| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | snex 5435 | . . 3
⊢ {(𝐴 ·s 𝐵)} ∈ V | 
| 2 | 1 | a1i 11 | . 2
⊢ (𝜑 → {(𝐴 ·s 𝐵)} ∈ V) | 
| 3 |  | eqid 2736 | . . . . 5
⊢ (𝑡 ∈ 𝐿, 𝑢 ∈ 𝑆 ↦ (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))) = (𝑡 ∈ 𝐿, 𝑢 ∈ 𝑆 ↦ (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))) | 
| 4 | 3 | rnmpo 7567 | . . . 4
⊢ ran
(𝑡 ∈ 𝐿, 𝑢 ∈ 𝑆 ↦ (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))) = {𝑐 ∣ ∃𝑡 ∈ 𝐿 ∃𝑢 ∈ 𝑆 𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} | 
| 5 |  | ssltmul2.1 | . . . . . . 7
⊢ (𝜑 → 𝐿 <<s 𝑅) | 
| 6 |  | ssltex1 27832 | . . . . . . 7
⊢ (𝐿 <<s 𝑅 → 𝐿 ∈ V) | 
| 7 | 5, 6 | syl 17 | . . . . . 6
⊢ (𝜑 → 𝐿 ∈ V) | 
| 8 |  | ssltmul2.2 | . . . . . . 7
⊢ (𝜑 → 𝑀 <<s 𝑆) | 
| 9 |  | ssltex2 27833 | . . . . . . 7
⊢ (𝑀 <<s 𝑆 → 𝑆 ∈ V) | 
| 10 | 8, 9 | syl 17 | . . . . . 6
⊢ (𝜑 → 𝑆 ∈ V) | 
| 11 | 3 | mpoexg 8102 | . . . . . 6
⊢ ((𝐿 ∈ V ∧ 𝑆 ∈ V) → (𝑡 ∈ 𝐿, 𝑢 ∈ 𝑆 ↦ (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))) ∈ V) | 
| 12 | 7, 10, 11 | syl2anc 584 | . . . . 5
⊢ (𝜑 → (𝑡 ∈ 𝐿, 𝑢 ∈ 𝑆 ↦ (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))) ∈ V) | 
| 13 |  | rnexg 7925 | . . . . 5
⊢ ((𝑡 ∈ 𝐿, 𝑢 ∈ 𝑆 ↦ (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))) ∈ V → ran (𝑡 ∈ 𝐿, 𝑢 ∈ 𝑆 ↦ (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))) ∈ V) | 
| 14 | 12, 13 | syl 17 | . . . 4
⊢ (𝜑 → ran (𝑡 ∈ 𝐿, 𝑢 ∈ 𝑆 ↦ (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))) ∈ V) | 
| 15 | 4, 14 | eqeltrrid 2845 | . . 3
⊢ (𝜑 → {𝑐 ∣ ∃𝑡 ∈ 𝐿 ∃𝑢 ∈ 𝑆 𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∈ V) | 
| 16 |  | eqid 2736 | . . . . 5
⊢ (𝑣 ∈ 𝑅, 𝑤 ∈ 𝑀 ↦ (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))) = (𝑣 ∈ 𝑅, 𝑤 ∈ 𝑀 ↦ (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))) | 
| 17 | 16 | rnmpo 7567 | . . . 4
⊢ ran
(𝑣 ∈ 𝑅, 𝑤 ∈ 𝑀 ↦ (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))) = {𝑑 ∣ ∃𝑣 ∈ 𝑅 ∃𝑤 ∈ 𝑀 𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))} | 
| 18 |  | ssltex2 27833 | . . . . . . 7
⊢ (𝐿 <<s 𝑅 → 𝑅 ∈ V) | 
| 19 | 5, 18 | syl 17 | . . . . . 6
⊢ (𝜑 → 𝑅 ∈ V) | 
| 20 |  | ssltex1 27832 | . . . . . . 7
⊢ (𝑀 <<s 𝑆 → 𝑀 ∈ V) | 
| 21 | 8, 20 | syl 17 | . . . . . 6
⊢ (𝜑 → 𝑀 ∈ V) | 
| 22 | 16 | mpoexg 8102 | . . . . . 6
⊢ ((𝑅 ∈ V ∧ 𝑀 ∈ V) → (𝑣 ∈ 𝑅, 𝑤 ∈ 𝑀 ↦ (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))) ∈ V) | 
| 23 | 19, 21, 22 | syl2anc 584 | . . . . 5
⊢ (𝜑 → (𝑣 ∈ 𝑅, 𝑤 ∈ 𝑀 ↦ (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))) ∈ V) | 
| 24 |  | rnexg 7925 | . . . . 5
⊢ ((𝑣 ∈ 𝑅, 𝑤 ∈ 𝑀 ↦ (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))) ∈ V → ran (𝑣 ∈ 𝑅, 𝑤 ∈ 𝑀 ↦ (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))) ∈ V) | 
