MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  innei Structured version   Visualization version   GIF version

Theorem innei 21421
Description: The intersection of two neighborhoods of a set is also a neighborhood of the set. Generalization to subsets of Property Vii of [BourbakiTop1] p. I.3 for binary intersections. (Contributed by FL, 28-Sep-2006.)
Assertion
Ref Expression
innei ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆) ∧ 𝑀 ∈ ((nei‘𝐽)‘𝑆)) → (𝑁𝑀) ∈ ((nei‘𝐽)‘𝑆))

Proof of Theorem innei
Dummy variables 𝑔 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2797 . . . . 5 𝐽 = 𝐽
21neii1 21402 . . . 4 ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) → 𝑁 𝐽)
3 ssinss1 4140 . . . 4 (𝑁 𝐽 → (𝑁𝑀) ⊆ 𝐽)
42, 3syl 17 . . 3 ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) → (𝑁𝑀) ⊆ 𝐽)
543adant3 1125 . 2 ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆) ∧ 𝑀 ∈ ((nei‘𝐽)‘𝑆)) → (𝑁𝑀) ⊆ 𝐽)
6 neii2 21404 . . . . 5 ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) → ∃𝐽 (𝑆𝑁))
7 neii2 21404 . . . . 5 ((𝐽 ∈ Top ∧ 𝑀 ∈ ((nei‘𝐽)‘𝑆)) → ∃𝑣𝐽 (𝑆𝑣𝑣𝑀))
86, 7anim12dan 618 . . . 4 ((𝐽 ∈ Top ∧ (𝑁 ∈ ((nei‘𝐽)‘𝑆) ∧ 𝑀 ∈ ((nei‘𝐽)‘𝑆))) → (∃𝐽 (𝑆𝑁) ∧ ∃𝑣𝐽 (𝑆𝑣𝑣𝑀)))
9 inopn 21195 . . . . . . . . . . 11 ((𝐽 ∈ Top ∧ 𝐽𝑣𝐽) → (𝑣) ∈ 𝐽)
1093expa 1111 . . . . . . . . . 10 (((𝐽 ∈ Top ∧ 𝐽) ∧ 𝑣𝐽) → (𝑣) ∈ 𝐽)
11 ssin 4133 . . . . . . . . . . . . 13 ((𝑆𝑆𝑣) ↔ 𝑆 ⊆ (𝑣))
1211biimpi 217 . . . . . . . . . . . 12 ((𝑆𝑆𝑣) → 𝑆 ⊆ (𝑣))
13 ss2in 4139 . . . . . . . . . . . 12 ((𝑁𝑣𝑀) → (𝑣) ⊆ (𝑁𝑀))
1412, 13anim12i 612 . . . . . . . . . . 11 (((𝑆𝑆𝑣) ∧ (𝑁𝑣𝑀)) → (𝑆 ⊆ (𝑣) ∧ (𝑣) ⊆ (𝑁𝑀)))
1514an4s 656 . . . . . . . . . 10 (((𝑆𝑁) ∧ (𝑆𝑣𝑣𝑀)) → (𝑆 ⊆ (𝑣) ∧ (𝑣) ⊆ (𝑁𝑀)))
16 sseq2 3920 . . . . . . . . . . . 12 (𝑔 = (𝑣) → (𝑆𝑔𝑆 ⊆ (𝑣)))
17 sseq1 3919 . . . . . . . . . . . 12 (𝑔 = (𝑣) → (𝑔 ⊆ (𝑁𝑀) ↔ (𝑣) ⊆ (𝑁𝑀)))
1816, 17anbi12d 630 . . . . . . . . . . 11 (𝑔 = (𝑣) → ((𝑆𝑔𝑔 ⊆ (𝑁𝑀)) ↔ (𝑆 ⊆ (𝑣) ∧ (𝑣) ⊆ (𝑁𝑀))))
1918rspcev 3561 . . . . . . . . . 10 (((𝑣) ∈ 𝐽 ∧ (𝑆 ⊆ (𝑣) ∧ (𝑣) ⊆ (𝑁𝑀))) → ∃𝑔𝐽 (𝑆𝑔𝑔 ⊆ (𝑁𝑀)))
2010, 15, 19syl2an 595 . . . . . . . . 9 ((((𝐽 ∈ Top ∧ 𝐽) ∧ 𝑣𝐽) ∧ ((𝑆𝑁) ∧ (𝑆𝑣𝑣𝑀))) → ∃𝑔𝐽 (𝑆𝑔𝑔 ⊆ (𝑁𝑀)))
2120expr 457 . . . . . . . 8 ((((𝐽 ∈ Top ∧ 𝐽) ∧ 𝑣𝐽) ∧ (𝑆𝑁)) → ((𝑆𝑣𝑣𝑀) → ∃𝑔𝐽 (𝑆𝑔𝑔 ⊆ (𝑁𝑀))))
2221an32s 648 . . . . . . 7 ((((𝐽 ∈ Top ∧ 𝐽) ∧ (𝑆𝑁)) ∧ 𝑣𝐽) → ((𝑆𝑣𝑣𝑀) → ∃𝑔𝐽 (𝑆𝑔𝑔 ⊆ (𝑁𝑀))))
