MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ablfac1b Structured version   Visualization version   GIF version

Theorem ablfac1b 20009
Description: Any abelian group is the direct product of factors of prime power order (with the exact order further matching the prime factorization of the group order). (Contributed by Mario Carneiro, 21-Apr-2016.)
Hypotheses
Ref Expression
ablfac1.b 𝐵 = (Base‘𝐺)
ablfac1.o 𝑂 = (od‘𝐺)
ablfac1.s 𝑆 = (𝑝𝐴 ↦ {𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵)))})
ablfac1.g (𝜑𝐺 ∈ Abel)
ablfac1.f (𝜑𝐵 ∈ Fin)
ablfac1.1 (𝜑𝐴 ⊆ ℙ)
Assertion
Ref Expression
ablfac1b (𝜑𝐺dom DProd 𝑆)
Distinct variable groups:   𝑥,𝑝,𝐵   𝜑,𝑝,𝑥   𝐴,𝑝,𝑥   𝑂,𝑝,𝑥   𝐺,𝑝,𝑥
Allowed substitution hints:   𝑆(𝑥,𝑝)

Proof of Theorem ablfac1b
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2730 . 2 (Cntz‘𝐺) = (Cntz‘𝐺)
2 eqid 2730 . 2 (0g𝐺) = (0g𝐺)
3 eqid 2730 . 2 (mrCls‘(SubGrp‘𝐺)) = (mrCls‘(SubGrp‘𝐺))
4 ablfac1.g . . 3 (𝜑𝐺 ∈ Abel)
5 ablgrp 19722 . . 3 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
64, 5syl 17 . 2 (𝜑𝐺 ∈ Grp)
7 ablfac1.1 . . 3 (𝜑𝐴 ⊆ ℙ)
8 prmex 16654 . . . 4 ℙ ∈ V
98ssex 5279 . . 3 (𝐴 ⊆ ℙ → 𝐴 ∈ V)
107, 9syl 17 . 2 (𝜑𝐴 ∈ V)
114adantr 480 . . . 4 ((𝜑𝑝𝐴) → 𝐺 ∈ Abel)
127sselda 3949 . . . . . . 7 ((𝜑𝑝𝐴) → 𝑝 ∈ ℙ)
13 prmnn 16651 . . . . . . 7 (𝑝 ∈ ℙ → 𝑝 ∈ ℕ)
1412, 13syl 17 . . . . . 6 ((𝜑𝑝𝐴) → 𝑝 ∈ ℕ)
15 ablfac1.b . . . . . . . . . . 11 𝐵 = (Base‘𝐺)
1615grpbn0 18905 . . . . . . . . . 10 (𝐺 ∈ Grp → 𝐵 ≠ ∅)
176, 16syl 17 . . . . . . . . 9 (𝜑𝐵 ≠ ∅)
18 ablfac1.f . . . . . . . . . 10 (𝜑𝐵 ∈ Fin)
19 hashnncl 14338 . . . . . . . . . 10 (𝐵 ∈ Fin → ((♯‘𝐵) ∈ ℕ ↔ 𝐵 ≠ ∅))
2018, 19syl 17 . . . . . . . . 9 (𝜑 → ((♯‘𝐵) ∈ ℕ ↔ 𝐵 ≠ ∅))
2117, 20mpbird 257 . . . . . . . 8 (𝜑 → (♯‘𝐵) ∈ ℕ)
2221adantr 480 . . . . . . 7 ((𝜑𝑝𝐴) → (♯‘𝐵) ∈ ℕ)
2312, 22pccld 16828 . . . . . 6 ((𝜑𝑝𝐴) → (𝑝 pCnt (♯‘𝐵)) ∈ ℕ0)
2414, 23nnexpcld 14217 . . . . 5 ((𝜑𝑝𝐴) → (𝑝↑(𝑝 pCnt (♯‘𝐵))) ∈ ℕ)
2524nnzd 12563 . . . 4 ((𝜑𝑝𝐴) → (𝑝↑(𝑝 pCnt (♯‘𝐵))) ∈ ℤ)
26 ablfac1.o . . . . 5 𝑂 = (od‘𝐺)
2726, 15oddvdssubg 19792 . . . 4 ((𝐺 ∈ Abel ∧ (𝑝↑(𝑝 pCnt (♯‘𝐵))) ∈ ℤ) → {𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵)))} ∈ (SubGrp‘𝐺))
2811, 25, 27syl2anc 584 . . 3 ((𝜑𝑝𝐴) → {𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵)))} ∈ (SubGrp‘𝐺))
29 ablfac1.s . . 3 𝑆 = (𝑝𝐴 ↦ {𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵)))})
3028, 29fmptd 7089 . 2 (𝜑𝑆:𝐴⟶(SubGrp‘𝐺))
314adantr 480 . . 3 ((𝜑 ∧ (𝑎𝐴𝑏𝐴𝑎𝑏)) → 𝐺 ∈ Abel)
3230adantr 480 . . . 4 ((𝜑 ∧ (𝑎𝐴𝑏𝐴𝑎𝑏)) → 𝑆:𝐴⟶(SubGrp‘𝐺))
33 simpr1 1195 . . . 4 ((𝜑 ∧ (𝑎𝐴𝑏𝐴𝑎𝑏)) → 𝑎𝐴)
3432, 33ffvelcdmd 7060 . . 3 ((𝜑 ∧ (𝑎𝐴𝑏𝐴𝑎𝑏)) → (𝑆𝑎) ∈ (SubGrp‘𝐺))
