MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  blin2 Structured version   Visualization version   GIF version

Theorem blin2 24460
Description: Given any two balls and a point in their intersection, there is a ball contained in the intersection with the given center point. (Contributed by Mario Carneiro, 12-Nov-2013.)
Assertion
Ref Expression
blin2 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ (𝐵𝐶)) ∧ (𝐵 ∈ ran (ball‘𝐷) ∧ 𝐶 ∈ ran (ball‘𝐷))) → ∃𝑥 ∈ ℝ+ (𝑃(ball‘𝐷)𝑥) ⊆ (𝐵𝐶))
Distinct variable groups:   𝑥,𝐵   𝑥,𝐶   𝑥,𝐷   𝑥,𝑃   𝑥,𝑋

Proof of Theorem blin2
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpll 766 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ (𝐵𝐶)) ∧ (𝐵 ∈ ran (ball‘𝐷) ∧ 𝐶 ∈ ran (ball‘𝐷))) → 𝐷 ∈ (∞Met‘𝑋))
2 simprl 770 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ (𝐵𝐶)) ∧ (𝐵 ∈ ran (ball‘𝐷) ∧ 𝐶 ∈ ran (ball‘𝐷))) → 𝐵 ∈ ran (ball‘𝐷))
3 simplr 768 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ (𝐵𝐶)) ∧ (𝐵 ∈ ran (ball‘𝐷) ∧ 𝐶 ∈ ran (ball‘𝐷))) → 𝑃 ∈ (𝐵𝐶))
43elin1d 4227 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ (𝐵𝐶)) ∧ (𝐵 ∈ ran (ball‘𝐷) ∧ 𝐶 ∈ ran (ball‘𝐷))) → 𝑃𝐵)
5 blss 24456 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ ran (ball‘𝐷) ∧ 𝑃𝐵) → ∃𝑦 ∈ ℝ+ (𝑃(ball‘𝐷)𝑦) ⊆ 𝐵)
61, 2, 4, 5syl3anc 1371 . 2 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ (𝐵𝐶)) ∧ (𝐵 ∈ ran (ball‘𝐷) ∧ 𝐶 ∈ ran (ball‘𝐷))) → ∃𝑦 ∈ ℝ+ (𝑃(ball‘𝐷)𝑦) ⊆ 𝐵)
7 simprr 772 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ (𝐵𝐶)) ∧ (𝐵 ∈ ran (ball‘𝐷) ∧ 𝐶 ∈ ran (ball‘𝐷))) → 𝐶 ∈ ran (ball‘𝐷))
83elin2d 4228 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ (𝐵𝐶)) ∧ (𝐵 ∈ ran (ball‘𝐷) ∧ 𝐶 ∈ ran (ball‘𝐷))) → 𝑃𝐶)
9 blss 24456 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐶 ∈ ran (ball‘𝐷) ∧ 𝑃𝐶) → ∃𝑧 ∈ ℝ+ (𝑃(ball‘𝐷)𝑧) ⊆ 𝐶)
101, 7, 8, 9syl3anc 1371 . 2 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ (𝐵𝐶)) ∧ (𝐵 ∈ ran (ball‘𝐷) ∧ 𝐶 ∈ ran (ball‘𝐷))) → ∃𝑧 ∈ ℝ+ (𝑃(ball‘𝐷)𝑧) ⊆ 𝐶)
11 reeanv 3235 . . 3 (∃𝑦 ∈ ℝ+𝑧 ∈ ℝ+ ((𝑃(ball‘𝐷)𝑦) ⊆ 𝐵 ∧ (𝑃(ball‘𝐷)𝑧) ⊆ 𝐶) ↔ (∃𝑦 ∈ ℝ+ (𝑃(ball‘𝐷)𝑦) ⊆ 𝐵 ∧ ∃𝑧 ∈ ℝ+ (𝑃(ball‘𝐷)𝑧) ⊆ 𝐶))
12 ss2in 4266 . . . . 5 (((𝑃(ball‘𝐷)𝑦) ⊆ 𝐵 ∧ (𝑃(ball‘𝐷)𝑧) ⊆ 𝐶) → ((𝑃(ball‘𝐷)𝑦) ∩ (𝑃(ball‘𝐷)𝑧)) ⊆ (𝐵𝐶))
13 inss1 4258 . . . . . . . . . . 11 (𝐵𝐶) ⊆ 𝐵
14 blf 24438 . . . . . . . . . . . . . 14 (𝐷 ∈ (∞Met‘𝑋) → (ball‘𝐷):(𝑋 × ℝ*)⟶𝒫 𝑋)
