| Step | Hyp | Ref
| Expression |
| 1 | | eqid 2736 |
. . . . 5
⊢ (𝑝 ∈ 𝐿, 𝑞 ∈ 𝑀 ↦ (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))) = (𝑝 ∈ 𝐿, 𝑞 ∈ 𝑀 ↦ (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))) |
| 2 | 1 | rnmpo 7545 |
. . . 4
⊢ ran
(𝑝 ∈ 𝐿, 𝑞 ∈ 𝑀 ↦ (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))) = {𝑎 ∣ ∃𝑝 ∈ 𝐿 ∃𝑞 ∈ 𝑀 𝑎 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} |
| 3 | | ssltmul1.1 |
. . . . . . 7
⊢ (𝜑 → 𝐿 <<s 𝑅) |
| 4 | | ssltex1 27755 |
. . . . . . 7
⊢ (𝐿 <<s 𝑅 → 𝐿 ∈ V) |
| 5 | 3, 4 | syl 17 |
. . . . . 6
⊢ (𝜑 → 𝐿 ∈ V) |
| 6 | | ssltmul1.2 |
. . . . . . 7
⊢ (𝜑 → 𝑀 <<s 𝑆) |
| 7 | | ssltex1 27755 |
. . . . . . 7
⊢ (𝑀 <<s 𝑆 → 𝑀 ∈ V) |
| 8 | 6, 7 | syl 17 |
. . . . . 6
⊢ (𝜑 → 𝑀 ∈ V) |
| 9 | 1 | mpoexg 8080 |
. . . . . 6
⊢ ((𝐿 ∈ V ∧ 𝑀 ∈ V) → (𝑝 ∈ 𝐿, 𝑞 ∈ 𝑀 ↦ (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))) ∈ V) |
| 10 | 5, 8, 9 | syl2anc 584 |
. . . . 5
⊢ (𝜑 → (𝑝 ∈ 𝐿, 𝑞 ∈ 𝑀 ↦ (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))) ∈ V) |
| 11 | | rnexg 7903 |
. . . . 5
⊢ ((𝑝 ∈ 𝐿, 𝑞 ∈ 𝑀 ↦ (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))) ∈ V → ran (𝑝 ∈ 𝐿, 𝑞 ∈ 𝑀 ↦ (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))) ∈ V) |
| 12 | 10, 11 | syl 17 |
. . . 4
⊢ (𝜑 → ran (𝑝 ∈ 𝐿, 𝑞 ∈ 𝑀 ↦ (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))) ∈ V) |
| 13 | 2, 12 | eqeltrrid 2840 |
. . 3
⊢ (𝜑 → {𝑎 ∣ ∃𝑝 ∈ 𝐿 ∃𝑞 ∈ 𝑀 𝑎 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ∈ V) |
| 14 | | eqid 2736 |
. . . . 5
⊢ (𝑟 ∈ 𝑅, 𝑠 ∈ 𝑆 ↦ (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))) = (𝑟 ∈ 𝑅, 𝑠 ∈ 𝑆 ↦ (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))) |
| 15 | 14 | rnmpo 7545 |
. . . 4
⊢ ran
(𝑟 ∈ 𝑅, 𝑠 ∈ 𝑆 ↦ (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))) = {𝑏 ∣ ∃𝑟 ∈ 𝑅 ∃𝑠 ∈ 𝑆 𝑏 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))} |
| 16 | | ssltex2 27756 |
. . . . . . 7
⊢ (𝐿 <<s 𝑅 → 𝑅 ∈ V) |
| 17 | 3, 16 | syl 17 |
. . . . . 6
⊢ (𝜑 → 𝑅 ∈ V) |
| 18 | | ssltex2 27756 |
. . . . . . 7
⊢ (𝑀 <<s 𝑆 → 𝑆 ∈ V) |
| 19 | 6, 18 | syl 17 |
. . . . . 6
⊢ (𝜑 → 𝑆 ∈ V) |
| 20 | 14 | mpoexg 8080 |
. . . . . 6
⊢ ((𝑅 ∈ V ∧ 𝑆 ∈ V) → (𝑟 ∈ 𝑅, 𝑠 ∈ 𝑆 ↦ (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))) ∈ V) |
| 21 | 17, 19, 20 | syl2anc 584 |
. . . . 5
⊢ (𝜑 → (𝑟 ∈ 𝑅, 𝑠 ∈ 𝑆 ↦ (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))) ∈ V) |
| 22 | | rnexg 7903 |
. . . . 5
⊢ ((𝑟 ∈ 𝑅, 𝑠 ∈ 𝑆 ↦ (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))) ∈ V → ran (𝑟 ∈ 𝑅, 𝑠 ∈ 𝑆 ↦ (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))) ∈ V) |
| 23 | 21, 22 | syl 17 |
. . . 4
⊢ (𝜑 → ran (𝑟 ∈ 𝑅, 𝑠 ∈ 𝑆 ↦ (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))) ∈ V) |
| 24 | 15, 23 | eqeltrrid 2840 |
. . 3
