MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  blin2 Structured version   Visualization version   GIF version

Theorem blin2 23582
Description: Given any two balls and a point in their intersection, there is a ball contained in the intersection with the given center point. (Contributed by Mario Carneiro, 12-Nov-2013.)
Assertion
Ref Expression
blin2 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ (𝐵𝐶)) ∧ (𝐵 ∈ ran (ball‘𝐷) ∧ 𝐶 ∈ ran (ball‘𝐷))) → ∃𝑥 ∈ ℝ+ (𝑃(ball‘𝐷)𝑥) ⊆ (𝐵𝐶))
Distinct variable groups:   𝑥,𝐵   𝑥,𝐶   𝑥,𝐷   𝑥,𝑃   𝑥,𝑋

Proof of Theorem blin2
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpll 764 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ (𝐵𝐶)) ∧ (𝐵 ∈ ran (ball‘𝐷) ∧ 𝐶 ∈ ran (ball‘𝐷))) → 𝐷 ∈ (∞Met‘𝑋))
2 simprl 768 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ (𝐵𝐶)) ∧ (𝐵 ∈ ran (ball‘𝐷) ∧ 𝐶 ∈ ran (ball‘𝐷))) → 𝐵 ∈ ran (ball‘𝐷))
3 simplr 766 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ (𝐵𝐶)) ∧ (𝐵 ∈ ran (ball‘𝐷) ∧ 𝐶 ∈ ran (ball‘𝐷))) → 𝑃 ∈ (𝐵𝐶))
43elin1d 4132 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ (𝐵𝐶)) ∧ (𝐵 ∈ ran (ball‘𝐷) ∧ 𝐶 ∈ ran (ball‘𝐷))) → 𝑃𝐵)
5 blss 23578 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ ran (ball‘𝐷) ∧ 𝑃𝐵) → ∃𝑦 ∈ ℝ+ (𝑃(ball‘𝐷)𝑦) ⊆ 𝐵)
61, 2, 4, 5syl3anc 1370 . 2 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ (𝐵𝐶)) ∧ (𝐵 ∈ ran (ball‘𝐷) ∧ 𝐶 ∈ ran (ball‘𝐷))) → ∃𝑦 ∈ ℝ+ (𝑃(ball‘𝐷)𝑦) ⊆ 𝐵)
7 simprr 770 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ (𝐵𝐶)) ∧ (𝐵 ∈ ran (ball‘𝐷) ∧ 𝐶 ∈ ran (ball‘𝐷))) → 𝐶 ∈ ran (ball‘𝐷))
83elin2d 4133 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ (𝐵𝐶)) ∧ (𝐵 ∈ ran (ball‘𝐷) ∧ 𝐶 ∈ ran (ball‘𝐷))) → 𝑃𝐶)
9 blss 23578 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐶 ∈ ran (ball‘𝐷) ∧ 𝑃𝐶) → ∃𝑧 ∈ ℝ+ (𝑃(ball‘𝐷)𝑧) ⊆ 𝐶)
101, 7, 8, 9syl3anc 1370 . 2 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ (𝐵𝐶)) ∧ (𝐵 ∈ ran (ball‘𝐷) ∧ 𝐶 ∈ ran (ball‘𝐷))) → ∃𝑧 ∈ ℝ+ (𝑃(ball‘𝐷)𝑧) ⊆ 𝐶)
11 reeanv 3294 . . 3 (∃𝑦 ∈ ℝ+𝑧 ∈ ℝ+ ((𝑃(ball‘𝐷)𝑦) ⊆ 𝐵 ∧ (𝑃(ball‘𝐷)𝑧) ⊆ 𝐶) ↔ (∃𝑦 ∈ ℝ+ (𝑃(ball‘𝐷)𝑦) ⊆ 𝐵 ∧ ∃𝑧 ∈ ℝ+ (𝑃(ball‘𝐷)𝑧) ⊆ 𝐶))
12 ss2in 4170 . . . . 5 (((𝑃(ball‘𝐷)𝑦) ⊆ 𝐵 ∧ (𝑃(ball‘𝐷)𝑧) ⊆ 𝐶) → ((𝑃(ball‘𝐷)𝑦) ∩ (𝑃(ball‘𝐷)𝑧)) ⊆ (𝐵𝐶))
13 inss1 4162 . . . . . . . . . . 11 (𝐵𝐶) ⊆ 𝐵
14 blf 23560 . . . . . . . . . . . . . 14 (𝐷 ∈ (∞Met‘𝑋) → (ball‘𝐷):(𝑋 × ℝ*)⟶𝒫 𝑋)
