MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ablfac1b Structured version   Visualization version   GIF version

Theorem ablfac1b 20058
Description: Any abelian group is the direct product of factors of prime power order (with the exact order further matching the prime factorization of the group order). (Contributed by Mario Carneiro, 21-Apr-2016.)
Hypotheses
Ref Expression
ablfac1.b 𝐵 = (Base‘𝐺)
ablfac1.o 𝑂 = (od‘𝐺)
ablfac1.s 𝑆 = (𝑝𝐴 ↦ {𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵)))})
ablfac1.g (𝜑𝐺 ∈ Abel)
ablfac1.f (𝜑𝐵 ∈ Fin)
ablfac1.1 (𝜑𝐴 ⊆ ℙ)
Assertion
Ref Expression
ablfac1b (𝜑𝐺dom DProd 𝑆)
Distinct variable groups:   𝑥,𝑝,𝐵   𝜑,𝑝,𝑥   𝐴,𝑝,𝑥   𝑂,𝑝,𝑥   𝐺,𝑝,𝑥
Allowed substitution hints:   𝑆(𝑥,𝑝)

Proof of Theorem ablfac1b
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2736 . 2 (Cntz‘𝐺) = (Cntz‘𝐺)
2 eqid 2736 . 2 (0g𝐺) = (0g𝐺)
3 eqid 2736 . 2 (mrCls‘(SubGrp‘𝐺)) = (mrCls‘(SubGrp‘𝐺))
4 ablfac1.g . . 3 (𝜑𝐺 ∈ Abel)
5 ablgrp 19771 . . 3 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
64, 5syl 17 . 2 (𝜑𝐺 ∈ Grp)
7 ablfac1.1 . . 3 (𝜑𝐴 ⊆ ℙ)
8 prmex 16701 . . . 4 ℙ ∈ V
98ssex 5296 . . 3 (𝐴 ⊆ ℙ → 𝐴 ∈ V)
107, 9syl 17 . 2 (𝜑𝐴 ∈ V)
114adantr 480 . . . 4 ((𝜑𝑝𝐴) → 𝐺 ∈ Abel)
127sselda 3963 . . . . . . 7 ((𝜑𝑝𝐴) → 𝑝 ∈ ℙ)
13 prmnn 16698 . . . . . . 7 (𝑝 ∈ ℙ → 𝑝 ∈ ℕ)
1412, 13syl 17 . . . . . 6 ((𝜑𝑝𝐴) → 𝑝 ∈ ℕ)
15 ablfac1.b . . . . . . . . . . 11 𝐵 = (Base‘𝐺)
1615grpbn0 18954 . . . . . . . . . 10 (𝐺 ∈ Grp → 𝐵 ≠ ∅)
176, 16syl 17 . . . . . . . . 9 (𝜑𝐵 ≠ ∅)
18 ablfac1.f . . . . . . . . . 10 (𝜑𝐵 ∈ Fin)
19 hashnncl 14389 . . . . . . . . . 10 (𝐵 ∈ Fin → ((♯‘𝐵) ∈ ℕ ↔ 𝐵 ≠ ∅))
2018, 19syl 17 . . . . . . . . 9 (𝜑 → ((♯‘𝐵) ∈ ℕ ↔ 𝐵 ≠ ∅))
2117, 20mpbird 257 . . . . . . . 8 (𝜑 → (♯‘𝐵) ∈ ℕ)
2221adantr 480 . . . . . . 7 ((𝜑𝑝𝐴) → (♯‘𝐵) ∈ ℕ)
2312, 22pccld 16875 . . . . . 6 ((𝜑𝑝𝐴) → (𝑝 pCnt (♯‘𝐵)) ∈ ℕ0)
2414, 23nnexpcld 14268 . . . . 5 ((𝜑𝑝𝐴) → (𝑝↑(𝑝 pCnt (♯‘𝐵))) ∈ ℕ)
2524nnzd 12620 . . . 4 ((𝜑𝑝𝐴) → (𝑝↑(𝑝 pCnt (♯‘𝐵))) ∈ ℤ)
26 ablfac1.o . . . . 5 𝑂 = (od‘𝐺)
2726, 15oddvdssubg 19841 . . . 4 ((𝐺 ∈ Abel ∧ (𝑝↑(𝑝 pCnt (♯‘𝐵))) ∈ ℤ) → {𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵)))} ∈ (SubGrp‘𝐺))
2811, 25, 27syl2anc 584 . . 3 ((𝜑𝑝𝐴) → {𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵)))} ∈ (SubGrp‘𝐺))
29 ablfac1.s . . 3 𝑆 = (𝑝𝐴 ↦ {𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵)))})
3028, 29fmptd 7109 . 2 (𝜑𝑆:𝐴⟶(SubGrp‘𝐺))
314adantr 480 . . 3 ((𝜑 ∧ (𝑎𝐴𝑏𝐴𝑎𝑏)) → 𝐺 ∈ Abel)
3230adantr 480 . . . 4 ((𝜑 ∧ (𝑎𝐴𝑏𝐴𝑎𝑏)) → 𝑆:𝐴⟶(SubGrp‘𝐺))
33 simpr1 1195 . . . 4 ((𝜑 ∧ (𝑎𝐴𝑏𝐴𝑎𝑏)) → 𝑎𝐴)
3432, 33ffvelcdmd 7080 . . 3 ((𝜑 ∧ (𝑎𝐴𝑏𝐴𝑎𝑏)) → (𝑆𝑎) ∈ (SubGrp‘𝐺))
35 simpr2 1196 . . . 4 ((𝜑 ∧ (𝑎𝐴𝑏𝐴𝑎𝑏)) → 𝑏𝐴)