⊢ (𝜑 → {𝑏 ∣ ∃𝑟 ∈ 𝑅 ∃𝑠 ∈ 𝑆 𝑏 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))} ∈ V) |
| 25 | 13, 24 | unexd 7753 |
. 2
⊢ (𝜑 → ({𝑎 ∣ ∃𝑝 ∈ 𝐿 ∃𝑞 ∈ 𝑀 𝑎 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ 𝑅 ∃𝑠 ∈ 𝑆 𝑏 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))}) ∈ V) |
| 26 | | snex 5411 |
. . 3
⊢ {(𝐴 ·s 𝐵)} ∈ V |
| 27 | 26 | a1i 11 |
. 2
⊢ (𝜑 → {(𝐴 ·s 𝐵)} ∈ V) |
| 28 | | ssltss1 27757 |
. . . . . . . . . . . 12
⊢ (𝐿 <<s 𝑅 → 𝐿 ⊆ No
) |
| 29 | 3, 28 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐿 ⊆ No
) |
| 30 | 29 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀)) → 𝐿 ⊆ No
) |
| 31 | | simprl 770 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀)) → 𝑝 ∈ 𝐿) |
| 32 | 30, 31 | sseldd 3964 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀)) → 𝑝 ∈ No
) |
| 33 | | ssltmul1.4 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐵 = (𝑀 |s 𝑆)) |
| 34 | 6 | scutcld 27772 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑀 |s 𝑆) ∈ No
) |
| 35 | 33, 34 | eqeltrd 2835 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐵 ∈ No
) |
| 36 | 35 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀)) → 𝐵 ∈ No
) |
| 37 | 32, 36 | mulscld 28095 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀)) → (𝑝 ·s 𝐵) ∈ No
) |
| 38 | | ssltmul1.3 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐴 = (𝐿 |s 𝑅)) |
| 39 | 3 | scutcld 27772 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐿 |s 𝑅) ∈ No
) |
| 40 | 38, 39 | eqeltrd 2835 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐴 ∈ No
) |
| 41 | 40 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀)) → 𝐴 ∈ No
) |
| 42 | | ssltss1 27757 |
. . . . . . . . . . . 12
⊢ (𝑀 <<s 𝑆 → 𝑀 ⊆ No
) |
| 43 | 6, 42 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑀 ⊆ No
) |
| 44 | 43 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀)) → 𝑀 ⊆ No
) |
| 45 | | simprr 772 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀)) → 𝑞 ∈ 𝑀) |
| 46 | 44, 45 | sseldd 3964 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀)) → 𝑞 ∈ No
) |
| 47 | 41, 46 | mulscld 28095 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀)) → (𝐴 ·s 𝑞) ∈ No
) |
| 48 | 37, 47 | addscld 27944 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀)) → ((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) ∈ No
) |
| 49 | 32, 46 | mulscld 28095 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀)) → (𝑝 ·s 𝑞) ∈ No
) |
| 50 | 48, 49 | subscld 28024 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀)) → (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞)) ∈ No
) |
| 51 | | eleq1 2823 |
. . . . . 6
⊢ (𝑎 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞)) → (𝑎 ∈ No
↔ (((𝑝
·s 𝐵)
+s (𝐴
·s 𝑞))
-s (𝑝
·s 𝑞))
