| Step | Hyp | Ref
| Expression |
| 1 | | simpll 766 |
. . 3
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ (𝐵 ∩ 𝐶)) ∧ (𝐵 ∈ ran (ball‘𝐷) ∧ 𝐶 ∈ ran (ball‘𝐷))) → 𝐷 ∈ (∞Met‘𝑋)) |
| 2 | | simprl 770 |
. . 3
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ (𝐵 ∩ 𝐶)) ∧ (𝐵 ∈ ran (ball‘𝐷) ∧ 𝐶 ∈ ran (ball‘𝐷))) → 𝐵 ∈ ran (ball‘𝐷)) |
| 3 | | simplr 768 |
. . . 4
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ (𝐵 ∩ 𝐶)) ∧ (𝐵 ∈ ran (ball‘𝐷) ∧ 𝐶 ∈ ran (ball‘𝐷))) → 𝑃 ∈ (𝐵 ∩ 𝐶)) |
| 4 | 3 | elin1d 4179 |
. . 3
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ (𝐵 ∩ 𝐶)) ∧ (𝐵 ∈ ran (ball‘𝐷) ∧ 𝐶 ∈ ran (ball‘𝐷))) → 𝑃 ∈ 𝐵) |
| 5 | | blss 24364 |
. . 3
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ ran (ball‘𝐷) ∧ 𝑃 ∈ 𝐵) → ∃𝑦 ∈ ℝ+ (𝑃(ball‘𝐷)𝑦) ⊆ 𝐵) |
| 6 | 1, 2, 4, 5 | syl3anc 1373 |
. 2
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ (𝐵 ∩ 𝐶)) ∧ (𝐵 ∈ ran (ball‘𝐷) ∧ 𝐶 ∈ ran (ball‘𝐷))) → ∃𝑦 ∈ ℝ+ (𝑃(ball‘𝐷)𝑦) ⊆ 𝐵) |
| 7 | | simprr 772 |
. . 3
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ (𝐵 ∩ 𝐶)) ∧ (𝐵 ∈ ran (ball‘𝐷) ∧ 𝐶 ∈ ran (ball‘𝐷))) → 𝐶 ∈ ran (ball‘𝐷)) |
| 8 | 3 | elin2d 4180 |
. . 3
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ (𝐵 ∩ 𝐶)) ∧ (𝐵 ∈ ran (ball‘𝐷) ∧ 𝐶 ∈ ran (ball‘𝐷))) → 𝑃 ∈ 𝐶) |
| 9 | | blss 24364 |
. . 3
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐶 ∈ ran (ball‘𝐷) ∧ 𝑃 ∈ 𝐶) → ∃𝑧 ∈ ℝ+ (𝑃(ball‘𝐷)𝑧) ⊆ 𝐶) |
| 10 | 1, 7, 8, 9 | syl3anc 1373 |
. 2
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ (𝐵 ∩ 𝐶)) ∧ (𝐵 ∈ ran (ball‘𝐷) ∧ 𝐶 ∈ ran (ball‘𝐷))) → ∃𝑧 ∈ ℝ+ (𝑃(ball‘𝐷)𝑧) ⊆ 𝐶) |
