Step | Hyp | Ref
| Expression |
1 | | eqid 2738 |
. . . . 5
⊢ ∪ 𝐽 =
∪ 𝐽 |
2 | 1 | neii1 22165 |
. . . 4
⊢ ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) → 𝑁 ⊆ ∪ 𝐽) |
3 | | ssinss1 4168 |
. . . 4
⊢ (𝑁 ⊆ ∪ 𝐽
→ (𝑁 ∩ 𝑀) ⊆ ∪ 𝐽) |
4 | 2, 3 | syl 17 |
. . 3
⊢ ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) → (𝑁 ∩ 𝑀) ⊆ ∪ 𝐽) |
5 | 4 | 3adant3 1130 |
. 2
⊢ ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆) ∧ 𝑀 ∈ ((nei‘𝐽)‘𝑆)) → (𝑁 ∩ 𝑀) ⊆ ∪ 𝐽) |
6 | | neii2 22167 |
. . . . 5
⊢ ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) → ∃ℎ ∈ 𝐽 (𝑆 ⊆ ℎ ∧ ℎ ⊆ 𝑁)) |
7 | | neii2 22167 |
. . . . 5
⊢ ((𝐽 ∈ Top ∧ 𝑀 ∈ ((nei‘𝐽)‘𝑆)) → ∃𝑣 ∈ 𝐽 (𝑆 ⊆ 𝑣 ∧ 𝑣 ⊆ 𝑀)) |
8 | 6, 7 | anim12dan 618 |
. . . 4
⊢ ((𝐽 ∈ Top ∧ (𝑁 ∈ ((nei‘𝐽)‘𝑆) ∧ 𝑀 ∈ ((nei‘𝐽)‘𝑆))) → (∃ℎ ∈ 𝐽 (𝑆 ⊆ ℎ ∧ ℎ ⊆ 𝑁) ∧ ∃𝑣 ∈ 𝐽 (𝑆 ⊆ 𝑣 ∧ 𝑣 ⊆ 𝑀))) |
9 | | inopn 21956 |
. . . . . . . . . . 11
⊢ ((𝐽 ∈ Top ∧ ℎ ∈ 𝐽 ∧ 𝑣 ∈ 𝐽) → (ℎ ∩ 𝑣) ∈ 𝐽) |
10 | 9 | 3expa 1116 |
. . . . . . . . . 10
⊢ (((𝐽 ∈ Top ∧ ℎ ∈ 𝐽) ∧ 𝑣 ∈ 𝐽) → (ℎ ∩ 𝑣) ∈ 𝐽) |
11 | | ssin 4161 |
. . . . . . . . . . . . 13
⊢ ((𝑆 ⊆ ℎ ∧ 𝑆 ⊆ 𝑣) ↔ 𝑆 ⊆ (ℎ ∩ 𝑣)) |
12 | 11 | biimpi 215 |
. . . . . . . . . . . 12
⊢ ((𝑆 ⊆ ℎ ∧ 𝑆 ⊆ 𝑣) → 𝑆 ⊆ (ℎ ∩ 𝑣)) |
13 | | ss2in 4167 |
. . . . . . . . . . . 12
⊢ ((ℎ ⊆ 𝑁 ∧ 𝑣 ⊆ 𝑀) → (ℎ ∩ 𝑣) ⊆ (𝑁 ∩ 𝑀)) |
14 | 12, 13 | anim12i 612 |
. . . . . . . . . . 11
⊢ (((𝑆 ⊆ ℎ ∧ 𝑆 ⊆ 𝑣) ∧ (ℎ ⊆ 𝑁 ∧ 𝑣 ⊆ 𝑀)) → (𝑆 ⊆ (ℎ ∩ 𝑣) ∧ (ℎ ∩ 𝑣) ⊆ (𝑁 ∩ 𝑀))) |
15 | 14 | an4s 656 |
. . . . . . . . . 10
⊢ (((𝑆 ⊆ ℎ ∧ ℎ ⊆ 𝑁) ∧ (𝑆 ⊆ 𝑣 ∧ 𝑣 ⊆ 𝑀)) → (𝑆 ⊆ (ℎ ∩ 𝑣) ∧ (ℎ ∩ 𝑣) ⊆ (𝑁 ∩ 𝑀))) |
16 | | sseq2 3943 |
. . . . . . . . . . . 12
⊢ (𝑔 = (ℎ ∩ 𝑣) → (𝑆 ⊆ 𝑔 ↔ 𝑆 ⊆ (ℎ ∩ 𝑣))) |
17 | | sseq1 3942 |
. . . . . . . . . . . 12
⊢ (𝑔 = (ℎ ∩ 𝑣) → (𝑔 ⊆ (𝑁 ∩ 𝑀) ↔ (ℎ ∩ 𝑣) ⊆ (𝑁 ∩ 𝑀))) |
18 | 16, 17 | anbi12d 630 |
. . . . . . . . . . 11
⊢ (𝑔 = (ℎ ∩ 𝑣) → ((𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ (𝑁 ∩ 𝑀)) ↔ (𝑆 ⊆ (ℎ ∩ 𝑣) ∧ (ℎ ∩ 𝑣) ⊆ (𝑁 ∩ 𝑀)))) |
19 | 18 | rspcev 3552 |
. . . . . . . . . 10
⊢ (((ℎ ∩ 𝑣) ∈ 𝐽 ∧ (𝑆 ⊆ (ℎ ∩ 𝑣) ∧ (ℎ ∩ 𝑣) ⊆ (𝑁 ∩ 𝑀))) → ∃𝑔 ∈ 𝐽 (𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ (𝑁 ∩ 𝑀))) |
20 | 10, 15, 19 | syl2an 595 |
. . . . . . . . 9
⊢ ((((𝐽 ∈ Top ∧ ℎ ∈ 𝐽) ∧ 𝑣 ∈ 𝐽) ∧ ((𝑆 ⊆ ℎ ∧ ℎ ⊆ 𝑁) ∧ (𝑆 ⊆ 𝑣 ∧ 𝑣 ⊆ 𝑀))) → ∃𝑔 ∈ 𝐽 (𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ (𝑁 ∩ 𝑀))) |
