| Step | Hyp | Ref
| Expression |
| 1 | | eqid 2737 |
. . . . 5
⊢ ∪ 𝐽 =
∪ 𝐽 |
| 2 | 1 | neii1 23114 |
. . . 4
⊢ ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) → 𝑁 ⊆ ∪ 𝐽) |
| 3 | | ssinss1 4246 |
. . . 4
⊢ (𝑁 ⊆ ∪ 𝐽
→ (𝑁 ∩ 𝑀) ⊆ ∪ 𝐽) |
| 4 | 2, 3 | syl 17 |
. . 3
⊢ ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) → (𝑁 ∩ 𝑀) ⊆ ∪ 𝐽) |
| 5 | 4 | 3adant3 1133 |
. 2
⊢ ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆) ∧ 𝑀 ∈ ((nei‘𝐽)‘𝑆)) → (𝑁 ∩ 𝑀) ⊆ ∪ 𝐽) |
| 6 | | neii2 23116 |
. . . . 5
⊢ ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) → ∃ℎ ∈ 𝐽 (𝑆 ⊆ ℎ ∧ ℎ ⊆ 𝑁)) |
| 7 | | neii2 23116 |
. . . . 5
⊢ ((𝐽 ∈ Top ∧ 𝑀 ∈ ((nei‘𝐽)‘𝑆)) → ∃𝑣 ∈ 𝐽 (𝑆 ⊆ 𝑣 ∧ 𝑣 ⊆ 𝑀)) |
| 8 | 6, 7 | anim12dan 619 |
. . . 4
⊢ ((𝐽 ∈ Top ∧ (𝑁 ∈ ((nei‘𝐽)‘𝑆) ∧ 𝑀 ∈ ((nei‘𝐽)‘𝑆))) → (∃ℎ ∈ 𝐽 (𝑆 ⊆ ℎ ∧ ℎ ⊆ 𝑁) ∧ ∃𝑣 ∈ 𝐽 (𝑆 ⊆ 𝑣 ∧ 𝑣 ⊆ 𝑀))) |
| 9 | | inopn 22905 |
. . . . . . . . . . 11
⊢ ((𝐽 ∈ Top ∧ ℎ ∈ 𝐽 ∧ 𝑣 ∈ 𝐽) → (ℎ ∩ 𝑣) ∈ 𝐽) |
| 10 | 9 | 3expa 1119 |
. . . . . . . . . 10
⊢ (((𝐽 ∈ Top ∧ ℎ ∈ 𝐽) ∧ 𝑣 ∈ 𝐽) → (ℎ ∩ 𝑣) ∈ 𝐽) |
| 11 | | ssin 4239 |
. . . . . . . . . . . . 13
⊢ ((𝑆 ⊆ ℎ ∧ 𝑆 ⊆ 𝑣) ↔ 𝑆 ⊆ (ℎ ∩ 𝑣)) |
| 12 | 11 | biimpi 216 |
. . . . . . . . . . . 12
⊢ ((𝑆 ⊆ ℎ ∧ 𝑆 ⊆ 𝑣) → 𝑆 ⊆ (ℎ ∩ 𝑣)) |
| 13 | | ss2in 4245 |
. . . . . . . . . . . 12
⊢ ((ℎ ⊆ 𝑁 ∧ 𝑣 ⊆ 𝑀) → (ℎ ∩ 𝑣) ⊆ (𝑁 ∩ 𝑀)) |
| 14 | 12, 13 | anim12i 613 |
. . . . . . . . . . 11
⊢ (((𝑆 ⊆ ℎ ∧ 𝑆 ⊆ 𝑣) ∧ (ℎ ⊆ 𝑁 ∧ 𝑣 ⊆ 𝑀)) → (𝑆 ⊆ (ℎ ∩ 𝑣) ∧ (ℎ ∩ 𝑣) ⊆ (𝑁 ∩ 𝑀))) |
| 15 | 14 | an4s 660 |
. . . . . . . . . 10
⊢ (((𝑆 ⊆ ℎ ∧ ℎ ⊆ 𝑁) ∧ (𝑆 ⊆ 𝑣 ∧ 𝑣 ⊆ 𝑀)) → (𝑆 ⊆ (ℎ ∩ 𝑣) ∧ (ℎ ∩ 𝑣) ⊆ (𝑁 ∩ 𝑀))) |
| 16 | | sseq2 4010 |
. . . . . . . . . . . 12
⊢ (𝑔 = (ℎ ∩ 𝑣) → (𝑆 ⊆ 𝑔 ↔ 𝑆 ⊆ (ℎ ∩ 𝑣))) |
| 17 | | sseq1 4009 |
. . . . . . . . . . . 12
⊢ (𝑔 = (ℎ ∩ 𝑣) → (𝑔 ⊆ (𝑁 ∩ 𝑀) ↔ (ℎ ∩ 𝑣) ⊆ (𝑁 ∩ 𝑀))) |
| 18 | 16, 17 | anbi12d 632 |
. . . . . . . . . . 11
⊢ (𝑔 = (ℎ ∩ 𝑣) → ((𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ (𝑁 ∩ 𝑀)) ↔ (𝑆 ⊆ (ℎ ∩ 𝑣) ∧ (ℎ ∩ 𝑣) ⊆ (𝑁 ∩ 𝑀)))) |
| 19 | 18 | rspcev 3622 |
. . . . . . . . . 10
⊢ (((ℎ ∩ 𝑣) ∈ 𝐽 ∧ (𝑆 ⊆ (ℎ ∩ 𝑣) ∧ (ℎ ∩ 𝑣) ⊆ (𝑁 ∩ 𝑀))) → ∃𝑔 ∈ 𝐽 (𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ (𝑁 ∩ 𝑀))) |
| 20 | 10, 15, 19 | syl2an 596 |
. . . . . . . . 9
⊢ ((((𝐽 ∈ Top ∧ ℎ ∈ 𝐽) ∧ 𝑣 ∈ 𝐽) ∧ ((𝑆 ⊆ ℎ ∧ ℎ ⊆ 𝑁) ∧ (𝑆 ⊆ 𝑣 ∧ 𝑣 ⊆ 𝑀))) → ∃𝑔 ∈ 𝐽 (𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ (𝑁 ∩ 𝑀))) |