2322rexlimdva 3249 . . . . . 6 (((𝐽 ∈ Top ∧ 𝐽) ∧ (𝑆𝑁)) → (∃𝑣𝐽 (𝑆𝑣𝑣𝑀) → ∃𝑔𝐽 (𝑆𝑔𝑔 ⊆ (𝑁𝑀))))
2423rexlimdva2 3252 . . . . 5 (𝐽 ∈ Top → (∃𝐽 (𝑆𝑁) → (∃𝑣𝐽 (𝑆𝑣𝑣𝑀) → ∃𝑔𝐽 (𝑆𝑔𝑔 ⊆ (𝑁𝑀)))))
2524imp32 419 . . . 4 ((𝐽 ∈ Top ∧ (∃𝐽 (𝑆𝑁) ∧ ∃𝑣𝐽 (𝑆𝑣𝑣𝑀))) → ∃𝑔𝐽 (𝑆𝑔𝑔 ⊆ (𝑁𝑀)))
268, 25syldan 591 . . 3 ((𝐽 ∈ Top ∧ (𝑁 ∈ ((nei‘𝐽)‘𝑆) ∧ 𝑀 ∈ ((nei‘𝐽)‘𝑆))) → ∃𝑔𝐽 (𝑆𝑔𝑔 ⊆ (𝑁𝑀)))
27263impb 1108 . 2 ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆) ∧ 𝑀 ∈ ((nei‘𝐽)‘𝑆)) → ∃𝑔𝐽 (𝑆𝑔𝑔 ⊆ (𝑁𝑀)))
281neiss2 21397 . . . 4 ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) → 𝑆 𝐽)
291isnei 21399 . . . 4 ((𝐽 ∈ Top ∧ 𝑆 𝐽) → ((𝑁𝑀) ∈ ((nei‘𝐽)‘𝑆) ↔ ((𝑁𝑀) ⊆ 𝐽 ∧ ∃𝑔𝐽 (𝑆𝑔𝑔 ⊆ (𝑁𝑀)))))
3028, 29syldan 591 . . 3 ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) → ((𝑁𝑀) ∈ ((nei‘𝐽)‘𝑆) ↔ ((𝑁𝑀) ⊆ 𝐽 ∧ ∃𝑔𝐽 (𝑆𝑔𝑔 ⊆ (𝑁𝑀)))))
31303adant3 1125 . 2 ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆) ∧ 𝑀 ∈ ((nei‘𝐽)‘𝑆)) → ((𝑁𝑀) ∈ ((nei‘𝐽)‘𝑆) ↔ ((𝑁𝑀) ⊆ 𝐽 ∧ ∃𝑔𝐽 (𝑆𝑔𝑔 ⊆ (𝑁𝑀)))))
325, 27, 31mpbir2and 709 1 ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆) ∧ 𝑀 ∈ ((nei‘𝐽)‘𝑆)) → (𝑁𝑀) ∈ ((nei‘𝐽)‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  w3a 1080   = wceq 1525  wcel 2083  wrex 3108  cin 3864  wss 3865   cuni 4751  cfv 6232  Topctop 21189  neicnei 21393
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1781  ax-4 1795  ax-5 1892  ax-6 1951  ax-7 1996  ax-8 2085  ax-9 2093  ax-10 2114  ax-11 2128  ax-12 2143  ax-13 2346  ax-ext 2771  ax-rep 5088  ax-sep 5101  ax-nul 5108  ax-pow 5164  ax-pr 5228
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3an 1082  df-tru 1528  df-ex 1766  df-nf 1770  df-sb 2045  df-mo 2578  df-eu 2614  df-clab 2778  df-cleq 2790  df-clel 2865  df-nfc 2937  df-ne 2987  df-ral 3112  df-rex 3113  df-reu 3114  df-rab 3116  df-v 3442  df-sbc 3712  df-csb 3818  df-dif 3868  df-un 3870  df-in 3872  df-ss 3880  df-nul 4218  df-if 4388  df-pw 4461  df-sn 4479  df-pr 4481  df-op 4485  df-uni 4752  df-iun 4833  df-br 4969  df-opab 5031  df-mpt 5048  df-id 5355  df-xp 5456  df-rel 5457  df-cnv 5458  df-co 5459  df-dm 5460  df-rn 5461  df-res 5462  df-ima 5463  df-iota 6196  df-fun 6234  df-fn 6235  df-f 6236  df-f1 6237  df-fo 6238  df-f1o 6239  df-fv 6240  df-top 21190  df-nei 21394
This theorem is referenced by:  neifil  22176  neificl  34581
  Copyright terms: Public domain W3C validator