| 11 | | reeanv 3213 |
. . 3
⊢
(∃𝑦 ∈
ℝ+ ∃𝑧 ∈ ℝ+ ((𝑃(ball‘𝐷)𝑦) ⊆ 𝐵 ∧ (𝑃(ball‘𝐷)𝑧) ⊆ 𝐶) ↔ (∃𝑦 ∈ ℝ+ (𝑃(ball‘𝐷)𝑦) ⊆ 𝐵 ∧ ∃𝑧 ∈ ℝ+ (𝑃(ball‘𝐷)𝑧) ⊆ 𝐶)) |
| 12 | | ss2in 4220 |
. . . . 5
⊢ (((𝑃(ball‘𝐷)𝑦) ⊆ 𝐵 ∧ (𝑃(ball‘𝐷)𝑧) ⊆ 𝐶) → ((𝑃(ball‘𝐷)𝑦) ∩ (𝑃(ball‘𝐷)𝑧)) ⊆ (𝐵 ∩ 𝐶)) |
| 13 | | inss1 4212 |
. . . . . . . . . . 11
⊢ (𝐵 ∩ 𝐶) ⊆ 𝐵 |
| 14 | | blf 24346 |
. . . . . . . . . . . . . 14
⊢ (𝐷 ∈ (∞Met‘𝑋) → (ball‘𝐷):(𝑋 ×
ℝ*)⟶𝒫 𝑋) |
| 15 | | frn 6713 |
. . . . . . . . . . . . . 14
⊢
((ball‘𝐷):(𝑋 ×
ℝ*)⟶𝒫 𝑋 → ran (ball‘𝐷) ⊆ 𝒫 𝑋) |
| 16 | 1, 14, 15 | 3syl 18 |
. . . . . . . . . . . . 13
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ (𝐵 ∩ 𝐶)) ∧ (𝐵 ∈ ran (ball‘𝐷) ∧ 𝐶 ∈ ran (ball‘𝐷))) → ran (ball‘𝐷) ⊆ 𝒫 𝑋) |
| 17 | 16, 2 | sseldd 3959 |
. . . . . . . . . . . 12
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ (𝐵 ∩ 𝐶)) ∧ (𝐵 ∈ ran (ball‘𝐷) ∧ 𝐶 ∈ ran (ball‘𝐷))) → 𝐵 ∈ 𝒫 𝑋) |
| 18 | 17 | elpwid 4584 |
. . . . . . . . . . 11
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ (𝐵 ∩ 𝐶)) ∧ (𝐵 ∈ ran (ball‘𝐷) ∧ 𝐶 ∈ ran (ball‘𝐷))) → 𝐵 ⊆ 𝑋) |
| 19 | 13, 18 | sstrid 3970 |
. . . . . . . . . 10
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ (𝐵 ∩ 𝐶)) ∧ (𝐵 ∈ ran (ball‘𝐷) ∧ 𝐶 ∈ ran (ball‘𝐷))) → (𝐵 ∩ 𝐶) ⊆ 𝑋) |
| 20 | 19, 3 | sseldd 3959 |
. . . . . . . . 9
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ (𝐵 ∩ 𝐶)) ∧ (𝐵 ∈ ran (ball‘𝐷) ∧ 𝐶 ∈ ran (ball‘𝐷))) → 𝑃 ∈ 𝑋) |
| 21 | 1, 20 | jca 511 |
. . . . . . . 8
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ (𝐵 ∩ 𝐶)) ∧ (𝐵 ∈ ran (ball‘𝐷) ∧ 𝐶 ∈ ran (ball‘𝐷))) → (𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋)) |