3632, 35ffvelcdmd 7080 . . 3 ((𝜑 ∧ (𝑎𝐴𝑏𝐴𝑎𝑏)) → (𝑆𝑏) ∈ (SubGrp‘𝐺))
371, 31, 34, 36ablcntzd 19843 . 2 ((𝜑 ∧ (𝑎𝐴𝑏𝐴𝑎𝑏)) → (𝑆𝑎) ⊆ ((Cntz‘𝐺)‘(𝑆𝑏)))
38 id 22 . . . . . . . . . 10 (𝑝 = 𝑎𝑝 = 𝑎)
39 oveq1 7417 . . . . . . . . . 10 (𝑝 = 𝑎 → (𝑝 pCnt (♯‘𝐵)) = (𝑎 pCnt (♯‘𝐵)))
4038, 39oveq12d 7428 . . . . . . . . 9 (𝑝 = 𝑎 → (𝑝↑(𝑝 pCnt (♯‘𝐵))) = (𝑎↑(𝑎 pCnt (♯‘𝐵))))
4140breq2d 5136 . . . . . . . 8 (𝑝 = 𝑎 → ((𝑂𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵))) ↔ (𝑂𝑥) ∥ (𝑎↑(𝑎 pCnt (♯‘𝐵)))))
4241rabbidv 3428 . . . . . . 7 (𝑝 = 𝑎 → {𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵)))} = {𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑎↑(𝑎 pCnt (♯‘𝐵)))})
4315fvexi 6895 . . . . . . . 8 𝐵 ∈ V
4443rabex 5314 . . . . . . 7 {𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵)))} ∈ V
4542, 29, 44fvmpt3i 6996 . . . . . 6 (𝑎𝐴 → (𝑆𝑎) = {𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑎↑(𝑎 pCnt (♯‘𝐵)))})
4645adantl 481 . . . . 5 ((𝜑𝑎𝐴) → (𝑆𝑎) = {𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑎↑(𝑎 pCnt (♯‘𝐵)))})
47 eqimss 4022 . . . . 5 ((𝑆𝑎) = {𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑎↑(𝑎 pCnt (♯‘𝐵)))} → (𝑆𝑎) ⊆ {𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑎↑(𝑎 pCnt (♯‘𝐵)))})
4846, 47syl 17 . . . 4 ((𝜑𝑎𝐴) → (𝑆𝑎) ⊆ {𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑎↑(𝑎 pCnt (♯‘𝐵)))})
494adantr 480 . . . . . 6 ((𝜑𝑎𝐴) → 𝐺 ∈ Abel)
50 eqid 2736 . . . . . . 7 (Base‘𝐺) = (Base‘𝐺)
5150subgacs 19149 . . . . . 6 (𝐺 ∈ Grp → (SubGrp‘𝐺) ∈ (ACS‘(Base‘𝐺)))
52 acsmre 17669 . . . . . 6 ((SubGrp‘𝐺) ∈ (ACS‘(Base‘𝐺)) → (SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)))
5349, 5, 51, 524syl 19 . . . . 5 ((𝜑𝑎𝐴) → (SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)))
54 df-ima 5672 . . . . . . 7 (𝑆 “ (𝐴 ∖ {𝑎})) = ran (𝑆 ↾ (𝐴 ∖ {𝑎}))
557sselda 3963 . . . . . . . . . . . . . . . . 17 ((𝜑𝑎𝐴) → 𝑎 ∈ ℙ)
5655ad2antrr 726 . . . . . . . . . . . . . . . 16 ((((𝜑𝑎𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥𝐵) → 𝑎 ∈ ℙ)
5721ad3antrrr 730 . . . . . . . . . . . . . . . 16 ((((𝜑𝑎𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥𝐵) → (♯‘𝐵) ∈ ℕ)
58 pcdvds 16889 . . . . . . . . . . . . . . . 16 ((𝑎 ∈ ℙ ∧ (♯‘𝐵) ∈ ℕ) → (𝑎↑(𝑎 pCnt (♯‘𝐵))) ∥ (♯‘𝐵))
5956, 57, 58syl2anc 584 . . . . . . . . . . . . . . 15 ((((𝜑𝑎𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥𝐵) → (𝑎↑(𝑎 pCnt (♯‘𝐵))) ∥ (♯‘𝐵))
607ad3antrrr 730 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑎𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥𝐵) → 𝐴 ⊆ ℙ)
61 eldifi 4111 . . . . . . . . . . . . . . . . . 18 (𝑝 ∈ (𝐴 ∖ {𝑎}) → 𝑝𝐴)