35 simpr2 1196 . . . 4 ((𝜑 ∧ (𝑎𝐴𝑏𝐴𝑎𝑏)) → 𝑏𝐴)
3632, 35ffvelcdmd 7060 . . 3 ((𝜑 ∧ (𝑎𝐴𝑏𝐴𝑎𝑏)) → (𝑆𝑏) ∈ (SubGrp‘𝐺))
371, 31, 34, 36ablcntzd 19794 . 2 ((𝜑 ∧ (𝑎𝐴𝑏𝐴𝑎𝑏)) → (𝑆𝑎) ⊆ ((Cntz‘𝐺)‘(𝑆𝑏)))
38 id 22 . . . . . . . . . 10 (𝑝 = 𝑎𝑝 = 𝑎)
39 oveq1 7397 . . . . . . . . . 10 (𝑝 = 𝑎 → (𝑝 pCnt (♯‘𝐵)) = (𝑎 pCnt (♯‘𝐵)))
4038, 39oveq12d 7408 . . . . . . . . 9 (𝑝 = 𝑎 → (𝑝↑(𝑝 pCnt (♯‘𝐵))) = (𝑎↑(𝑎 pCnt (♯‘𝐵))))
4140breq2d 5122 . . . . . . . 8 (𝑝 = 𝑎 → ((𝑂𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵))) ↔ (𝑂𝑥) ∥ (𝑎↑(𝑎 pCnt (♯‘𝐵)))))
4241rabbidv 3416 . . . . . . 7 (𝑝 = 𝑎 → {𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵)))} = {𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑎↑(𝑎 pCnt (♯‘𝐵)))})
4315fvexi 6875 . . . . . . . 8 𝐵 ∈ V
4443rabex 5297 . . . . . . 7 {𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵)))} ∈ V
4542, 29, 44fvmpt3i 6976 . . . . . 6 (𝑎𝐴 → (𝑆𝑎) = {𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑎↑(𝑎 pCnt (♯‘𝐵)))})
4645adantl 481 . . . . 5 ((𝜑𝑎𝐴) → (𝑆𝑎) = {𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑎↑(𝑎 pCnt (♯‘𝐵)))})
47 eqimss 4008 . . . . 5 ((𝑆𝑎) = {𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑎↑(𝑎 pCnt (♯‘𝐵)))} → (𝑆𝑎) ⊆ {𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑎↑(𝑎 pCnt (♯‘𝐵)))})
4846, 47syl 17 . . . 4 ((𝜑𝑎𝐴) → (𝑆𝑎) ⊆ {𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑎↑(𝑎 pCnt (♯‘𝐵)))})
494adantr 480 . . . . . 6 ((𝜑𝑎𝐴) → 𝐺 ∈ Abel)
50 eqid 2730 . . . . . . 7 (Base‘𝐺) = (Base‘𝐺)
5150subgacs 19100 . . . . . 6 (𝐺 ∈ Grp → (SubGrp‘𝐺) ∈ (ACS‘(Base‘𝐺)))
52 acsmre 17620 . . . . . 6 ((SubGrp‘𝐺) ∈ (ACS‘(Base‘𝐺)) → (SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)))
5349, 5, 51, 524syl 19 . . . . 5 ((𝜑𝑎𝐴) → (SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)))
54 df-ima 5654 . . . . . . 7 (𝑆 “ (𝐴 ∖ {𝑎})) = ran (𝑆 ↾ (𝐴 ∖ {𝑎}))
557sselda 3949 . . . . . . . . . . . . . . . . 17 ((𝜑𝑎𝐴) → 𝑎 ∈ ℙ)
5655ad2antrr 726 . . . . . . . . . . . . . . . 16 ((((𝜑𝑎𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥𝐵) → 𝑎 ∈ ℙ)
5721ad3antrrr 730 . . . . . . . . . . . . . . . 16 ((((𝜑𝑎𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥𝐵) → (♯‘𝐵) ∈ ℕ)
58 pcdvds 16842 . . . . . . . . . . . . . . . 16 ((𝑎 ∈ ℙ ∧ (♯‘𝐵) ∈ ℕ) → (𝑎↑(𝑎 pCnt (♯‘𝐵))) ∥ (♯‘𝐵))
5956, 57, 58syl2anc 584 . . . . . . . . . . . . . . 15 ((((𝜑𝑎𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥𝐵) → (𝑎↑(𝑎 pCnt (♯‘𝐵))) ∥ (♯‘𝐵))
607ad3antrrr 730 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑎𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥𝐵) → 𝐴 ⊆ ℙ)
61 eldifi 4097 . . . . . . . . . . . . . . . . . 18 (𝑝 ∈ (𝐴 ∖ {𝑎}) → 𝑝𝐴)