| 25 | 23, 24 | syl 17 | . . . 4
⊢ (𝜑 → ran (𝑣 ∈ 𝑅, 𝑤 ∈ 𝑀 ↦ (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))) ∈ V) | 
| 26 | 17, 25 | eqeltrrid 2845 | . . 3
⊢ (𝜑 → {𝑑 ∣ ∃𝑣 ∈ 𝑅 ∃𝑤 ∈ 𝑀 𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))} ∈ V) | 
| 27 | 15, 26 | unexd 7775 | . 2
⊢ (𝜑 → ({𝑐 ∣ ∃𝑡 ∈ 𝐿 ∃𝑢 ∈ 𝑆 𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ 𝑅 ∃𝑤 ∈ 𝑀 𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))}) ∈ V) | 
| 28 |  | ssltmul2.3 | . . . . 5
⊢ (𝜑 → 𝐴 = (𝐿 |s 𝑅)) | 
| 29 | 5 | scutcld 27849 | . . . . 5
⊢ (𝜑 → (𝐿 |s 𝑅) ∈  No
) | 
| 30 | 28, 29 | eqeltrd 2840 | . . . 4
⊢ (𝜑 → 𝐴 ∈  No
) | 
| 31 |  | ssltmul2.4 | . . . . 5
⊢ (𝜑 → 𝐵 = (𝑀 |s 𝑆)) | 
| 32 | 8 | scutcld 27849 | . . . . 5
⊢ (𝜑 → (𝑀 |s 𝑆) ∈  No
) | 
| 33 | 31, 32 | eqeltrd 2840 | . . . 4
⊢ (𝜑 → 𝐵 ∈  No
) | 
| 34 | 30, 33 | mulscld 28162 | . . 3
⊢ (𝜑 → (𝐴 ·s 𝐵) ∈  No
) | 
| 35 | 34 | snssd 4808 | . 2
⊢ (𝜑 → {(𝐴 ·s 𝐵)} ⊆  No
) | 
| 36 |  | ssltss1 27834 | . . . . . . . . . . . 12
⊢ (𝐿 <<s 𝑅 → 𝐿 ⊆  No
) | 
| 37 | 5, 36 | syl 17 | . . . . . . . . . . 11
⊢ (𝜑 → 𝐿 ⊆  No
) | 
| 38 | 37 | adantr 480 | . . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆)) → 𝐿 ⊆  No
) | 
| 39 |  | simprl 770 | . . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆)) → 𝑡 ∈ 𝐿) | 
| 40 | 38, 39 | sseldd 3983 | . . . . . . . . 9
⊢ ((𝜑 ∧ (𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆)) → 𝑡 ∈  No
) | 
| 41 | 33 | adantr 480 | . . . . . . . . 9
⊢ ((𝜑 ∧ (𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆)) → 𝐵 ∈  No
) | 
| 42 | 40, 41 | mulscld 28162 | . . . . . . . 8
⊢ ((𝜑 ∧ (𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆)) → (𝑡 ·s 𝐵) ∈  No
) | 
| 43 | 30 | adantr 480 | . . . . . . . . 9
⊢ ((𝜑 ∧ (𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆)) → 𝐴 ∈  No
) | 
| 44 |  | ssltss2 27835 | . . . . . . . . . . . 12
⊢ (𝑀 <<s 𝑆 → 𝑆 ⊆  No
) | 
| 45 | 8, 44 | syl 17 | . . . . . . . . . . 11
⊢ (𝜑 → 𝑆 ⊆  No
) | 
| 46 | 45 | adantr 480 | . . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆)) → 𝑆 ⊆  No
) | 
| 47 |  | simprr 772 | . . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆)) → 𝑢 ∈ 𝑆) | 
| 48 | 46, 47 | sseldd 3983 | . . . . . . . . 9
⊢ ((𝜑 ∧ (𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆)) → 𝑢 ∈  No
) | 
| 49 | 43, 48 | mulscld 28162 | . . . . . . . 8
⊢ ((𝜑 ∧ (𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆)) → (𝐴 ·s 𝑢) ∈  No
) | 
| 50 | 42, 49 | addscld 28014 | . . . . . . 7
⊢ ((𝜑 ∧ (𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆)) → ((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) ∈  No
) | 
| 51 | 40, 48 | mulscld 28162 | . . . . . . 7
⊢ ((𝜑 ∧ (𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆)) → (𝑡 ·s 𝑢) ∈  No