6261ad2antlr 727 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑎𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥𝐵) → 𝑝𝐴)
6360, 62sseldd 3964 . . . . . . . . . . . . . . . 16 ((((𝜑𝑎𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥𝐵) → 𝑝 ∈ ℙ)
64 pcdvds 16889 . . . . . . . . . . . . . . . 16 ((𝑝 ∈ ℙ ∧ (♯‘𝐵) ∈ ℕ) → (𝑝↑(𝑝 pCnt (♯‘𝐵))) ∥ (♯‘𝐵))
6563, 57, 64syl2anc 584 . . . . . . . . . . . . . . 15 ((((𝜑𝑎𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥𝐵) → (𝑝↑(𝑝 pCnt (♯‘𝐵))) ∥ (♯‘𝐵))
66 eqid 2736 . . . . . . . . . . . . . . . . . . . . 21 (𝑎↑(𝑎 pCnt (♯‘𝐵))) = (𝑎↑(𝑎 pCnt (♯‘𝐵)))
67 eqid 2736 . . . . . . . . . . . . . . . . . . . . 21 ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵)))) = ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵))))
6815, 26, 29, 4, 18, 7, 66, 67ablfac1lem 20056 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑎𝐴) → (((𝑎↑(𝑎 pCnt (♯‘𝐵))) ∈ ℕ ∧ ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵)))) ∈ ℕ) ∧ ((𝑎↑(𝑎 pCnt (♯‘𝐵))) gcd ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵))))) = 1 ∧ (♯‘𝐵) = ((𝑎↑(𝑎 pCnt (♯‘𝐵))) · ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵)))))))
6968simp1d 1142 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑎𝐴) → ((𝑎↑(𝑎 pCnt (♯‘𝐵))) ∈ ℕ ∧ ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵)))) ∈ ℕ))
7069simpld 494 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑎𝐴) → (𝑎↑(𝑎 pCnt (♯‘𝐵))) ∈ ℕ)
7170ad2antrr 726 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑎𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥𝐵) → (𝑎↑(𝑎 pCnt (♯‘𝐵))) ∈ ℕ)
7271nnzd 12620 . . . . . . . . . . . . . . . 16 ((((𝜑𝑎𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥𝐵) → (𝑎↑(𝑎 pCnt (♯‘𝐵))) ∈ ℤ)
7363, 13syl 17 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑎𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥𝐵) → 𝑝 ∈ ℕ)
7463, 57pccld 16875 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑎𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥𝐵) → (𝑝 pCnt (♯‘𝐵)) ∈ ℕ0)
7573, 74nnexpcld 14268 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑎𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥𝐵) → (𝑝↑(𝑝 pCnt (♯‘𝐵))) ∈ ℕ)
7675nnzd 12620 . . . . . . . . . . . . . . . 16 ((((𝜑𝑎𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥𝐵) → (𝑝↑(𝑝 pCnt (♯‘𝐵))) ∈ ℤ)
7757nnzd 12620 . . . . . . . . . . . . . . . 16 ((((𝜑𝑎𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥𝐵) → (♯‘𝐵) ∈ ℤ)
78 eldifsni 4771 . . . . . . . . . . . . . . . . . . . 20 (𝑝 ∈ (𝐴 ∖ {𝑎}) → 𝑝𝑎)
7978ad2antlr 727 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑎𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥𝐵) → 𝑝𝑎)