6261ad2antlr 727 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑎𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥𝐵) → 𝑝𝐴)
6360, 62sseldd 3950 . . . . . . . . . . . . . . . 16 ((((𝜑𝑎𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥𝐵) → 𝑝 ∈ ℙ)
64 pcdvds 16842 . . . . . . . . . . . . . . . 16 ((𝑝 ∈ ℙ ∧ (♯‘𝐵) ∈ ℕ) → (𝑝↑(𝑝 pCnt (♯‘𝐵))) ∥ (♯‘𝐵))
6563, 57, 64syl2anc 584 . . . . . . . . . . . . . . 15 ((((𝜑𝑎𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥𝐵) → (𝑝↑(𝑝 pCnt (♯‘𝐵))) ∥ (♯‘𝐵))
66 eqid 2730 . . . . . . . . . . . . . . . . . . . . 21 (𝑎↑(𝑎 pCnt (♯‘𝐵))) = (𝑎↑(𝑎 pCnt (♯‘𝐵)))
67 eqid 2730 . . . . . . . . . . . . . . . . . . . . 21 ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵)))) = ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵))))
6815, 26, 29, 4, 18, 7, 66, 67ablfac1lem 20007 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑎𝐴) → (((𝑎↑(𝑎 pCnt (♯‘𝐵))) ∈ ℕ ∧ ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵)))) ∈ ℕ) ∧ ((𝑎↑(𝑎 pCnt (♯‘𝐵))) gcd ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵))))) = 1 ∧ (♯‘𝐵) = ((𝑎↑(𝑎 pCnt (♯‘𝐵))) · ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵)))))))
6968simp1d 1142 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑎𝐴) → ((𝑎↑(𝑎 pCnt (♯‘𝐵))) ∈ ℕ ∧ ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵)))) ∈ ℕ))
7069simpld 494 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑎𝐴) → (𝑎↑(𝑎 pCnt (♯‘𝐵))) ∈ ℕ)
7170ad2antrr 726 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑎𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥𝐵) → (𝑎↑(𝑎 pCnt (♯‘𝐵))) ∈ ℕ)
7271nnzd 12563 . . . . . . . . . . . . . . . 16 ((((𝜑𝑎𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥𝐵) → (𝑎↑(𝑎 pCnt (♯‘𝐵))) ∈ ℤ)
7363, 13syl 17 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑎𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥𝐵) → 𝑝 ∈ ℕ)
7463, 57pccld 16828 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑎𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥𝐵) → (𝑝 pCnt (♯‘𝐵)) ∈ ℕ0)
7573, 74nnexpcld 14217 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑎𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥𝐵) → (𝑝↑(𝑝 pCnt (♯‘𝐵))) ∈ ℕ)
7675nnzd 12563 . . . . . . . . . . . . . . . 16 ((((𝜑𝑎𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥𝐵) → (𝑝↑(𝑝 pCnt (♯‘𝐵))) ∈ ℤ)
7757nnzd 12563 . . . . . . . . . . . . . . . 16 ((((𝜑𝑎𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥𝐵) → (♯‘𝐵) ∈ ℤ)
78 eldifsni 4757 . . . . . . . . . . . . . . . . . . . 20 (𝑝 ∈ (𝐴 ∖ {𝑎}) → 𝑝𝑎)
7978ad2antlr 727 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑎𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥𝐵) → 𝑝𝑎)