∈ No )) |
| 52 | 50, 51 | syl5ibrcom 247 |
. . . . 5
⊢ ((𝜑 ∧ (𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀)) → (𝑎 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞)) → 𝑎 ∈ No
)) |
| 53 | 52 | rexlimdvva 3202 |
. . . 4
⊢ (𝜑 → (∃𝑝 ∈ 𝐿 ∃𝑞 ∈ 𝑀 𝑎 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞)) → 𝑎 ∈ No
)) |
| 54 | 53 | abssdv 4048 |
. . 3
⊢ (𝜑 → {𝑎 ∣ ∃𝑝 ∈ 𝐿 ∃𝑞 ∈ 𝑀 𝑎 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ⊆ No
) |
| 55 | | ssltss2 27758 |
. . . . . . . . . . . 12
⊢ (𝐿 <<s 𝑅 → 𝑅 ⊆ No
) |
| 56 | 3, 55 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑅 ⊆ No
) |
| 57 | 56 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆)) → 𝑅 ⊆ No
) |
| 58 | | simprl 770 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆)) → 𝑟 ∈ 𝑅) |
| 59 | 57, 58 | sseldd 3964 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆)) → 𝑟 ∈ No
) |
| 60 | 35 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆)) → 𝐵 ∈ No
) |
| 61 | 59, 60 | mulscld 28095 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆)) → (𝑟 ·s 𝐵) ∈ No
) |
| 62 | 40 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆)) → 𝐴 ∈ No
) |
| 63 | | ssltss2 27758 |
. . . . . . . . . . . 12
⊢ (𝑀 <<s 𝑆 → 𝑆 ⊆ No
) |
| 64 | 6, 63 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑆 ⊆ No
) |
| 65 | 64 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆)) → 𝑆 ⊆ No
) |
| 66 | | simprr 772 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆)) → 𝑠 ∈ 𝑆) |
| 67 | 65, 66 | sseldd 3964 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆)) → 𝑠 ∈ No
) |
| 68 | 62, 67 | mulscld 28095 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆)) → (𝐴 ·s 𝑠) ∈ No
) |
| 69 | 61, 68 | addscld 27944 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆)) → ((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) ∈ No
) |
| 70 | 59, 67 | mulscld 28095 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆)) → (𝑟 ·s 𝑠) ∈ No
) |
| 71 | 69, 70 | subscld 28024 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆)) → (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠)) ∈ No
) |
| 72 | | eleq1 2823 |
. . . . . 6
⊢ (𝑏 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠)) → (𝑏 ∈ No
↔ (((𝑟
·s 𝐵)
+s (𝐴
·s 𝑠))
-s (𝑟
·s 𝑠))
∈ No )) |
| 73 | 71, 72 | syl5ibrcom 247 |
. . . . 5
⊢ ((𝜑 ∧ (𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆)) → (𝑏 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠)) → 𝑏 ∈ No
)) |
| 74 | 73 | rexlimdvva 3202 |
. . . 4
⊢ (𝜑 → (∃𝑟 ∈ 𝑅 ∃𝑠 ∈ 𝑆 𝑏 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠)) → 𝑏 ∈ No
)) |
| 75 | 74 | abssdv 4048 |
. . 3
⊢ (𝜑 → {𝑏 ∣ ∃𝑟 ∈ 𝑅 ∃𝑠 ∈ 𝑆 𝑏 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))} ⊆ No
) |
| 76 | 54, 75 | unssd 4172 |