8079necomd 2988 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑎𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥𝐵) → 𝑎𝑝)
81 prmrp 16736 . . . . . . . . . . . . . . . . . . 19 ((𝑎 ∈ ℙ ∧ 𝑝 ∈ ℙ) → ((𝑎 gcd 𝑝) = 1 ↔ 𝑎𝑝))
8256, 63, 81syl2anc 584 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑎𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥𝐵) → ((𝑎 gcd 𝑝) = 1 ↔ 𝑎𝑝))
8380, 82mpbird 257 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑎𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥𝐵) → (𝑎 gcd 𝑝) = 1)
84 prmz 16699 . . . . . . . . . . . . . . . . . . 19 (𝑎 ∈ ℙ → 𝑎 ∈ ℤ)
8556, 84syl 17 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑎𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥𝐵) → 𝑎 ∈ ℤ)
86 prmz 16699 . . . . . . . . . . . . . . . . . . 19 (𝑝 ∈ ℙ → 𝑝 ∈ ℤ)
8763, 86syl 17 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑎𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥𝐵) → 𝑝 ∈ ℤ)
8856, 57pccld 16875 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑎𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥𝐵) → (𝑎 pCnt (♯‘𝐵)) ∈ ℕ0)
89 rpexp12i 16748 . . . . . . . . . . . . . . . . . 18 ((𝑎 ∈ ℤ ∧ 𝑝 ∈ ℤ ∧ ((𝑎 pCnt (♯‘𝐵)) ∈ ℕ0 ∧ (𝑝 pCnt (♯‘𝐵)) ∈ ℕ0)) → ((𝑎 gcd 𝑝) = 1 → ((𝑎↑(𝑎 pCnt (♯‘𝐵))) gcd (𝑝↑(𝑝 pCnt (♯‘𝐵)))) = 1))
9085, 87, 88, 74, 89syl112anc 1376 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑎𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥𝐵) → ((𝑎 gcd 𝑝) = 1 → ((𝑎↑(𝑎 pCnt (♯‘𝐵))) gcd (𝑝↑(𝑝 pCnt (♯‘𝐵)))) = 1))
9183, 90mpd 15 . . . . . . . . . . . . . . . 16 ((((𝜑𝑎𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥𝐵) → ((𝑎↑(𝑎 pCnt (♯‘𝐵))) gcd (𝑝↑(𝑝 pCnt (♯‘𝐵)))) = 1)
92 coprmdvds2 16678 . . . . . . . . . . . . . . . 16 ((((𝑎↑(𝑎 pCnt (♯‘𝐵))) ∈ ℤ ∧ (𝑝↑(𝑝 pCnt (♯‘𝐵))) ∈ ℤ ∧ (♯‘𝐵) ∈ ℤ) ∧ ((𝑎↑(𝑎 pCnt (♯‘𝐵))) gcd (𝑝↑(𝑝 pCnt (♯‘𝐵)))) = 1) → (((𝑎↑(𝑎 pCnt (♯‘𝐵))) ∥ (♯‘𝐵) ∧ (𝑝↑(𝑝 pCnt (♯‘𝐵))) ∥ (♯‘𝐵)) → ((𝑎↑(𝑎 pCnt (♯‘𝐵))) · (𝑝↑(𝑝 pCnt (♯‘𝐵)))) ∥ (♯‘𝐵)))
9372, 76, 77, 91, 92syl31anc 1375 . . . . . . . . . . . . . . 15 ((((𝜑𝑎𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥𝐵) → (((𝑎↑(𝑎 pCnt (♯‘𝐵))) ∥ (♯‘𝐵) ∧ (𝑝↑(𝑝 pCnt (♯‘𝐵))) ∥ (♯‘𝐵)) → ((𝑎↑(𝑎 pCnt (♯‘𝐵))) · (𝑝↑(𝑝 pCnt (♯‘𝐵)))) ∥ (♯‘𝐵)))
9459, 65, 93mp2and 699 . . . . . . . . . . . . . 14 ((((𝜑𝑎𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥𝐵) → ((𝑎↑(𝑎 pCnt (♯‘𝐵))) · (𝑝↑(𝑝 pCnt (♯‘𝐵)))) ∥ (♯‘𝐵))
9568simp3d 1144 . . . . . . . . . . . . . . 15 ((𝜑𝑎𝐴) → (♯‘𝐵) = ((𝑎↑(𝑎 pCnt (♯‘𝐵))) · ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵))))))
9695ad2antrr 726 . . . . . . . . . . . . . 14 ((((𝜑𝑎𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥𝐵) → (♯‘𝐵) = ((𝑎↑(𝑎 pCnt (♯‘𝐵))) · ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵))))))