8079necomd 2981 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑎𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥𝐵) → 𝑎𝑝)
81 prmrp 16689 . . . . . . . . . . . . . . . . . . 19 ((𝑎 ∈ ℙ ∧ 𝑝 ∈ ℙ) → ((𝑎 gcd 𝑝) = 1 ↔ 𝑎𝑝))
8256, 63, 81syl2anc 584 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑎𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥𝐵) → ((𝑎 gcd 𝑝) = 1 ↔ 𝑎𝑝))
8380, 82mpbird 257 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑎𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥𝐵) → (𝑎 gcd 𝑝) = 1)
84 prmz 16652 . . . . . . . . . . . . . . . . . . 19 (𝑎 ∈ ℙ → 𝑎 ∈ ℤ)
8556, 84syl 17 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑎𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥𝐵) → 𝑎 ∈ ℤ)
86 prmz 16652 . . . . . . . . . . . . . . . . . . 19 (𝑝 ∈ ℙ → 𝑝 ∈ ℤ)
8763, 86syl 17 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑎𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥𝐵) → 𝑝 ∈ ℤ)
8856, 57pccld 16828 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑎𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥𝐵) → (𝑎 pCnt (♯‘𝐵)) ∈ ℕ0)
89 rpexp12i 16701 . . . . . . . . . . . . . . . . . 18 ((𝑎 ∈ ℤ ∧ 𝑝 ∈ ℤ ∧ ((𝑎 pCnt (♯‘𝐵)) ∈ ℕ0 ∧ (𝑝 pCnt (♯‘𝐵)) ∈ ℕ0)) → ((𝑎 gcd 𝑝) = 1 → ((𝑎↑(𝑎 pCnt (♯‘𝐵))) gcd (𝑝↑(𝑝 pCnt (♯‘𝐵)))) = 1))
9085, 87, 88, 74, 89syl112anc 1376 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑎𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥𝐵) → ((𝑎 gcd 𝑝) = 1 → ((𝑎↑(𝑎 pCnt (♯‘𝐵))) gcd (𝑝↑(𝑝 pCnt (♯‘𝐵)))) = 1))
9183, 90mpd 15 . . . . . . . . . . . . . . . 16 ((((𝜑𝑎𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥𝐵) → ((𝑎↑(𝑎 pCnt (♯‘𝐵))) gcd (𝑝↑(𝑝 pCnt (♯‘𝐵)))) = 1)
92 coprmdvds2 16631 . . . . . . . . . . . . . . . 16 ((((𝑎↑(𝑎 pCnt (♯‘𝐵))) ∈ ℤ ∧ (𝑝↑(𝑝 pCnt (♯‘𝐵))) ∈ ℤ ∧ (♯‘𝐵) ∈ ℤ) ∧ ((𝑎↑(𝑎 pCnt (♯‘𝐵))) gcd (𝑝↑(𝑝 pCnt (♯‘𝐵)))) = 1) → (((𝑎↑(𝑎 pCnt (♯‘𝐵))) ∥ (♯‘𝐵) ∧ (𝑝↑(𝑝 pCnt (♯‘𝐵))) ∥ (♯‘𝐵)) → ((𝑎↑(𝑎 pCnt (♯‘𝐵))) · (𝑝↑(𝑝 pCnt (♯‘𝐵)))) ∥ (♯‘𝐵)))
9372, 76, 77, 91, 92syl31anc 1375 . . . . . . . . . . . . . . 15 ((((𝜑𝑎𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥𝐵) → (((𝑎↑(𝑎 pCnt (♯‘𝐵))) ∥ (♯‘𝐵) ∧ (𝑝↑(𝑝 pCnt (♯‘𝐵))) ∥ (♯‘𝐵)) → ((𝑎↑(𝑎 pCnt (♯‘𝐵))) · (𝑝↑(𝑝 pCnt (♯‘𝐵)))) ∥ (♯‘𝐵)))
9459, 65, 93mp2and 699 . . . . . . . . . . . . . 14 ((((𝜑𝑎𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥𝐵) → ((𝑎↑(𝑎 pCnt (♯‘𝐵))) · (𝑝↑(𝑝 pCnt (♯‘𝐵)))) ∥ (♯‘𝐵))
9568simp3d 1144 . . . . . . . . . . . . . . 15 ((𝜑𝑎𝐴) → (♯‘𝐵) = ((𝑎↑(𝑎 pCnt (♯‘𝐵))) · ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵))))))