) | 
| 52 | 50, 51 | subscld 28094 | . . . . . 6
⊢ ((𝜑 ∧ (𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆)) → (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢)) ∈  No
) | 
| 53 |  | eleq1 2828 | . . . . . 6
⊢ (𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢)) → (𝑐 ∈  No 
↔ (((𝑡
·s 𝐵)
+s (𝐴
·s 𝑢))
-s (𝑡
·s 𝑢))
∈  No )) | 
| 54 | 52, 53 | syl5ibrcom 247 | . . . . 5
⊢ ((𝜑 ∧ (𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆)) → (𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢)) → 𝑐 ∈  No
)) | 
| 55 | 54 | rexlimdvva 3212 | . . . 4
⊢ (𝜑 → (∃𝑡 ∈ 𝐿 ∃𝑢 ∈ 𝑆 𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢)) → 𝑐 ∈  No
)) | 
| 56 | 55 | abssdv 4067 | . . 3
⊢ (𝜑 → {𝑐 ∣ ∃𝑡 ∈ 𝐿 ∃𝑢 ∈ 𝑆 𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ⊆  No
) | 
| 57 |  | ssltss2 27835 | . . . . . . . . . . . 12
⊢ (𝐿 <<s 𝑅 → 𝑅 ⊆  No
) | 
| 58 | 5, 57 | syl 17 | . . . . . . . . . . 11
⊢ (𝜑 → 𝑅 ⊆  No
) | 
| 59 | 58 | adantr 480 | . . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀)) → 𝑅 ⊆  No
) | 
| 60 |  | simprl 770 | . . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀)) → 𝑣 ∈ 𝑅) | 
| 61 | 59, 60 | sseldd 3983 | . . . . . . . . 9
⊢ ((𝜑 ∧ (𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀)) → 𝑣 ∈  No
) | 
| 62 | 33 | adantr 480 | . . . . . . . . 9
⊢ ((𝜑 ∧ (𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀)) → 𝐵 ∈  No
) | 
| 63 | 61, 62 | mulscld 28162 | . . . . . . . 8
⊢ ((𝜑 ∧ (𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀)) → (𝑣 ·s 𝐵) ∈  No
) | 
| 64 | 30 | adantr 480 | . . . . . . . . 9
⊢ ((𝜑 ∧ (𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀)) → 𝐴 ∈  No
) | 
| 65 |  | ssltss1 27834 | . . . . . . . . . . . 12
⊢ (𝑀 <<s 𝑆 → 𝑀 ⊆  No
) | 
| 66 | 8, 65 | syl 17 | . . . . . . . . . . 11
⊢ (𝜑 → 𝑀 ⊆  No
) | 
| 67 | 66 | adantr 480 | . . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀)) → 𝑀 ⊆  No
) | 
| 68 |  | simprr 772 | . . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀)) → 𝑤 ∈ 𝑀) | 
| 69 | 67, 68 | sseldd 3983 | . . . . . . . . 9
⊢ ((𝜑 ∧ (𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀)) → 𝑤 ∈  No
) | 
| 70 | 64, 69 | mulscld 28162 | . . . . . . . 8
⊢ ((𝜑 ∧ (𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀)) → (𝐴 ·s 𝑤) ∈  No
) | 
| 71 | 63, 70 | addscld 28014 | . . . . . . 7
⊢ ((𝜑 ∧ (𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀)) → ((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) ∈  No
) | 
| 72 | 61, 69 | mulscld 28162 | . . . . . . 7
⊢ ((𝜑 ∧ (𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀)) → (𝑣 ·s 𝑤) ∈  No
) | 
| 73 | 71, 72 | subscld 28094 | . . . . . 6