15 frn 6607 . . . . . . . . . . . . . 14 ((ball‘𝐷):(𝑋 × ℝ*)⟶𝒫 𝑋 → ran (ball‘𝐷) ⊆ 𝒫 𝑋)
161, 14, 153syl 18 . . . . . . . . . . . . 13 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ (𝐵𝐶)) ∧ (𝐵 ∈ ran (ball‘𝐷) ∧ 𝐶 ∈ ran (ball‘𝐷))) → ran (ball‘𝐷) ⊆ 𝒫 𝑋)
1716, 2sseldd 3922 . . . . . . . . . . . 12 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ (𝐵𝐶)) ∧ (𝐵 ∈ ran (ball‘𝐷) ∧ 𝐶 ∈ ran (ball‘𝐷))) → 𝐵 ∈ 𝒫 𝑋)
1817elpwid 4544 . . . . . . . . . . 11 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ (𝐵𝐶)) ∧ (𝐵 ∈ ran (ball‘𝐷) ∧ 𝐶 ∈ ran (ball‘𝐷))) → 𝐵𝑋)
1913, 18sstrid 3932 . . . . . . . . . 10 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ (𝐵𝐶)) ∧ (𝐵 ∈ ran (ball‘𝐷) ∧ 𝐶 ∈ ran (ball‘𝐷))) → (𝐵𝐶) ⊆ 𝑋)
2019, 3sseldd 3922 . . . . . . . . 9 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ (𝐵𝐶)) ∧ (𝐵 ∈ ran (ball‘𝐷) ∧ 𝐶 ∈ ran (ball‘𝐷))) → 𝑃𝑋)
211, 20jca 512 . . . . . . . 8 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ (𝐵𝐶)) ∧ (𝐵 ∈ ran (ball‘𝐷) ∧ 𝐶 ∈ ran (ball‘𝐷))) → (𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋))
22 rpxr 12739 . . . . . . . . 9 (𝑦 ∈ ℝ+𝑦 ∈ ℝ*)
23 rpxr 12739 . . . . . . . . 9 (𝑧 ∈ ℝ+𝑧 ∈ ℝ*)
2422, 23anim12i 613 . . . . . . . 8 ((𝑦 ∈ ℝ+𝑧 ∈ ℝ+) → (𝑦 ∈ ℝ*𝑧 ∈ ℝ*))
25 blin 23574 . . . . . . . 8 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑦 ∈ ℝ*𝑧 ∈ ℝ*)) → ((𝑃(ball‘𝐷)𝑦) ∩ (𝑃(ball‘𝐷)𝑧)) = (𝑃(ball‘𝐷)if(𝑦𝑧, 𝑦, 𝑧)))
2621, 24, 25syl2an 596 . . . . . . 7 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ (𝐵𝐶)) ∧ (𝐵 ∈ ran (ball‘𝐷) ∧ 𝐶 ∈ ran (ball‘𝐷))) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) → ((𝑃(ball‘𝐷)𝑦) ∩ (𝑃(ball‘𝐷)𝑧)) = (𝑃(ball‘𝐷)if(𝑦𝑧, 𝑦, 𝑧)))
2726sseq1d 3952 . . . . . 6 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ (𝐵𝐶)) ∧ (𝐵 ∈ ran (ball‘𝐷) ∧ 𝐶 ∈ ran (ball‘𝐷))) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) → (((𝑃(ball‘𝐷)𝑦) ∩ (𝑃(ball‘𝐷)𝑧)) ⊆ (𝐵𝐶) ↔ (𝑃(ball‘𝐷)if(𝑦𝑧, 𝑦, 𝑧)) ⊆ (𝐵𝐶)))
28 ifcl 4504 . . . . . . . 8 ((𝑦 ∈ ℝ+𝑧 ∈ ℝ+) → if(𝑦𝑧, 𝑦, 𝑧) ∈ ℝ+)
29 oveq2 7283 . . . . . . . . . . 11 (𝑥 = if(𝑦𝑧, 𝑦, 𝑧) → (𝑃(ball‘𝐷)𝑥) = (𝑃(ball‘𝐷)if(𝑦𝑧, 𝑦, 𝑧)))
3029sseq1d 3952 . . . . . . . . . 10 (𝑥 = if(𝑦𝑧, 𝑦, 𝑧) → ((𝑃(ball‘𝐷)𝑥) ⊆ (𝐵𝐶) ↔ (𝑃(ball‘𝐷)if(𝑦𝑧, 𝑦, 𝑧)) ⊆ (𝐵𝐶)))
3130rspcev 3561 . . . . . . . . 9 ((if(𝑦𝑧, 𝑦, 𝑧) ∈ ℝ+ ∧ (𝑃(ball‘𝐷)if(𝑦𝑧, 𝑦, 𝑧)) ⊆ (𝐵𝐶)) → ∃𝑥 ∈ ℝ+ (𝑃(ball‘𝐷)𝑥) ⊆ (𝐵𝐶))