9695ad2antrr 726 . . . . . . . . . . . . . 14 ((((𝜑𝑎𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥𝐵) → (♯‘𝐵) = ((𝑎↑(𝑎 pCnt (♯‘𝐵))) · ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵))))))
9794, 96breqtrd 5136 . . . . . . . . . . . . 13 ((((𝜑𝑎𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥𝐵) → ((𝑎↑(𝑎 pCnt (♯‘𝐵))) · (𝑝↑(𝑝 pCnt (♯‘𝐵)))) ∥ ((𝑎↑(𝑎 pCnt (♯‘𝐵))) · ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵))))))
9869simprd 495 . . . . . . . . . . . . . . . 16 ((𝜑𝑎𝐴) → ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵)))) ∈ ℕ)
9998ad2antrr 726 . . . . . . . . . . . . . . 15 ((((𝜑𝑎𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥𝐵) → ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵)))) ∈ ℕ)
10099nnzd 12563 . . . . . . . . . . . . . 14 ((((𝜑𝑎𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥𝐵) → ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵)))) ∈ ℤ)
10171nnne0d 12243 . . . . . . . . . . . . . 14 ((((𝜑𝑎𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥𝐵) → (𝑎↑(𝑎 pCnt (♯‘𝐵))) ≠ 0)
102 dvdscmulr 16261 . . . . . . . . . . . . . 14 (((𝑝↑(𝑝 pCnt (♯‘𝐵))) ∈ ℤ ∧ ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵)))) ∈ ℤ ∧ ((𝑎↑(𝑎 pCnt (♯‘𝐵))) ∈ ℤ ∧ (𝑎↑(𝑎 pCnt (♯‘𝐵))) ≠ 0)) → (((𝑎↑(𝑎 pCnt (♯‘𝐵))) · (𝑝↑(𝑝 pCnt (♯‘𝐵)))) ∥ ((𝑎↑(𝑎 pCnt (♯‘𝐵))) · ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵))))) ↔ (𝑝↑(𝑝 pCnt (♯‘𝐵))) ∥ ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵))))))
10376, 100, 72, 101, 102syl112anc 1376 . . . . . . . . . . . . 13 ((((𝜑𝑎𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥𝐵) → (((𝑎↑(𝑎 pCnt (♯‘𝐵))) · (𝑝↑(𝑝 pCnt (♯‘𝐵)))) ∥ ((𝑎↑(𝑎 pCnt (♯‘𝐵))) · ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵))))) ↔ (𝑝↑(𝑝 pCnt (♯‘𝐵))) ∥ ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵))))))
10497, 103mpbid 232 . . . . . . . . . . . 12 ((((𝜑𝑎𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥𝐵) → (𝑝↑(𝑝 pCnt (♯‘𝐵))) ∥ ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵)))))
10515, 26odcl 19473 . . . . . . . . . . . . . . 15 (𝑥𝐵 → (𝑂𝑥) ∈ ℕ0)
106105adantl 481 . . . . . . . . . . . . . 14 ((((𝜑𝑎𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥𝐵) → (𝑂𝑥) ∈ ℕ0)
107106nn0zd 12562 . . . . . . . . . . . . 13 ((((𝜑𝑎𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥𝐵) → (𝑂𝑥) ∈ ℤ)
108 dvdstr 16271 . . . . . . . . . . . . 13 (((𝑂𝑥) ∈ ℤ ∧ (𝑝↑(𝑝 pCnt (♯‘𝐵))) ∈ ℤ ∧ ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵)))) ∈ ℤ) → (((𝑂𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵))) ∧ (𝑝↑(𝑝 pCnt (♯‘𝐵))) ∥ ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵))))) → (𝑂𝑥) ∥ ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵))))))