| 22 | | rpxr 13018 |
. . . . . . . . 9
⊢ (𝑦 ∈ ℝ+
→ 𝑦 ∈
ℝ*) |
| 23 | | rpxr 13018 |
. . . . . . . . 9
⊢ (𝑧 ∈ ℝ+
→ 𝑧 ∈
ℝ*) |
| 24 | 22, 23 | anim12i 613 |
. . . . . . . 8
⊢ ((𝑦 ∈ ℝ+
∧ 𝑧 ∈
ℝ+) → (𝑦 ∈ ℝ* ∧ 𝑧 ∈
ℝ*)) |
| 25 | | blin 24360 |
. . . . . . . 8
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋) ∧ (𝑦 ∈ ℝ* ∧ 𝑧 ∈ ℝ*))
→ ((𝑃(ball‘𝐷)𝑦) ∩ (𝑃(ball‘𝐷)𝑧)) = (𝑃(ball‘𝐷)if(𝑦 ≤ 𝑧, 𝑦, 𝑧))) |
| 26 | 21, 24, 25 | syl2an 596 |
. . . . . . 7
⊢ ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ (𝐵 ∩ 𝐶)) ∧ (𝐵 ∈ ran (ball‘𝐷) ∧ 𝐶 ∈ ran (ball‘𝐷))) ∧ (𝑦 ∈ ℝ+ ∧ 𝑧 ∈ ℝ+))
→ ((𝑃(ball‘𝐷)𝑦) ∩ (𝑃(ball‘𝐷)𝑧)) = (𝑃(ball‘𝐷)if(𝑦 ≤ 𝑧, 𝑦, 𝑧))) |
| 27 | 26 | sseq1d 3990 |
. . . . . 6
⊢ ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ (𝐵 ∩ 𝐶)) ∧ (𝐵 ∈ ran (ball‘𝐷) ∧ 𝐶 ∈ ran (ball‘𝐷))) ∧ (𝑦 ∈ ℝ+ ∧ 𝑧 ∈ ℝ+))
→ (((𝑃(ball‘𝐷)𝑦) ∩ (𝑃(ball‘𝐷)𝑧)) ⊆ (𝐵 ∩ 𝐶) ↔ (𝑃(ball‘𝐷)if(𝑦 ≤ 𝑧, 𝑦, 𝑧)) ⊆ (𝐵 ∩ 𝐶))) |
| 28 | | ifcl 4546 |
. . . . . . . 8
⊢ ((𝑦 ∈ ℝ+
∧ 𝑧 ∈
ℝ+) → if(𝑦 ≤ 𝑧, 𝑦, 𝑧) ∈
ℝ+) |
| 29 | | oveq2 7413 |
. . . . . . . . . . 11
⊢ (𝑥 = if(𝑦 ≤ 𝑧, 𝑦, 𝑧) → (𝑃(ball‘𝐷)𝑥) = (𝑃(ball‘𝐷)if(𝑦 ≤ 𝑧, 𝑦, 𝑧))) |
| 30 | 29 | sseq1d 3990 |
. . . . . . . . . 10
⊢ (𝑥 = if(𝑦 ≤ 𝑧, 𝑦, 𝑧) → ((𝑃(ball‘𝐷)𝑥) ⊆ (𝐵 ∩ 𝐶) ↔ (𝑃(ball‘𝐷)if(𝑦 ≤ 𝑧, 𝑦, 𝑧)) ⊆ (𝐵 ∩ 𝐶))) |
| 31 | 30 | rspcev 3601 |
. . . . . . . . 9
⊢
((if(𝑦 ≤ 𝑧, 𝑦, 𝑧) ∈ ℝ+ ∧ (𝑃(ball‘𝐷)if(𝑦 ≤ 𝑧, 𝑦, 𝑧)) ⊆ (𝐵 ∩ 𝐶)) → ∃𝑥 ∈ ℝ+ (𝑃(ball‘𝐷)𝑥) ⊆ (𝐵 ∩ 𝐶)) |
| 32 | 31 | ex 412 |
. . . . . . . 8
⊢ (if(𝑦 ≤ 𝑧, 𝑦, 𝑧) ∈ ℝ+ → ((𝑃(ball‘𝐷)if(𝑦 ≤ 𝑧, 𝑦, 𝑧)) ⊆ (𝐵 ∩ 𝐶) → ∃𝑥 ∈ ℝ+ (𝑃(ball‘𝐷)𝑥) ⊆ (𝐵 ∩ 𝐶))) |