9794, 96breqtrd 5150 . . . . . . . . . . . . 13 ((((𝜑𝑎𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥𝐵) → ((𝑎↑(𝑎 pCnt (♯‘𝐵))) · (𝑝↑(𝑝 pCnt (♯‘𝐵)))) ∥ ((𝑎↑(𝑎 pCnt (♯‘𝐵))) · ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵))))))
9869simprd 495 . . . . . . . . . . . . . . . 16 ((𝜑𝑎𝐴) → ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵)))) ∈ ℕ)
9998ad2antrr 726 . . . . . . . . . . . . . . 15 ((((𝜑𝑎𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥𝐵) → ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵)))) ∈ ℕ)
10099nnzd 12620 . . . . . . . . . . . . . 14 ((((𝜑𝑎𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥𝐵) → ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵)))) ∈ ℤ)
10171nnne0d 12295 . . . . . . . . . . . . . 14 ((((𝜑𝑎𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥𝐵) → (𝑎↑(𝑎 pCnt (♯‘𝐵))) ≠ 0)
102 dvdscmulr 16309 . . . . . . . . . . . . . 14 (((𝑝↑(𝑝 pCnt (♯‘𝐵))) ∈ ℤ ∧ ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵)))) ∈ ℤ ∧ ((𝑎↑(𝑎 pCnt (♯‘𝐵))) ∈ ℤ ∧ (𝑎↑(𝑎 pCnt (♯‘𝐵))) ≠ 0)) → (((𝑎↑(𝑎 pCnt (♯‘𝐵))) · (𝑝↑(𝑝 pCnt (♯‘𝐵)))) ∥ ((𝑎↑(𝑎 pCnt (♯‘𝐵))) · ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵))))) ↔ (𝑝↑(𝑝 pCnt (♯‘𝐵))) ∥ ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵))))))
10376, 100, 72, 101, 102syl112anc 1376 . . . . . . . . . . . . 13 ((((𝜑𝑎𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥𝐵) → (((𝑎↑(𝑎 pCnt (♯‘𝐵))) · (𝑝↑(𝑝 pCnt (♯‘𝐵)))) ∥ ((𝑎↑(𝑎 pCnt (♯‘𝐵))) · ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵))))) ↔ (𝑝↑(𝑝 pCnt (♯‘𝐵))) ∥ ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵))))))
10497, 103mpbid 232 . . . . . . . . . . . 12 ((((𝜑𝑎𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥𝐵) → (𝑝↑(𝑝 pCnt (♯‘𝐵))) ∥ ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵)))))
10515, 26odcl 19522 . . . . . . . . . . . . . . 15 (𝑥𝐵 → (𝑂𝑥) ∈ ℕ0)
106105adantl 481 . . . . . . . . . . . . . 14 ((((𝜑𝑎𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥𝐵) → (𝑂𝑥) ∈ ℕ0)
107106nn0zd 12619 . . . . . . . . . . . . 13 ((((𝜑𝑎𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥𝐵) → (𝑂𝑥) ∈ ℤ)
108 dvdstr 16318 . . . . . . . . . . . . 13 (((𝑂𝑥) ∈ ℤ ∧ (𝑝↑(𝑝 pCnt (♯‘𝐵))) ∈ ℤ ∧ ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵)))) ∈ ℤ) → (((𝑂𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵))) ∧ (𝑝↑(𝑝 pCnt (♯‘𝐵))) ∥ ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵))))) → (𝑂𝑥) ∥ ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵))))))