109107, 76, 100, 108syl3anc 1373 . . . . . . . . . . . 12 ((((𝜑𝑎𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥𝐵) → (((𝑂𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵))) ∧ (𝑝↑(𝑝 pCnt (♯‘𝐵))) ∥ ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵))))) → (𝑂𝑥) ∥ ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵))))))
110104, 109mpan2d 694 . . . . . . . . . . 11 ((((𝜑𝑎𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥𝐵) → ((𝑂𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵))) → (𝑂𝑥) ∥ ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵))))))
111110ss2rabdv 4042 . . . . . . . . . 10 (((𝜑𝑎𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) → {𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵)))} ⊆ {𝑥𝐵 ∣ (𝑂𝑥) ∥ ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵))))})
11244elpw 4570 . . . . . . . . . 10 ({𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵)))} ∈ 𝒫 {𝑥𝐵 ∣ (𝑂𝑥) ∥ ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵))))} ↔ {𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵)))} ⊆ {𝑥𝐵 ∣ (𝑂𝑥) ∥ ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵))))})
113111, 112sylibr 234 . . . . . . . . 9 (((𝜑𝑎𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) → {𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵)))} ∈ 𝒫 {𝑥𝐵 ∣ (𝑂𝑥) ∥ ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵))))})
11429reseq1i 5949 . . . . . . . . . 10 (𝑆 ↾ (𝐴 ∖ {𝑎})) = ((𝑝𝐴 ↦ {𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵)))}) ↾ (𝐴 ∖ {𝑎}))
115 difss 4102 . . . . . . . . . . 11 (𝐴 ∖ {𝑎}) ⊆ 𝐴
116 resmpt 6011 . . . . . . . . . . 11 ((𝐴 ∖ {𝑎}) ⊆ 𝐴 → ((𝑝𝐴 ↦ {𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵)))}) ↾ (𝐴 ∖ {𝑎})) = (𝑝 ∈ (𝐴 ∖ {𝑎}) ↦ {𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵)))}))
117115, 116ax-mp 5 . . . . . . . . . 10 ((𝑝𝐴 ↦ {𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵)))}) ↾ (𝐴 ∖ {𝑎})) = (𝑝 ∈ (𝐴 ∖ {𝑎}) ↦ {𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵)))})
118114, 117eqtri 2753 . . . . . . . . 9 (𝑆 ↾ (𝐴 ∖ {𝑎})) = (𝑝 ∈ (𝐴 ∖ {𝑎}) ↦ {𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵)))})
119113, 118fmptd 7089 . . . . . . . 8 ((𝜑𝑎𝐴) → (𝑆 ↾ (𝐴 ∖ {𝑎})):(𝐴 ∖ {𝑎})⟶𝒫 {𝑥𝐵 ∣ (𝑂𝑥) ∥ ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵))))})
120119frnd 6699 . . . . . . 7 ((𝜑𝑎𝐴) → ran (𝑆 ↾ (𝐴 ∖ {𝑎})) ⊆ 𝒫 {𝑥𝐵 ∣ (𝑂𝑥) ∥ ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵))))})
12154, 120eqsstrid 3988 . . . . . 6 ((𝜑𝑎𝐴) → (𝑆 “ (𝐴 ∖ {𝑎})) ⊆ 𝒫 {𝑥𝐵 ∣ (𝑂𝑥) ∥ ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵))))})