15 frn 6754 . . . . . . . . . . . . . 14 ((ball‘𝐷):(𝑋 × ℝ*)⟶𝒫 𝑋 → ran (ball‘𝐷) ⊆ 𝒫 𝑋)
161, 14, 153syl 18 . . . . . . . . . . . . 13 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ (𝐵𝐶)) ∧ (𝐵 ∈ ran (ball‘𝐷) ∧ 𝐶 ∈ ran (ball‘𝐷))) → ran (ball‘𝐷) ⊆ 𝒫 𝑋)
1716, 2sseldd 4009 . . . . . . . . . . . 12 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ (𝐵𝐶)) ∧ (𝐵 ∈ ran (ball‘𝐷) ∧ 𝐶 ∈ ran (ball‘𝐷))) → 𝐵 ∈ 𝒫 𝑋)
1817elpwid 4631 . . . . . . . . . . 11 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ (𝐵𝐶)) ∧ (𝐵 ∈ ran (ball‘𝐷) ∧ 𝐶 ∈ ran (ball‘𝐷))) → 𝐵𝑋)
1913, 18sstrid 4020 . . . . . . . . . 10 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ (𝐵𝐶)) ∧ (𝐵 ∈ ran (ball‘𝐷) ∧ 𝐶 ∈ ran (ball‘𝐷))) → (𝐵𝐶) ⊆ 𝑋)
2019, 3sseldd 4009 . . . . . . . . 9 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ (𝐵𝐶)) ∧ (𝐵 ∈ ran (ball‘𝐷) ∧ 𝐶 ∈ ran (ball‘𝐷))) → 𝑃𝑋)
211, 20jca 511 . . . . . . . 8 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ (𝐵𝐶)) ∧ (𝐵 ∈ ran (ball‘𝐷) ∧ 𝐶 ∈ ran (ball‘𝐷))) → (𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋))
22 rpxr 13066 . . . . . . . . 9 (𝑦 ∈ ℝ+𝑦 ∈ ℝ*)
23 rpxr 13066 . . . . . . . . 9 (𝑧 ∈ ℝ+𝑧 ∈ ℝ*)
2422, 23anim12i 612 . . . . . . . 8 ((𝑦 ∈ ℝ+𝑧 ∈ ℝ+) → (𝑦 ∈ ℝ*𝑧 ∈ ℝ*))
25 blin 24452 . . . . . . . 8 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑦 ∈ ℝ*𝑧 ∈ ℝ*)) → ((𝑃(ball‘𝐷)𝑦) ∩ (𝑃(ball‘𝐷)𝑧)) = (𝑃(ball‘𝐷)if(𝑦𝑧, 𝑦, 𝑧)))
2621, 24, 25syl2an 595 . . . . . . 7 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ (𝐵𝐶)) ∧ (𝐵 ∈ ran (ball‘𝐷) ∧ 𝐶 ∈ ran (ball‘𝐷))) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) → ((𝑃(ball‘𝐷)𝑦) ∩ (𝑃(ball‘𝐷)𝑧)) = (𝑃(ball‘𝐷)if(𝑦𝑧, 𝑦, 𝑧)))
2726sseq1d 4040 . . . . . 6 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ (𝐵𝐶)) ∧ (𝐵 ∈ ran (ball‘𝐷) ∧ 𝐶 ∈ ran (ball‘𝐷))) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) → (((𝑃(ball‘𝐷)𝑦) ∩ (𝑃(ball‘𝐷)𝑧)) ⊆ (𝐵𝐶) ↔ (𝑃(ball‘𝐷)if(𝑦𝑧, 𝑦, 𝑧)) ⊆ (𝐵𝐶)))
28 ifcl 4593 . . . . . . . 8 ((𝑦 ∈ ℝ+𝑧 ∈ ℝ+) → if(𝑦𝑧, 𝑦, 𝑧) ∈ ℝ+)
29 oveq2 7456 . . . . . . . . . . 11 (𝑥 = if(𝑦𝑧, 𝑦, 𝑧) → (𝑃(ball‘𝐷)𝑥) = (𝑃(ball‘𝐷)if(𝑦𝑧, 𝑦, 𝑧)))
3029sseq1d 4040 . . . . . . . . . 10 (𝑥 = if(𝑦𝑧, 𝑦, 𝑧) → ((𝑃(ball‘𝐷)𝑥) ⊆ (𝐵𝐶) ↔ (𝑃(ball‘𝐷)if(𝑦𝑧, 𝑦, 𝑧)) ⊆ (𝐵𝐶)))
3130rspcev 3635 . . . . . . . . 9 ((if(𝑦𝑧, 𝑦, 𝑧) ∈ ℝ+ ∧ (𝑃(ball‘𝐷)if(𝑦𝑧, 𝑦, 𝑧)) ⊆ (𝐵𝐶)) → ∃𝑥 ∈ ℝ+ (𝑃(ball‘𝐷)𝑥) ⊆ (𝐵𝐶))