| 33 | 28, 32 | syl 17 |
. . . . . . 7
⊢ ((𝑦 ∈ ℝ+
∧ 𝑧 ∈
ℝ+) → ((𝑃(ball‘𝐷)if(𝑦 ≤ 𝑧, 𝑦, 𝑧)) ⊆ (𝐵 ∩ 𝐶) → ∃𝑥 ∈ ℝ+ (𝑃(ball‘𝐷)𝑥) ⊆ (𝐵 ∩ 𝐶))) |
| 34 | 33 | adantl 481 |
. . . . . 6
⊢ ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ (𝐵 ∩ 𝐶)) ∧ (𝐵 ∈ ran (ball‘𝐷) ∧ 𝐶 ∈ ran (ball‘𝐷))) ∧ (𝑦 ∈ ℝ+ ∧ 𝑧 ∈ ℝ+))
→ ((𝑃(ball‘𝐷)if(𝑦 ≤ 𝑧, 𝑦, 𝑧)) ⊆ (𝐵 ∩ 𝐶) → ∃𝑥 ∈ ℝ+ (𝑃(ball‘𝐷)𝑥) ⊆ (𝐵 ∩ 𝐶))) |
| 35 | 27, 34 | sylbid 240 |
. . . . 5
⊢ ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ (𝐵 ∩ 𝐶)) ∧ (𝐵 ∈ ran (ball‘𝐷) ∧ 𝐶 ∈ ran (ball‘𝐷))) ∧ (𝑦 ∈ ℝ+ ∧ 𝑧 ∈ ℝ+))
→ (((𝑃(ball‘𝐷)𝑦) ∩ (𝑃(ball‘𝐷)𝑧)) ⊆ (𝐵 ∩ 𝐶) → ∃𝑥 ∈ ℝ+ (𝑃(ball‘𝐷)𝑥) ⊆ (𝐵 ∩ 𝐶))) |
| 36 | 12, 35 | syl5 34 |
. . . 4
⊢ ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ (𝐵 ∩ 𝐶)) ∧ (𝐵 ∈ ran (ball‘𝐷) ∧ 𝐶 ∈ ran (ball‘𝐷))) ∧ (𝑦 ∈ ℝ+ ∧ 𝑧 ∈ ℝ+))
→ (((𝑃(ball‘𝐷)𝑦) ⊆ 𝐵 ∧ (𝑃(ball‘𝐷)𝑧) ⊆ 𝐶) → ∃𝑥 ∈ ℝ+ (𝑃(ball‘𝐷)𝑥) ⊆ (𝐵 ∩ 𝐶))) |
| 37 | 36 | rexlimdvva 3198 |
. . 3
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ (𝐵 ∩ 𝐶)) ∧ (𝐵 ∈ ran (ball‘𝐷) ∧ 𝐶 ∈ ran (ball‘𝐷))) → (∃𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+
((𝑃(ball‘𝐷)𝑦) ⊆ 𝐵 ∧ (𝑃(ball‘𝐷)𝑧) ⊆ 𝐶) → ∃𝑥 ∈ ℝ+ (𝑃(ball‘𝐷)𝑥) ⊆ (𝐵 ∩ 𝐶))) |
| 38 | 11, 37 | biimtrrid 243 |
. 2
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ (𝐵 ∩ 𝐶)) ∧ (𝐵 ∈ ran (ball‘𝐷) ∧ 𝐶 ∈ ran (ball‘𝐷))) → ((∃𝑦 ∈ ℝ+ (𝑃(ball‘𝐷)𝑦) ⊆ 𝐵 ∧ ∃𝑧 ∈ ℝ+ (𝑃(ball‘𝐷)𝑧) ⊆ 𝐶) → ∃𝑥 ∈ ℝ+ (𝑃(ball‘𝐷)𝑥) ⊆ (𝐵 ∩ 𝐶))) |
| 39 | 6, 10, 38 | mp2and 699 |
1
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ (𝐵 ∩ 𝐶)) ∧ (𝐵 ∈ ran (ball‘𝐷) ∧ 𝐶 ∈ ran (ball‘𝐷))) → ∃𝑥 ∈ ℝ+ (𝑃(ball‘𝐷)𝑥) ⊆ (𝐵 ∩ 𝐶)) |