⊢ ((𝜑 ∧ (𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀)) → (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤)) ∈  No
) | 
| 74 |  | eleq1 2828 | . . . . . 6
⊢ (𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤)) → (𝑑 ∈  No 
↔ (((𝑣
·s 𝐵)
+s (𝐴
·s 𝑤))
-s (𝑣
·s 𝑤))
∈  No )) | 
| 75 | 73, 74 | syl5ibrcom 247 | . . . . 5
⊢ ((𝜑 ∧ (𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀)) → (𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤)) → 𝑑 ∈  No
)) | 
| 76 | 75 | rexlimdvva 3212 | . . . 4
⊢ (𝜑 → (∃𝑣 ∈ 𝑅 ∃𝑤 ∈ 𝑀 𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤)) → 𝑑 ∈  No
)) | 
| 77 | 76 | abssdv 4067 | . . 3
⊢ (𝜑 → {𝑑 ∣ ∃𝑣 ∈ 𝑅 ∃𝑤 ∈ 𝑀 𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))} ⊆  No
) | 
| 78 | 56, 77 | unssd 4191 | . 2
⊢ (𝜑 → ({𝑐 ∣ ∃𝑡 ∈ 𝐿 ∃𝑢 ∈ 𝑆 𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ 𝑅 ∃𝑤 ∈ 𝑀 𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))}) ⊆  No
) | 
| 79 |  | elun 4152 | . . . . . 6
⊢ (𝑦 ∈ ({𝑐 ∣ ∃𝑡 ∈ 𝐿 ∃𝑢 ∈ 𝑆 𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ 𝑅 ∃𝑤 ∈ 𝑀 𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))}) ↔ (𝑦 ∈ {𝑐 ∣ ∃𝑡 ∈ 𝐿 ∃𝑢 ∈ 𝑆 𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∨ 𝑦 ∈ {𝑑 ∣ ∃𝑣 ∈ 𝑅 ∃𝑤 ∈ 𝑀 𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))})) | 
| 80 |  | vex 3483 | . . . . . . . 8
⊢ 𝑦 ∈ V | 
| 81 |  | eqeq1 2740 | . . . . . . . . 9
⊢ (𝑐 = 𝑦 → (𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢)) ↔ 𝑦 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢)))) | 
| 82 | 81 | 2rexbidv 3221 | . . . . . . . 8
⊢ (𝑐 = 𝑦 → (∃𝑡 ∈ 𝐿 ∃𝑢 ∈ 𝑆 𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢)) ↔ ∃𝑡 ∈ 𝐿 ∃𝑢 ∈ 𝑆 𝑦 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢)))) | 
| 83 | 80, 82 | elab 3678 | . . . . . . 7
⊢ (𝑦 ∈ {𝑐 ∣ ∃𝑡 ∈ 𝐿 ∃𝑢 ∈ 𝑆 𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ↔ ∃𝑡 ∈ 𝐿 ∃𝑢 ∈ 𝑆 𝑦 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))) | 
| 84 |  | eqeq1 2740 | . . . . . . . . 9
⊢ (𝑑 = 𝑦 → (𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤)) ↔ 𝑦 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤)))) | 
| 85 | 84 | 2rexbidv 3221 | . . . . . . . 8
⊢ (𝑑 = 𝑦 → (∃𝑣 ∈ 𝑅 ∃𝑤 ∈ 𝑀 𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤)) ↔ ∃𝑣 ∈ 𝑅 ∃𝑤 ∈ 𝑀 𝑦 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤)))) | 
| 86 | 80, 85 | elab 3678 | . . . . . . 7
⊢ (𝑦 ∈ {𝑑 ∣ ∃𝑣 ∈ 𝑅 ∃𝑤 ∈ 𝑀 𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))} ↔ ∃𝑣 ∈ 𝑅 ∃𝑤 ∈ 𝑀 𝑦 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))) | 
| 87 | 83, 86 | orbi12i 914 | . . . . . 6