3231ex 413 . . . . . . . 8 (if(𝑦𝑧, 𝑦, 𝑧) ∈ ℝ+ → ((𝑃(ball‘𝐷)if(𝑦𝑧, 𝑦, 𝑧)) ⊆ (𝐵𝐶) → ∃𝑥 ∈ ℝ+ (𝑃(ball‘𝐷)𝑥) ⊆ (𝐵𝐶)))
3328, 32syl 17 . . . . . . 7 ((𝑦 ∈ ℝ+𝑧 ∈ ℝ+) → ((𝑃(ball‘𝐷)if(𝑦𝑧, 𝑦, 𝑧)) ⊆ (𝐵𝐶) → ∃𝑥 ∈ ℝ+ (𝑃(ball‘𝐷)𝑥) ⊆ (𝐵𝐶)))
3433adantl 482 . . . . . 6 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ (𝐵𝐶)) ∧ (𝐵 ∈ ran (ball‘𝐷) ∧ 𝐶 ∈ ran (ball‘𝐷))) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) → ((𝑃(ball‘𝐷)if(𝑦𝑧, 𝑦, 𝑧)) ⊆ (𝐵𝐶) → ∃𝑥 ∈ ℝ+ (𝑃(ball‘𝐷)𝑥) ⊆ (𝐵𝐶)))
3527, 34sylbid 239 . . . . 5 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ (𝐵𝐶)) ∧ (𝐵 ∈ ran (ball‘𝐷) ∧ 𝐶 ∈ ran (ball‘𝐷))) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) → (((𝑃(ball‘𝐷)𝑦) ∩ (𝑃(ball‘𝐷)𝑧)) ⊆ (𝐵𝐶) → ∃𝑥 ∈ ℝ+ (𝑃(ball‘𝐷)𝑥) ⊆ (𝐵𝐶)))
3612, 35syl5 34 . . . 4 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ (𝐵𝐶)) ∧ (𝐵 ∈ ran (ball‘𝐷) ∧ 𝐶 ∈ ran (ball‘𝐷))) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) → (((𝑃(ball‘𝐷)𝑦) ⊆ 𝐵 ∧ (𝑃(ball‘𝐷)𝑧) ⊆ 𝐶) → ∃𝑥 ∈ ℝ+ (𝑃(ball‘𝐷)𝑥) ⊆ (𝐵𝐶)))
3736rexlimdvva 3223 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ (𝐵𝐶)) ∧ (𝐵 ∈ ran (ball‘𝐷) ∧ 𝐶 ∈ ran (ball‘𝐷))) → (∃𝑦 ∈ ℝ+𝑧 ∈ ℝ+ ((𝑃(ball‘𝐷)𝑦) ⊆ 𝐵 ∧ (𝑃(ball‘𝐷)𝑧) ⊆ 𝐶) → ∃𝑥 ∈ ℝ+ (𝑃(ball‘𝐷)𝑥) ⊆ (𝐵𝐶)))
3811, 37syl5bir 242 . 2 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ (𝐵𝐶)) ∧ (𝐵 ∈ ran (ball‘𝐷) ∧ 𝐶 ∈ ran (ball‘𝐷))) → ((∃𝑦 ∈ ℝ+ (𝑃(ball‘𝐷)𝑦) ⊆ 𝐵 ∧ ∃𝑧 ∈ ℝ+ (𝑃(ball‘𝐷)𝑧) ⊆ 𝐶) → ∃𝑥 ∈ ℝ+ (𝑃(ball‘𝐷)𝑥) ⊆ (𝐵𝐶)))
396, 10, 38mp2and 696 1 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ (𝐵𝐶)) ∧ (𝐵 ∈ ran (ball‘𝐷) ∧ 𝐶 ∈ ran (ball‘𝐷))) → ∃𝑥 ∈ ℝ+ (𝑃(ball‘𝐷)𝑥) ⊆ (𝐵𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  wrex 3065  cin 3886  wss 3887  ifcif 4459  𝒫 cpw 4533   class class class wbr 5074   × cxp 5587  ran crn 5590  wf 6429  cfv 6433  (class class class)co 7275  *cxr 11008  cle 11010  +crp 12730  ∞Metcxmet 20582  ballcbl 20584
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-sup 9201  df-inf 9202  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-n0 12234  df-z 12320  df-uz 12583  df-q 12689  df-rp 12731  df-xneg 12848  df-xadd 12849  df-xmul 12850  df-psmet 20589  df-xmet 20590  df-bl 20592
This theorem is referenced by:  blbas  23583
  Copyright terms: Public domain W3C validator