. 2
⊢ (𝜑 → ({𝑎 ∣ ∃𝑝 ∈ 𝐿 ∃𝑞 ∈ 𝑀 𝑎 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ 𝑅 ∃𝑠 ∈ 𝑆 𝑏 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))}) ⊆ No
) |
| 77 | 40, 35 | mulscld 28095 |
. . 3
⊢ (𝜑 → (𝐴 ·s 𝐵) ∈ No
) |
| 78 | 77 | snssd 4790 |
. 2
⊢ (𝜑 → {(𝐴 ·s 𝐵)} ⊆ No
) |
| 79 | | elun 4133 |
. . . . . . 7
⊢ (𝑥 ∈ ({𝑎 ∣ ∃𝑝 ∈ 𝐿 ∃𝑞 ∈ 𝑀 𝑎 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ 𝑅 ∃𝑠 ∈ 𝑆 𝑏 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))}) ↔ (𝑥 ∈ {𝑎 ∣ ∃𝑝 ∈ 𝐿 ∃𝑞 ∈ 𝑀 𝑎 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ∨ 𝑥 ∈ {𝑏 ∣ ∃𝑟 ∈ 𝑅 ∃𝑠 ∈ 𝑆 𝑏 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))})) |
| 80 | | vex 3468 |
. . . . . . . . 9
⊢ 𝑥 ∈ V |
| 81 | | eqeq1 2740 |
. . . . . . . . . 10
⊢ (𝑎 = 𝑥 → (𝑎 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞)) ↔ 𝑥 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞)))) |
| 82 | 81 | 2rexbidv 3210 |
. . . . . . . . 9
⊢ (𝑎 = 𝑥 → (∃𝑝 ∈ 𝐿 ∃𝑞 ∈ 𝑀 𝑎 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞)) ↔ ∃𝑝 ∈ 𝐿 ∃𝑞 ∈ 𝑀 𝑥 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞)))) |
| 83 | 80, 82 | elab 3663 |
. . . . . . . 8
⊢ (𝑥 ∈ {𝑎 ∣ ∃𝑝 ∈ 𝐿 ∃𝑞 ∈ 𝑀 𝑎 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ↔ ∃𝑝 ∈ 𝐿 ∃𝑞 ∈ 𝑀 𝑥 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))) |
| 84 | | eqeq1 2740 |
. . . . . . . . . 10
⊢ (𝑏 = 𝑥 → (𝑏 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠)) ↔ 𝑥 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠)))) |
| 85 | 84 | 2rexbidv 3210 |
. . . . . . . . 9
⊢ (𝑏 = 𝑥 → (∃𝑟 ∈ 𝑅 ∃𝑠 ∈ 𝑆 𝑏 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠)) ↔ ∃𝑟 ∈ 𝑅 ∃𝑠 ∈ 𝑆 𝑥 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠)))) |
| 86 | 80, 85 | elab 3663 |
. . . . . . . 8
⊢ (𝑥 ∈ {𝑏 ∣ ∃𝑟 ∈ 𝑅 ∃𝑠 ∈ 𝑆 𝑏 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))} ↔ ∃𝑟 ∈ 𝑅 ∃𝑠 ∈ 𝑆 𝑥 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))) |
| 87 | 83, 86 | orbi12i 914 |
. . . . . . 7
⊢ ((𝑥 ∈ {𝑎 ∣ ∃𝑝 ∈ 𝐿 ∃𝑞 ∈ 𝑀 𝑎 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ∨ 𝑥 ∈ {𝑏 ∣ ∃𝑟 ∈ 𝑅 ∃𝑠 ∈ 𝑆 𝑏 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))}) ↔ (∃𝑝 ∈ 𝐿 ∃𝑞 ∈ 𝑀 𝑥 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞)) ∨ ∃𝑟 ∈ 𝑅 ∃𝑠 ∈ 𝑆 𝑥 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠)))) |
| 88 | 79, 87 | bitri 275 |
. . . . . 6
⊢ (𝑥 ∈ ({𝑎 ∣ ∃𝑝 ∈ 𝐿 ∃𝑞 ∈ 𝑀 𝑎 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ 𝑅 ∃𝑠 ∈ 𝑆 𝑏 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))}) ↔ (∃𝑝 ∈ 𝐿 ∃𝑞 ∈ 𝑀 𝑥 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞)) ∨ ∃𝑟 ∈ 𝑅 ∃𝑠 ∈ 𝑆 𝑥 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠)))) |
| 89 | 37, 47, 49 | addsubsd 28043 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀)) → (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞)) = (((𝑝 ·s 𝐵) -s (𝑝 ·s 𝑞)) +s (𝐴 ·s 𝑞))) |