3231ex 412 . . . . . . . 8 (if(𝑦𝑧, 𝑦, 𝑧) ∈ ℝ+ → ((𝑃(ball‘𝐷)if(𝑦𝑧, 𝑦, 𝑧)) ⊆ (𝐵𝐶) → ∃𝑥 ∈ ℝ+ (𝑃(ball‘𝐷)𝑥) ⊆ (𝐵𝐶)))
3328, 32syl 17 . . . . . . 7 ((𝑦 ∈ ℝ+𝑧 ∈ ℝ+) → ((𝑃(ball‘𝐷)if(𝑦𝑧, 𝑦, 𝑧)) ⊆ (𝐵𝐶) → ∃𝑥 ∈ ℝ+ (𝑃(ball‘𝐷)𝑥) ⊆ (𝐵𝐶)))
3433adantl 481 . . . . . 6 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ (𝐵𝐶)) ∧ (𝐵 ∈ ran (ball‘𝐷) ∧ 𝐶 ∈ ran (ball‘𝐷))) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) → ((𝑃(ball‘𝐷)if(𝑦𝑧, 𝑦, 𝑧)) ⊆ (𝐵𝐶) → ∃𝑥 ∈ ℝ+ (𝑃(ball‘𝐷)𝑥) ⊆ (𝐵𝐶)))
3527, 34sylbid 240 . . . . 5 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ (𝐵𝐶)) ∧ (𝐵 ∈ ran (ball‘𝐷) ∧ 𝐶 ∈ ran (ball‘𝐷))) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) → (((𝑃(ball‘𝐷)𝑦) ∩ (𝑃(ball‘𝐷)𝑧)) ⊆ (𝐵𝐶) → ∃𝑥 ∈ ℝ+ (𝑃(ball‘𝐷)𝑥) ⊆ (𝐵𝐶)))
3612, 35syl5 34 . . . 4 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ (𝐵𝐶)) ∧ (𝐵 ∈ ran (ball‘𝐷) ∧ 𝐶 ∈ ran (ball‘𝐷))) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) → (((𝑃(ball‘𝐷)𝑦) ⊆ 𝐵 ∧ (𝑃(ball‘𝐷)𝑧) ⊆ 𝐶) → ∃𝑥 ∈ ℝ+ (𝑃(ball‘𝐷)𝑥) ⊆ (𝐵𝐶)))
3736rexlimdvva 3219 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ (𝐵𝐶)) ∧ (𝐵 ∈ ran (ball‘𝐷) ∧ 𝐶 ∈ ran (ball‘𝐷))) → (∃𝑦 ∈ ℝ+𝑧 ∈ ℝ+ ((𝑃(ball‘𝐷)𝑦) ⊆ 𝐵 ∧ (𝑃(ball‘𝐷)𝑧) ⊆ 𝐶) → ∃𝑥 ∈ ℝ+ (𝑃(ball‘𝐷)𝑥) ⊆ (𝐵𝐶)))
3811, 37biimtrrid 243 . 2 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ (𝐵𝐶)) ∧ (𝐵 ∈ ran (ball‘𝐷) ∧ 𝐶 ∈ ran (ball‘𝐷))) → ((∃𝑦 ∈ ℝ+ (𝑃(ball‘𝐷)𝑦) ⊆ 𝐵 ∧ ∃𝑧 ∈ ℝ+ (𝑃(ball‘𝐷)𝑧) ⊆ 𝐶) → ∃𝑥 ∈ ℝ+ (𝑃(ball‘𝐷)𝑥) ⊆ (𝐵𝐶)))
396, 10, 38mp2and 698 1 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ (𝐵𝐶)) ∧ (𝐵 ∈ ran (ball‘𝐷) ∧ 𝐶 ∈ ran (ball‘𝐷))) → ∃𝑥 ∈ ℝ+ (𝑃(ball‘𝐷)𝑥) ⊆ (𝐵𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  wrex 3076  cin 3975  wss 3976  ifcif 4548  𝒫 cpw 4622   class class class wbr 5166   × cxp 5698  ran crn 5701  wf 6569  cfv 6573  (class class class)co 7448  *cxr 11323  cle 11325  +crp 13057  ∞Metcxmet 21372  ballcbl 21374
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-sup 9511  df-inf 9512  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-n0 12554  df-z 12640  df-uz 12904  df-q 13014  df-rp 13058  df-xneg 13175  df-xadd 13176  df-xmul 13177  df-psmet 21379  df-xmet 21380  df-bl 21382
This theorem is referenced by:  blbas  24461
  Copyright terms: Public domain W3C validator