21 | 20 | expr 456 |
. . . . . . . 8
⊢ ((((𝐽 ∈ Top ∧ ℎ ∈ 𝐽) ∧ 𝑣 ∈ 𝐽) ∧ (𝑆 ⊆ ℎ ∧ ℎ ⊆ 𝑁)) → ((𝑆 ⊆ 𝑣 ∧ 𝑣 ⊆ 𝑀) → ∃𝑔 ∈ 𝐽 (𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ (𝑁 ∩ 𝑀)))) |
22 | 21 | an32s 648 |
. . . . . . 7
⊢ ((((𝐽 ∈ Top ∧ ℎ ∈ 𝐽) ∧ (𝑆 ⊆ ℎ ∧ ℎ ⊆ 𝑁)) ∧ 𝑣 ∈ 𝐽) → ((𝑆 ⊆ 𝑣 ∧ 𝑣 ⊆ 𝑀) → ∃𝑔 ∈ 𝐽 (𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ (𝑁 ∩ 𝑀)))) |
23 | 22 | rexlimdva 3212 |
. . . . . 6
⊢ (((𝐽 ∈ Top ∧ ℎ ∈ 𝐽) ∧ (𝑆 ⊆ ℎ ∧ ℎ ⊆ 𝑁)) → (∃𝑣 ∈ 𝐽 (𝑆 ⊆ 𝑣 ∧ 𝑣 ⊆ 𝑀) → ∃𝑔 ∈ 𝐽 (𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ (𝑁 ∩ 𝑀)))) |
24 | 23 | rexlimdva2 3215 |
. . . . 5
⊢ (𝐽 ∈ Top → (∃ℎ ∈ 𝐽 (𝑆 ⊆ ℎ ∧ ℎ ⊆ 𝑁) → (∃𝑣 ∈ 𝐽 (𝑆 ⊆ 𝑣 ∧ 𝑣 ⊆ 𝑀) → ∃𝑔 ∈ 𝐽 (𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ (𝑁 ∩ 𝑀))))) |
25 | 24 | imp32 418 |
. . . 4
⊢ ((𝐽 ∈ Top ∧ (∃ℎ ∈ 𝐽 (𝑆 ⊆ ℎ ∧ ℎ ⊆ 𝑁) ∧ ∃𝑣 ∈ 𝐽 (𝑆 ⊆ 𝑣 ∧ 𝑣 ⊆ 𝑀))) → ∃𝑔 ∈ 𝐽 (𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ (𝑁 ∩ 𝑀))) |
26 | 8, 25 | syldan 590 |
. . 3
⊢ ((𝐽 ∈ Top ∧ (𝑁 ∈ ((nei‘𝐽)‘𝑆) ∧ 𝑀 ∈ ((nei‘𝐽)‘𝑆))) → ∃𝑔 ∈ 𝐽 (𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ (𝑁 ∩ 𝑀))) |
27 | 26 | 3impb 1113 |
. 2
⊢ ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆) ∧ 𝑀 ∈ ((nei‘𝐽)‘𝑆)) → ∃𝑔 ∈ 𝐽 (𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ (𝑁 ∩ 𝑀))) |
28 | 1 | neiss2 22160 |
. . . 4
⊢ ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) → 𝑆 ⊆ ∪ 𝐽) |
29 | 1 | isnei 22162 |
. . . 4
⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ ∪ 𝐽)
→ ((𝑁 ∩ 𝑀) ∈ ((nei‘𝐽)‘𝑆) ↔ ((𝑁 ∩ 𝑀) ⊆ ∪ 𝐽 ∧ ∃𝑔 ∈ 𝐽 (𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ (𝑁 ∩ 𝑀))))) |
30 | 28, 29 | syldan 590 |
. . 3
⊢ ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) → ((𝑁 ∩ 𝑀) ∈ ((nei‘𝐽)‘𝑆) ↔ ((𝑁 ∩ 𝑀) ⊆ ∪ 𝐽 ∧ ∃𝑔 ∈ 𝐽 (𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ (𝑁 ∩ 𝑀))))) |
31 | 30 | 3adant3 1130 |
. 2
⊢ ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆) ∧ 𝑀 ∈ ((nei‘𝐽)‘𝑆)) → ((𝑁 ∩ 𝑀) ∈ ((nei‘𝐽)‘𝑆) ↔ ((𝑁 ∩ 𝑀) ⊆ ∪ 𝐽 ∧ ∃𝑔 ∈ 𝐽 (𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ (𝑁 ∩ 𝑀))))) |
32 | 5, 27, 31 | mpbir2and 709 |
1
⊢ ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆) ∧ 𝑀 ∈ ((nei‘𝐽)‘𝑆)) → (𝑁 ∩ 𝑀) ∈ ((nei‘𝐽)‘𝑆)) |