| 90 | | scutcut 27770 |
. . . . . . . . . . . . . . . 16
⊢ (𝐿 <<s 𝑅 → ((𝐿 |s 𝑅) ∈ No
∧ 𝐿 <<s {(𝐿 |s 𝑅)} ∧ {(𝐿 |s 𝑅)} <<s 𝑅)) |
| 91 | 3, 90 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ((𝐿 |s 𝑅) ∈ No
∧ 𝐿 <<s {(𝐿 |s 𝑅)} ∧ {(𝐿 |s 𝑅)} <<s 𝑅)) |
| 92 | 91 | simp2d 1143 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐿 <<s {(𝐿 |s 𝑅)}) |
| 93 | 92 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀)) → 𝐿 <<s {(𝐿 |s 𝑅)}) |
| 94 | | ovex 7443 |
. . . . . . . . . . . . . . . 16
⊢ (𝐿 |s 𝑅) ∈ V |
| 95 | 94 | snid 4643 |
. . . . . . . . . . . . . . 15
⊢ (𝐿 |s 𝑅) ∈ {(𝐿 |s 𝑅)} |
| 96 | 38, 95 | eqeltrdi 2843 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐴 ∈ {(𝐿 |s 𝑅)}) |
| 97 | 96 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀)) → 𝐴 ∈ {(𝐿 |s 𝑅)}) |
| 98 | 93, 31, 97 | ssltsepcd 27763 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀)) → 𝑝 <s 𝐴) |
| 99 | | scutcut 27770 |
. . . . . . . . . . . . . . . 16
⊢ (𝑀 <<s 𝑆 → ((𝑀 |s 𝑆) ∈ No
∧ 𝑀 <<s {(𝑀 |s 𝑆)} ∧ {(𝑀 |s 𝑆)} <<s 𝑆)) |
| 100 | 6, 99 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ((𝑀 |s 𝑆) ∈ No
∧ 𝑀 <<s {(𝑀 |s 𝑆)} ∧ {(𝑀 |s 𝑆)} <<s 𝑆)) |
| 101 | 100 | simp2d 1143 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑀 <<s {(𝑀 |s 𝑆)}) |
| 102 | 101 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀)) → 𝑀 <<s {(𝑀 |s 𝑆)}) |
| 103 | | ovex 7443 |
. . . . . . . . . . . . . . . 16
⊢ (𝑀 |s 𝑆) ∈ V |
| 104 | 103 | snid 4643 |
. . . . . . . . . . . . . . 15
⊢ (𝑀 |s 𝑆) ∈ {(𝑀 |s 𝑆)} |
| 105 | 33, 104 | eqeltrdi 2843 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐵 ∈ {(𝑀 |s 𝑆)}) |
| 106 | 105 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀)) → 𝐵 ∈ {(𝑀 |s 𝑆)}) |
| 107 | 102, 45, 106 | ssltsepcd 27763 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀)) → 𝑞 <s 𝐵) |
| 108 | 32, 41, 46, 36, 98, 107 | sltmuld 28097 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀)) → ((𝑝 ·s 𝐵) -s (𝑝 ·s 𝑞)) <s ((𝐴 ·s 𝐵) -s (𝐴 ·s 𝑞))) |
| 109 | 37, 49 | subscld 28024 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀)) → ((𝑝 ·s 𝐵) -s (𝑝 ·s 𝑞)) ∈ No
) |
| 110 | 77 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀)) → (𝐴 ·s 𝐵) ∈ No
) |
| 111 | 109, 47, 110 | sltaddsubd 28052 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀)) → ((((𝑝 ·s 𝐵) -s (𝑝 ·s 𝑞)) +s (𝐴 ·s 𝑞)) <s (𝐴 ·s 𝐵) ↔ ((𝑝 ·s 𝐵) -s (𝑝 ·s 𝑞)) <s ((𝐴 ·s 𝐵) -s (𝐴 ·s 𝑞)))) |
| 112 | 108, 111 | mpbird 257 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀)) → (((𝑝 ·s 𝐵) -s (𝑝 ·s 𝑞)) +s (𝐴 ·s 𝑞)) <s (𝐴 ·s 𝐵)) |
| 113 | 89, 112 | eqbrtrd 5146 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀)) → (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞)) <s (𝐴 ·s 𝐵)) |