⊢ ((𝑦 ∈ {𝑐 ∣ ∃𝑡 ∈ 𝐿 ∃𝑢 ∈ 𝑆 𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∨ 𝑦 ∈ {𝑑 ∣ ∃𝑣 ∈ 𝑅 ∃𝑤 ∈ 𝑀 𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))}) ↔ (∃𝑡 ∈ 𝐿 ∃𝑢 ∈ 𝑆 𝑦 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢)) ∨ ∃𝑣 ∈ 𝑅 ∃𝑤 ∈ 𝑀 𝑦 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤)))) | 
| 88 | 79, 87 | bitri 275 | . . . . 5
⊢ (𝑦 ∈ ({𝑐 ∣ ∃𝑡 ∈ 𝐿 ∃𝑢 ∈ 𝑆 𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ 𝑅 ∃𝑤 ∈ 𝑀 𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))}) ↔ (∃𝑡 ∈ 𝐿 ∃𝑢 ∈ 𝑆 𝑦 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢)) ∨ ∃𝑣 ∈ 𝑅 ∃𝑤 ∈ 𝑀 𝑦 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤)))) | 
| 89 |  | scutcut 27847 | . . . . . . . . . . . . . . 15
⊢ (𝐿 <<s 𝑅 → ((𝐿 |s 𝑅) ∈  No 
∧ 𝐿 <<s {(𝐿 |s 𝑅)} ∧ {(𝐿 |s 𝑅)} <<s 𝑅)) | 
| 90 | 5, 89 | syl 17 | . . . . . . . . . . . . . 14
⊢ (𝜑 → ((𝐿 |s 𝑅) ∈  No 
∧ 𝐿 <<s {(𝐿 |s 𝑅)} ∧ {(𝐿 |s 𝑅)} <<s 𝑅)) | 
| 91 | 90 | simp2d 1143 | . . . . . . . . . . . . 13
⊢ (𝜑 → 𝐿 <<s {(𝐿 |s 𝑅)}) | 
| 92 | 91 | adantr 480 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆)) → 𝐿 <<s {(𝐿 |s 𝑅)}) | 
| 93 |  | ovex 7465 | . . . . . . . . . . . . . . 15
⊢ (𝐿 |s 𝑅) ∈ V | 
| 94 | 93 | snid 4661 | . . . . . . . . . . . . . 14
⊢ (𝐿 |s 𝑅) ∈ {(𝐿 |s 𝑅)} | 
| 95 | 28, 94 | eqeltrdi 2848 | . . . . . . . . . . . . 13
⊢ (𝜑 → 𝐴 ∈ {(𝐿 |s 𝑅)}) | 
| 96 | 95 | adantr 480 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆)) → 𝐴 ∈ {(𝐿 |s 𝑅)}) | 
| 97 | 92, 39, 96 | ssltsepcd 27840 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆)) → 𝑡 <s 𝐴) | 
| 98 |  | scutcut 27847 | . . . . . . . . . . . . . . 15
⊢ (𝑀 <<s 𝑆 → ((𝑀 |s 𝑆) ∈  No 
∧ 𝑀 <<s {(𝑀 |s 𝑆)} ∧ {(𝑀 |s 𝑆)} <<s 𝑆)) | 
| 99 | 8, 98 | syl 17 | . . . . . . . . . . . . . 14
⊢ (𝜑 → ((𝑀 |s 𝑆) ∈  No 
∧ 𝑀 <<s {(𝑀 |s 𝑆)} ∧ {(𝑀 |s 𝑆)} <<s 𝑆)) | 
| 100 | 99 | simp3d 1144 | . . . . . . . . . . . . 13
⊢ (𝜑 → {(𝑀 |s 𝑆)} <<s 𝑆) | 
| 101 | 100 | adantr 480 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆)) → {(𝑀 |s 𝑆)} <<s 𝑆) | 
| 102 |  | ovex 7465 | . . . . . . . . . . . . . . 15
⊢ (𝑀 |s 𝑆) ∈ V | 
| 103 | 102 | snid 4661 | . . . . . . . . . . . . . 14
⊢ (𝑀 |s 𝑆) ∈ {(𝑀 |s 𝑆)} | 
| 104 | 31, 103 | eqeltrdi 2848 | . . . . . . . . . . . . 13
⊢ (𝜑 → 𝐵 ∈ {(𝑀 |s 𝑆)}) | 
| 105 | 104 | adantr 480 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆)) → 𝐵 ∈ {(𝑀 |s 𝑆)}) | 
| 106 | 101, 105,
47 | ssltsepcd 27840 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆)) → 𝐵 <s 𝑢) | 
| 107 | 40, 43, 41, 48, 97, 106 | sltmuld 28164 | . . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆)) → ((𝑡 ·s 𝑢) -s (𝑡 ·s 𝐵)) <s ((𝐴 ·s 𝑢) -s (𝐴 ·s 𝐵))) | 
| 108 | 34 | adantr 480 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆)) → (𝐴 ·s 𝐵) ∈  No
) | 
| 109 | 51, 42, 49, 108 | sltsubsub2bd 28115 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆)) → (((𝑡 ·s 𝑢) -s (𝑡 ·s 𝐵)) <s ((𝐴 ·s 𝑢) -s (𝐴 ·s 𝐵)) ↔ ((𝐴 ·s 𝐵) -s (𝐴 ·s 𝑢)) <s ((𝑡 ·s 𝐵) -s (𝑡 ·s 𝑢)))) | 