109107, 76, 100, 108syl3anc 1373 . . . . . . . . . . . 12 ((((𝜑𝑎𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥𝐵) → (((𝑂𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵))) ∧ (𝑝↑(𝑝 pCnt (♯‘𝐵))) ∥ ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵))))) → (𝑂𝑥) ∥ ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵))))))
110104, 109mpan2d 694 . . . . . . . . . . 11 ((((𝜑𝑎𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥𝐵) → ((𝑂𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵))) → (𝑂𝑥) ∥ ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵))))))
111110ss2rabdv 4056 . . . . . . . . . 10 (((𝜑𝑎𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) → {𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵)))} ⊆ {𝑥𝐵 ∣ (𝑂𝑥) ∥ ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵))))})
11244elpw 4584 . . . . . . . . . 10 ({𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵)))} ∈ 𝒫 {𝑥𝐵 ∣ (𝑂𝑥) ∥ ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵))))} ↔ {𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵)))} ⊆ {𝑥𝐵 ∣ (𝑂𝑥) ∥ ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵))))})
113111, 112sylibr 234 . . . . . . . . 9 (((𝜑𝑎𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) → {𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵)))} ∈ 𝒫 {𝑥𝐵 ∣ (𝑂𝑥) ∥ ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵))))})
11429reseq1i 5967 . . . . . . . . . 10 (𝑆 ↾ (𝐴 ∖ {𝑎})) = ((𝑝𝐴 ↦ {𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵)))}) ↾ (𝐴 ∖ {𝑎}))
115 difss 4116 . . . . . . . . . . 11 (𝐴 ∖ {𝑎}) ⊆ 𝐴
116 resmpt 6029 . . . . . . . . . . 11 ((𝐴 ∖ {𝑎}) ⊆ 𝐴 → ((𝑝𝐴 ↦ {𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵)))}) ↾ (𝐴 ∖ {𝑎})) = (𝑝 ∈ (𝐴 ∖ {𝑎}) ↦ {𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵)))}))
117115, 116ax-mp 5 . . . . . . . . . 10 ((𝑝𝐴 ↦ {𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵)))}) ↾ (𝐴 ∖ {𝑎})) = (𝑝 ∈ (𝐴 ∖ {𝑎}) ↦ {𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵)))})
118114, 117eqtri 2759 . . . . . . . . 9 (𝑆 ↾ (𝐴 ∖ {𝑎})) = (𝑝 ∈ (𝐴 ∖ {𝑎}) ↦ {𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵)))})
119113, 118fmptd 7109 . . . . . . . 8 ((𝜑𝑎𝐴) → (𝑆 ↾ (𝐴 ∖ {𝑎})):(𝐴 ∖ {𝑎})⟶𝒫 {𝑥𝐵 ∣ (𝑂𝑥) ∥ ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵))))})
120119frnd 6719 . . . . . . 7 ((𝜑𝑎𝐴) → ran (𝑆 ↾ (𝐴 ∖ {𝑎})) ⊆ 𝒫 {𝑥𝐵 ∣ (𝑂𝑥) ∥ ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵))))})
12154, 120eqsstrid 4002 . . . . . 6 ((𝜑𝑎𝐴) → (𝑆 “ (𝐴 ∖ {𝑎})) ⊆ 𝒫 {𝑥𝐵 ∣ (𝑂𝑥) ∥ ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵))))})
122 sspwuni 5081 . . . . . 6 ((𝑆 “ (𝐴 ∖ {𝑎})) ⊆ 𝒫 {𝑥𝐵 ∣ (𝑂𝑥) ∥ ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵))))} ↔ (𝑆 “ (𝐴 ∖ {𝑎})) ⊆ {𝑥𝐵 ∣ (𝑂𝑥) ∥ ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵))))})