| 114 | | breq1 5127 |
. . . . . . . . 9
⊢ (𝑥 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞)) → (𝑥 <s (𝐴 ·s 𝐵) ↔ (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞)) <s (𝐴 ·s 𝐵))) |
| 115 | 113, 114 | syl5ibrcom 247 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀)) → (𝑥 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞)) → 𝑥 <s (𝐴 ·s 𝐵))) |
| 116 | 115 | rexlimdvva 3202 |
. . . . . . 7
⊢ (𝜑 → (∃𝑝 ∈ 𝐿 ∃𝑞 ∈ 𝑀 𝑥 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞)) → 𝑥 <s (𝐴 ·s 𝐵))) |
| 117 | 61, 68, 70 | addsubsd 28043 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆)) → (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠)) = (((𝑟 ·s 𝐵) -s (𝑟 ·s 𝑠)) +s (𝐴 ·s 𝑠))) |
| 118 | 3 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆)) → 𝐿 <<s 𝑅) |
| 119 | 118, 90 | syl 17 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆)) → ((𝐿 |s 𝑅) ∈ No
∧ 𝐿 <<s {(𝐿 |s 𝑅)} ∧ {(𝐿 |s 𝑅)} <<s 𝑅)) |
| 120 | 119 | simp3d 1144 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆)) → {(𝐿 |s 𝑅)} <<s 𝑅) |
| 121 | 38 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆)) → 𝐴 = (𝐿 |s 𝑅)) |
| 122 | 121, 95 | eqeltrdi 2843 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆)) → 𝐴 ∈ {(𝐿 |s 𝑅)}) |
| 123 | 120, 122,
58 | ssltsepcd 27763 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆)) → 𝐴 <s 𝑟) |
| 124 | 6 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆)) → 𝑀 <<s 𝑆) |
| 125 | 124, 99 | syl 17 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆)) → ((𝑀 |s 𝑆) ∈ No
∧ 𝑀 <<s {(𝑀 |s 𝑆)} ∧ {(𝑀 |s 𝑆)} <<s 𝑆)) |
| 126 | 125 | simp3d 1144 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆)) → {(𝑀 |s 𝑆)} <<s 𝑆) |
| 127 | 33 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆)) → 𝐵 = (𝑀 |s 𝑆)) |
| 128 | 127, 104 | eqeltrdi 2843 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆)) → 𝐵 ∈ {(𝑀 |s 𝑆)}) |
| 129 | 126, 128,
66 | ssltsepcd 27763 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆)) → 𝐵 <s 𝑠) |
| 130 | 62, 59, 60, 67, 123, 129 | sltmuld 28097 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆)) → ((𝐴 ·s 𝑠) -s (𝐴 ·s 𝐵)) <s ((𝑟 ·s 𝑠) -s (𝑟 ·s 𝐵))) |
| 131 | 61, 70 | subscld 28024 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆)) → ((𝑟 ·s 𝐵) -s (𝑟 ·s 𝑠)) ∈ No
) |
| 132 | 77 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆)) → (𝐴 ·s 𝐵) ∈ No
) |
| 133 | 131, 68, 132 | sltaddsubd 28052 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆)) → ((((𝑟 ·s 𝐵) -s (𝑟 ·s 𝑠)) +s (𝐴 ·s 𝑠)) <s (𝐴 ·s 𝐵) ↔ ((𝑟 ·s 𝐵) -s (𝑟 ·s 𝑠)) <s ((𝐴 ·s 𝐵) -s (𝐴 ·s 𝑠)))) |
| 134 | 61, 70, 132, 68 | sltsubsub2bd 28045 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆)) → (((𝑟 ·s 𝐵) -s (𝑟 ·s 𝑠)) <s ((𝐴 ·s 𝐵) -s (𝐴 ·s 𝑠)) ↔ ((𝐴 ·s 𝑠) -s (𝐴 ·s 𝐵)) <s ((𝑟 ·s 𝑠) -s (𝑟 ·s 𝐵)))) |