122 sspwuni 5067 . . . . . 6 ((𝑆 “ (𝐴 ∖ {𝑎})) ⊆ 𝒫 {𝑥𝐵 ∣ (𝑂𝑥) ∥ ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵))))} ↔ (𝑆 “ (𝐴 ∖ {𝑎})) ⊆ {𝑥𝐵 ∣ (𝑂𝑥) ∥ ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵))))})
123121, 122sylib 218 . . . . 5 ((𝜑𝑎𝐴) → (𝑆 “ (𝐴 ∖ {𝑎})) ⊆ {𝑥𝐵 ∣ (𝑂𝑥) ∥ ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵))))})
12498nnzd 12563 . . . . . 6 ((𝜑𝑎𝐴) → ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵)))) ∈ ℤ)
12526, 15oddvdssubg 19792 . . . . . 6 ((𝐺 ∈ Abel ∧ ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵)))) ∈ ℤ) → {𝑥𝐵 ∣ (𝑂𝑥) ∥ ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵))))} ∈ (SubGrp‘𝐺))
12649, 124, 125syl2anc 584 . . . . 5 ((𝜑𝑎𝐴) → {𝑥𝐵 ∣ (𝑂𝑥) ∥ ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵))))} ∈ (SubGrp‘𝐺))
1273mrcsscl 17588 . . . . 5 (((SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)) ∧ (𝑆 “ (𝐴 ∖ {𝑎})) ⊆ {𝑥𝐵 ∣ (𝑂𝑥) ∥ ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵))))} ∧ {𝑥𝐵 ∣ (𝑂𝑥) ∥ ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵))))} ∈ (SubGrp‘𝐺)) → ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐴 ∖ {𝑎}))) ⊆ {𝑥𝐵 ∣ (𝑂𝑥) ∥ ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵))))})
12853, 123, 126, 127syl3anc 1373 . . . 4 ((𝜑𝑎𝐴) → ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐴 ∖ {𝑎}))) ⊆ {𝑥𝐵 ∣ (𝑂𝑥) ∥ ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵))))})
129 ss2in 4211 . . . 4 (((𝑆𝑎) ⊆ {𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑎↑(𝑎 pCnt (♯‘𝐵)))} ∧ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐴 ∖ {𝑎}))) ⊆ {𝑥𝐵 ∣ (𝑂𝑥) ∥ ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵))))}) → ((𝑆𝑎) ∩ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐴 ∖ {𝑎})))) ⊆ ({𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑎↑(𝑎 pCnt (♯‘𝐵)))} ∩ {𝑥𝐵 ∣ (𝑂𝑥) ∥ ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵))))}))
13048, 128, 129syl2anc 584 . . 3 ((𝜑𝑎𝐴) → ((𝑆𝑎) ∩ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐴 ∖ {𝑎})))) ⊆ ({𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑎↑(𝑎 pCnt (♯‘𝐵)))} ∩ {𝑥𝐵 ∣ (𝑂𝑥) ∥ ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵))))}))
131 eqid 2730 . . . . 5 {𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑎↑(𝑎 pCnt (♯‘𝐵)))} = {𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑎↑(𝑎 pCnt (♯‘𝐵)))}
132 eqid 2730 . . . . 5 {𝑥𝐵 ∣ (𝑂𝑥) ∥ ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵))))} = {𝑥𝐵 ∣ (𝑂𝑥) ∥ ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵))))}
13368simp2d 1143 . . . . 5 ((𝜑𝑎𝐴) → ((𝑎↑(𝑎 pCnt (♯‘𝐵))) gcd ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵))))) = 1)
134 eqid 2730 . . . . 5 (LSSum‘𝐺) = (LSSum‘𝐺)
