ((𝜑𝑎𝐴) → (({𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑎↑(𝑎 pCnt (♯‘𝐵)))} ∩ {𝑥𝐵 ∣ (𝑂𝑥) ∥ ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵))))}) = {(0g𝐺)} ∧ ({𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑎↑(𝑎 pCnt (♯‘𝐵)))} (LSSum‘𝐺){𝑥𝐵 ∣ (𝑂𝑥) ∥ ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵))))}) = 𝐵))
136135simpld 495 . . 3 ((𝜑𝑎𝐴) → ({𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑎↑(𝑎 pCnt (♯‘𝐵)))} ∩ {𝑥𝐵 ∣ (𝑂𝑥) ∥ ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵))))}) = {(0g𝐺)})
137130, 136sseqtrd 3961 . 2 ((𝜑𝑎𝐴) → ((𝑆𝑎) ∩ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐴 ∖ {𝑎})))) ⊆ {(0g𝐺)})
1381, 2, 3, 6, 10, 30, 37, 137dmdprdd 19602 1 (𝜑𝐺dom DProd 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wne 2943  {crab 3068  Vcvv 3432  cdif 3884  cin 3886  wss 3887  c0 4256  𝒫 cpw 4533  {csn 4561   cuni 4839   class class class wbr 5074  cmpt 5157  dom cdm 5589  ran crn 5590  cres 5591  cima 5592  wf 6429  cfv 6433  (class class class)co 7275  Fincfn 8733  0cc0 10871  1c1 10872   · cmul 10876   / cdiv 11632  cn 11973  0cn0 12233  cz 12319  cexp 13782  chash 14044  cdvds 15963   gcd cgcd 16201  cprime 16376   pCnt cpc 16537  Basecbs 16912  0gc0g 17150  Moorecmre 17291  mrClscmrc 17292  ACScacs 17294  Grpcgrp 18577  SubGrpcsubg 18749  Cntzccntz 18921  odcod 19132  LSSumclsm 19239  Abelcabl 19387   DProd cdprd 19596
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-disj 5040  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-oadd 8301  df-omul 8302  df-er 8498  df-ec 8500  df-qs 8504  df-map 8617  df-ixp 8686  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-sup 9201  df-inf 9202  df-oi 9269  df-card 9697  df-acn 9700  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-z 12320  df-uz 12583  df-q 12689  df-rp 12731  df-fz 13240  df-fzo 13383  df-fl 13512  df-mod 13590  df-seq 13722  df-exp 13783  df-hash 14045  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-clim 15197  df-sum 15398  df-dvds 15964  df-gcd 16202  df-prm 16377  df-pc 16538  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-0g 17152  df-mre 17295  df-mrc 17296  df-acs 17298  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-submnd 18431  df-grp 18580  df-minusg 18581  df-sbg 18582  df-mulg 18701  df-subg 18752  df-eqg 18754  df-cntz 18923  df-od 19136  df-lsm 19241  df-cmn 19388  df-abl 19389  df-dprd 19598
This theorem is referenced by:  ablfac1c  19674  ablfac1eu  19676  ablfaclem2  19689  ablfaclem3  19690
  Copyright terms: Public domain W3C validator