| 135 | 133, 134 | bitrd 279 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆)) → ((((𝑟 ·s 𝐵) -s (𝑟 ·s 𝑠)) +s (𝐴 ·s 𝑠)) <s (𝐴 ·s 𝐵) ↔ ((𝐴 ·s 𝑠) -s (𝐴 ·s 𝐵)) <s ((𝑟 ·s 𝑠) -s (𝑟 ·s 𝐵)))) |
| 136 | 130, 135 | mpbird 257 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆)) → (((𝑟 ·s 𝐵) -s (𝑟 ·s 𝑠)) +s (𝐴 ·s 𝑠)) <s (𝐴 ·s 𝐵)) |
| 137 | 117, 136 | eqbrtrd 5146 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆)) → (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠)) <s (𝐴 ·s 𝐵)) |
| 138 | | breq1 5127 |
. . . . . . . . 9
⊢ (𝑥 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠)) → (𝑥 <s (𝐴 ·s 𝐵) ↔ (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠)) <s (𝐴 ·s 𝐵))) |
| 139 | 137, 138 | syl5ibrcom 247 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆)) → (𝑥 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠)) → 𝑥 <s (𝐴 ·s 𝐵))) |
| 140 | 139 | rexlimdvva 3202 |
. . . . . . 7
⊢ (𝜑 → (∃𝑟 ∈ 𝑅 ∃𝑠 ∈ 𝑆 𝑥 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠)) → 𝑥 <s (𝐴 ·s 𝐵))) |
| 141 | 116, 140 | jaod 859 |
. . . . . 6
⊢ (𝜑 → ((∃𝑝 ∈ 𝐿 ∃𝑞 ∈ 𝑀 𝑥 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞)) ∨ ∃𝑟 ∈ 𝑅 ∃𝑠 ∈ 𝑆 𝑥 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))) → 𝑥 <s (𝐴 ·s 𝐵))) |
| 142 | 88, 141 | biimtrid 242 |
. . . . 5
⊢ (𝜑 → (𝑥 ∈ ({𝑎 ∣ ∃𝑝 ∈ 𝐿 ∃𝑞 ∈ 𝑀 𝑎 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ 𝑅 ∃𝑠 ∈ 𝑆 𝑏 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))}) → 𝑥 <s (𝐴 ·s 𝐵))) |
| 143 | 142 | imp 406 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ ({𝑎 ∣ ∃𝑝 ∈ 𝐿 ∃𝑞 ∈ 𝑀 𝑎 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ 𝑅 ∃𝑠 ∈ 𝑆 𝑏 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))})) → 𝑥 <s (𝐴 ·s 𝐵)) |
| 144 | | velsn 4622 |
. . . . 5
⊢ (𝑦 ∈ {(𝐴 ·s 𝐵)} ↔ 𝑦 = (𝐴 ·s 𝐵)) |
| 145 | | breq2 5128 |
. . . . 5
⊢ (𝑦 = (𝐴 ·s 𝐵) → (𝑥 <s 𝑦 ↔ 𝑥 <s (𝐴 ·s 𝐵))) |
| 146 | 144, 145 | sylbi 217 |
. . . 4
⊢ (𝑦 ∈ {(𝐴 ·s 𝐵)} → (𝑥 <s 𝑦 ↔ 𝑥 <s (𝐴 ·s 𝐵))) |
| 147 | 143, 146 | syl5ibrcom 247 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ ({𝑎 ∣ ∃𝑝 ∈ 𝐿 ∃𝑞 ∈ 𝑀 𝑎 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ 𝑅 ∃𝑠 ∈ 𝑆 𝑏 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))})) → (𝑦 ∈ {(𝐴 ·s 𝐵)} → 𝑥 <s 𝑦)) |
| 148 | 147 | 3impia 1117 |
. 2
⊢ ((𝜑 ∧ 𝑥 ∈ ({𝑎 ∣ ∃𝑝 ∈ 𝐿 ∃𝑞 ∈ 𝑀 𝑎 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ 𝑅 ∃𝑠 ∈ 𝑆 𝑏 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))}) ∧ 𝑦 ∈ {(𝐴 ·s 𝐵)}) → 𝑥 <s 𝑦) |
| 149 | 25, 27, 76, 78, 148 | ssltd 27760 |
1
⊢ (𝜑 → ({𝑎 ∣ ∃𝑝 ∈ 𝐿 ∃𝑞 ∈ 𝑀 𝑎 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ 𝑅 ∃𝑠 ∈ 𝑆 𝑏 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))}) <<s {(𝐴 ·s 𝐵)}) |