| 21 | 20 | expr 456 |
. . . . . . . 8
⊢ ((((𝐽 ∈ Top ∧ ℎ ∈ 𝐽) ∧ 𝑣 ∈ 𝐽) ∧ (𝑆 ⊆ ℎ ∧ ℎ ⊆ 𝑁)) → ((𝑆 ⊆ 𝑣 ∧ 𝑣 ⊆ 𝑀) → ∃𝑔 ∈ 𝐽 (𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ (𝑁 ∩ 𝑀)))) |
| 22 | 21 | an32s 652 |
. . . . . . 7
⊢ ((((𝐽 ∈ Top ∧ ℎ ∈ 𝐽) ∧ (𝑆 ⊆ ℎ ∧ ℎ ⊆ 𝑁)) ∧ 𝑣 ∈ 𝐽) → ((𝑆 ⊆ 𝑣 ∧ 𝑣 ⊆ 𝑀) → ∃𝑔 ∈ 𝐽 (𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ (𝑁 ∩ 𝑀)))) |
| 23 | 22 | rexlimdva 3155 |
. . . . . 6
⊢ (((𝐽 ∈ Top ∧ ℎ ∈ 𝐽) ∧ (𝑆 ⊆ ℎ ∧ ℎ ⊆ 𝑁)) → (∃𝑣 ∈ 𝐽 (𝑆 ⊆ 𝑣 ∧ 𝑣 ⊆ 𝑀) → ∃𝑔 ∈ 𝐽 (𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ (𝑁 ∩ 𝑀)))) |
| 24 | 23 | rexlimdva2 3157 |
. . . . 5
⊢ (𝐽 ∈ Top → (∃ℎ ∈ 𝐽 (𝑆 ⊆ ℎ ∧ ℎ ⊆ 𝑁) → (∃𝑣 ∈ 𝐽 (𝑆 ⊆ 𝑣 ∧ 𝑣 ⊆ 𝑀) → ∃𝑔 ∈ 𝐽 (𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ (𝑁 ∩ 𝑀))))) |
| 25 | 24 | imp32 418 |
. . . 4
⊢ ((𝐽 ∈ Top ∧ (∃ℎ ∈ 𝐽 (𝑆 ⊆ ℎ ∧ ℎ ⊆ 𝑁) ∧ ∃𝑣 ∈ 𝐽 (𝑆 ⊆ 𝑣 ∧ 𝑣 ⊆ 𝑀))) → ∃𝑔 ∈ 𝐽 (𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ (𝑁 ∩ 𝑀))) |
| 26 | 8, 25 | syldan 591 |
. . 3
⊢ ((𝐽 ∈ Top ∧ (𝑁 ∈ ((nei‘𝐽)‘𝑆) ∧ 𝑀 ∈ ((nei‘𝐽)‘𝑆))) → ∃𝑔 ∈ 𝐽 (𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ (𝑁 ∩ 𝑀))) |
| 27 | 26 | 3impb 1115 |
. 2
⊢ ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆) ∧ 𝑀 ∈ ((nei‘𝐽)‘𝑆)) → ∃𝑔 ∈ 𝐽 (𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ (𝑁 ∩ 𝑀))) |
| 28 | 1 | neiss2 23109 |
. . . 4
⊢ ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) → 𝑆 ⊆ ∪ 𝐽) |
| 29 | 1 | isnei 23111 |
. . . 4
⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ ∪ 𝐽)
→ ((𝑁 ∩ 𝑀) ∈ ((nei‘𝐽)‘𝑆) ↔ ((𝑁 ∩ 𝑀) ⊆ ∪ 𝐽 ∧ ∃𝑔 ∈ 𝐽 (𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ (𝑁 ∩ 𝑀))))) |
| 30 | 28, 29 | syldan 591 |
. . 3
⊢ ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) → ((𝑁 ∩ 𝑀) ∈ ((nei‘𝐽)‘𝑆) ↔ ((𝑁 ∩ 𝑀) ⊆ ∪ 𝐽 ∧ ∃𝑔 ∈ 𝐽 (𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ (𝑁 ∩ 𝑀))))) |
| 31 | 30 | 3adant3 1133 |
. 2
⊢ ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆) ∧ 𝑀 ∈ ((nei‘𝐽)‘𝑆)) → ((𝑁 ∩ 𝑀) ∈ ((nei‘𝐽)‘𝑆) ↔ ((𝑁 ∩ 𝑀) ⊆ ∪ 𝐽 ∧ ∃𝑔 ∈ 𝐽 (𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ (𝑁 ∩ 𝑀))))) |
| 32 | 5, 27, 31 | mpbir2and 713 |
1
⊢ ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆) ∧ 𝑀 ∈ ((nei‘𝐽)‘𝑆)) → (𝑁 ∩ 𝑀) ∈ ((nei‘𝐽)‘𝑆)) |