13515, 26, 131, 132, 49, 70, 98, 133, 95, 2, 134ablfacrp 20005 . . . 4 ((𝜑𝑎𝐴) → (({𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑎↑(𝑎 pCnt (♯‘𝐵)))} ∩ {𝑥𝐵 ∣ (𝑂𝑥) ∥ ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵))))}) = {(0g𝐺)} ∧ ({𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑎↑(𝑎 pCnt (♯‘𝐵)))} (LSSum‘𝐺){𝑥𝐵 ∣ (𝑂𝑥) ∥ ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵))))}) = 𝐵))
136135simpld 494 . . 3 ((𝜑𝑎𝐴) → ({𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑎↑(𝑎 pCnt (♯‘𝐵)))} ∩ {𝑥𝐵 ∣ (𝑂𝑥) ∥ ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵))))}) = {(0g𝐺)})
137130, 136sseqtrd 3986 . 2 ((𝜑𝑎𝐴) → ((𝑆𝑎) ∩ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐴 ∖ {𝑎})))) ⊆ {(0g𝐺)})
1381, 2, 3, 6, 10, 30, 37, 137dmdprdd 19938 1 (𝜑𝐺dom DProd 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2926  {crab 3408  Vcvv 3450  cdif 3914  cin 3916  wss 3917  c0 4299  𝒫 cpw 4566  {csn 4592   cuni 4874   class class class wbr 5110  cmpt 5191  dom cdm 5641  ran crn 5642  cres 5643  cima 5644  wf 6510  cfv 6514  (class class class)co 7390  Fincfn 8921  0cc0 11075  1c1 11076   · cmul 11080   / cdiv 11842  cn 12193  0cn0 12449  cz 12536  cexp 14033  chash 14302  cdvds 16229   gcd cgcd 16471  cprime 16648   pCnt cpc 16814  Basecbs 17186  0gc0g 17409  Moorecmre 17550  mrClscmrc 17551  ACScacs 17553  Grpcgrp 18872  SubGrpcsubg 19059  Cntzccntz 19254  odcod 19461  LSSumclsm 19571  Abelcabl 19718   DProd cdprd 19932
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-disj 5078  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-oadd 8441  df-omul 8442  df-er 8674  df-ec 8676  df-qs 8680  df-map 8804  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-sup 9400  df-inf 9401  df-oi 9470  df-card 9899  df-acn 9902  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-n0 12450  df-z 12537  df-uz 12801  df-q 12915  df-rp 12959  df-fz 13476  df-fzo 13623  df-fl 13761  df-mod 13839  df-seq 13974  df-exp 14034  df-hash 14303  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-clim 15461  df-sum 15660  df-dvds 16230  df-gcd 16472  df-prm 16649  df-pc 16815  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-0g 17411  df-mre 17554  df-mrc 17555  df-acs 17557  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-submnd 18718  df-grp 18875  df-minusg 18876  df-sbg 18877  df-mulg 19007  df-subg 19062  df-eqg 19064  df-cntz 19256  df-od 19465  df-lsm 19573  df-cmn 19719  df-abl 19720  df-dprd 19934
This theorem is referenced by:  ablfac1c  20010  ablfac1eu  20012  ablfaclem2  20025  ablfaclem3  20026
  Copyright terms: Public domain W3C validator