123121, 122sylib 218 . . . . 5 ((𝜑𝑎𝐴) → (𝑆 “ (𝐴 ∖ {𝑎})) ⊆ {𝑥𝐵 ∣ (𝑂𝑥) ∥ ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵))))})
12498nnzd 12620 . . . . . 6 ((𝜑𝑎𝐴) → ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵)))) ∈ ℤ)
12526, 15oddvdssubg 19841 . . . . . 6 ((𝐺 ∈ Abel ∧ ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵)))) ∈ ℤ) → {𝑥𝐵 ∣ (𝑂𝑥) ∥ ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵))))} ∈ (SubGrp‘𝐺))
12649, 124, 125syl2anc 584 . . . . 5 ((𝜑𝑎𝐴) → {𝑥𝐵 ∣ (𝑂𝑥) ∥ ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵))))} ∈ (SubGrp‘𝐺))
1273mrcsscl 17637 . . . . 5 (((SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)) ∧ (𝑆 “ (𝐴 ∖ {𝑎})) ⊆ {𝑥𝐵 ∣ (𝑂𝑥) ∥ ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵))))} ∧ {𝑥𝐵 ∣ (𝑂𝑥) ∥ ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵))))} ∈ (SubGrp‘𝐺)) → ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐴 ∖ {𝑎}))) ⊆ {𝑥𝐵 ∣ (𝑂𝑥) ∥ ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵))))})
12853, 123, 126, 127syl3anc 1373 . . . 4 ((𝜑𝑎𝐴) → ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐴 ∖ {𝑎}))) ⊆ {𝑥𝐵 ∣ (𝑂𝑥) ∥ ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵))))})
129 ss2in 4225 . . . 4 (((𝑆𝑎) ⊆ {𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑎↑(𝑎 pCnt (♯‘𝐵)))} ∧ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐴 ∖ {𝑎}))) ⊆ {𝑥𝐵 ∣ (𝑂𝑥) ∥ ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵))))}) → ((𝑆𝑎) ∩ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐴 ∖ {𝑎})))) ⊆ ({𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑎↑(𝑎 pCnt (♯‘𝐵)))} ∩ {𝑥𝐵 ∣ (𝑂𝑥) ∥ ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵))))}))
13048, 128, 129syl2anc 584 . . 3 ((𝜑𝑎𝐴) → ((𝑆𝑎) ∩ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐴 ∖ {𝑎})))) ⊆ ({𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑎↑(𝑎 pCnt (♯‘𝐵)))} ∩ {𝑥𝐵 ∣ (𝑂𝑥) ∥ ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵))))}))
131 eqid 2736 . . . . 5 {𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑎↑(𝑎 pCnt (♯‘𝐵)))} = {𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑎↑(𝑎 pCnt (♯‘𝐵)))}
132 eqid 2736 . . . . 5 {𝑥𝐵 ∣ (𝑂𝑥) ∥ ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵))))} = {𝑥𝐵 ∣ (𝑂𝑥) ∥ ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵))))}
13368simp2d 1143 . . . . 5 ((𝜑𝑎𝐴) → ((𝑎↑(𝑎 pCnt (♯‘𝐵))) gcd ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵))))) = 1)
134 eqid 2736 . . . . 5 (LSSum‘𝐺) = (LSSum‘𝐺)
13515, 26, 131, 132, 49, 70, 98, 133, 95, 2, 134ablfacrp 20054 . . . 4 ((𝜑𝑎𝐴) → (({𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑎↑(𝑎 pCnt (♯‘𝐵)))} ∩ {𝑥𝐵 ∣ (𝑂𝑥) ∥ ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵))))}) = {(0g𝐺)} ∧ ({𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑎↑(𝑎 pCnt (♯‘𝐵)))} (LSSum‘𝐺){𝑥𝐵 ∣ (𝑂𝑥) ∥ ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵))))}) = 𝐵))
136135simpld 494 . . 3 ((𝜑𝑎𝐴) → ({𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑎↑(𝑎 pCnt (♯‘𝐵)))} ∩ {𝑥𝐵 ∣ (𝑂𝑥) ∥ ((♯‘𝐵) / (𝑎↑(𝑎 pCnt (♯‘𝐵))))}) = {(0g𝐺)})
137130, 136sseqtrd 4000 . 2 ((𝜑𝑎𝐴) → ((𝑆𝑎) ∩ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐴 ∖ {𝑎})))) ⊆ {(0g𝐺)})
1381, 2, 3, 6, 10, 30, 37, 137dmdprdd 19987 1 (𝜑𝐺dom DProd 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2933  {crab 3420  Vcvv 3464  cdif 3928  cin 3930  wss 3931  c0 4313  𝒫 cpw 4580  {csn 4606   cuni 4888   class class class wbr 5124  cmpt 5206  dom cdm 5659  ran crn 5660  cres 5661  cima 5662  wf 6532  cfv 6536  (class class class)co 7410  Fincfn 8964  0cc0 11134  1c1 11135   · cmul 11139   / cdiv 11899  cn 12245  0cn0 12506  cz 12593  cexp 14084  chash 14353  cdvds 16277   gcd cgcd 16518  cprime 16695   pCnt cpc 16861  Basecbs 17233  0gc0g 17458  Moorecmre 17599  mrClscmrc 17600  ACScacs 17602  Grpcgrp 18921  SubGrpcsubg 19108  Cntzccntz 19303  odcod 19510  LSSumclsm 19620  Abelcabl 19767   DProd cdprd 19981
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-inf2 9660  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-iin 4975  df-disj 5092  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-2o 8486  df-oadd 8489  df-omul 8490  df-er 8724  df-ec 8726  df-qs 8730  df-map 8847  df-ixp 8917  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-sup 9459  df-inf 9460  df-oi 9529  df-card 9958  df-acn 9961  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-2 12308  df-3 12309  df-n0 12507  df-z 12594  df-uz 12858  df-q 12970  df-rp 13014  df-fz 13530  df-fzo 13677  df-fl 13814  df-mod 13892  df-seq 14025  df-exp 14085  df-hash 14354  df-cj 15123  df-re 15124  df-im 15125  df-sqrt 15259  df-abs 15260  df-clim 15509  df-sum 15708  df-dvds 16278  df-gcd 16519  df-prm 16696  df-pc 16862  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-ress 17257  df-plusg 17289  df-0g 17460  df-mre 17603  df-mrc 17604  df-acs 17606  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-submnd 18767  df-grp 18924  df-minusg 18925  df-sbg 18926  df-mulg 19056  df-subg 19111  df-eqg 19113  df-cntz 19305  df-od 19514  df-lsm 19622  df-cmn 19768  df-abl 19769  df-dprd 19983
This theorem is referenced by:  ablfac1c  20059  ablfac1eu  20061  ablfaclem2  20074  ablfaclem3  20075
  Copyright terms: Public domain W3C validator