| 110 | 42, 51 | subscld 28094 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆)) → ((𝑡 ·s 𝐵) -s (𝑡 ·s 𝑢)) ∈  No
) | 
| 111 | 108, 49, 110 | sltsubaddd 28120 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆)) → (((𝐴 ·s 𝐵) -s (𝐴 ·s 𝑢)) <s ((𝑡 ·s 𝐵) -s (𝑡 ·s 𝑢)) ↔ (𝐴 ·s 𝐵) <s (((𝑡 ·s 𝐵) -s (𝑡 ·s 𝑢)) +s (𝐴 ·s 𝑢)))) | 
| 112 | 109, 111 | bitrd 279 | . . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆)) → (((𝑡 ·s 𝑢) -s (𝑡 ·s 𝐵)) <s ((𝐴 ·s 𝑢) -s (𝐴 ·s 𝐵)) ↔ (𝐴 ·s 𝐵) <s (((𝑡 ·s 𝐵) -s (𝑡 ·s 𝑢)) +s (𝐴 ·s 𝑢)))) | 
| 113 | 107, 112 | mpbid 232 | . . . . . . . . 9
⊢ ((𝜑 ∧ (𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆)) → (𝐴 ·s 𝐵) <s (((𝑡 ·s 𝐵) -s (𝑡 ·s 𝑢)) +s (𝐴 ·s 𝑢))) | 
| 114 | 42, 49, 51 | addsubsd 28113 | . . . . . . . . 9
⊢ ((𝜑 ∧ (𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆)) → (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢)) = (((𝑡 ·s 𝐵) -s (𝑡 ·s 𝑢)) +s (𝐴 ·s 𝑢))) | 
| 115 | 113, 114 | breqtrrd 5170 | . . . . . . . 8
⊢ ((𝜑 ∧ (𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆)) → (𝐴 ·s 𝐵) <s (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))) | 
| 116 |  | breq2 5146 | . . . . . . . 8
⊢ (𝑦 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢)) → ((𝐴 ·s 𝐵) <s 𝑦 ↔ (𝐴 ·s 𝐵) <s (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢)))) | 
| 117 | 115, 116 | syl5ibrcom 247 | . . . . . . 7
⊢ ((𝜑 ∧ (𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆)) → (𝑦 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢)) → (𝐴 ·s 𝐵) <s 𝑦)) | 
| 118 | 117 | rexlimdvva 3212 | . . . . . 6
⊢ (𝜑 → (∃𝑡 ∈ 𝐿 ∃𝑢 ∈ 𝑆 𝑦 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢)) → (𝐴 ·s 𝐵) <s 𝑦)) | 
| 119 | 90 | simp3d 1144 | . . . . . . . . . . . . 13
⊢ (𝜑 → {(𝐿 |s 𝑅)} <<s 𝑅) | 
| 120 | 119 | adantr 480 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀)) → {(𝐿 |s 𝑅)} <<s 𝑅) | 
| 121 | 95 | adantr 480 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀)) → 𝐴 ∈ {(𝐿 |s 𝑅)}) | 
| 122 | 120, 121,
60 | ssltsepcd 27840 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀)) → 𝐴 <s 𝑣) | 
| 123 | 99 | simp2d 1143 | . . . . . . . . . . . . 13
⊢ (𝜑 → 𝑀 <<s {(𝑀 |s 𝑆)}) | 
| 124 | 123 | adantr 480 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀)) → 𝑀 <<s {(𝑀 |s 𝑆)}) | 
| 125 | 104 | adantr 480 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀)) → 𝐵 ∈ {(𝑀 |s 𝑆)}) | 
| 126 | 124, 68, 125 | ssltsepcd 27840 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀)) → 𝑤 <s 𝐵) | 
| 127 | 64, 61, 69, 62, 122, 126 | sltmuld 28164 | . . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀)) → ((𝐴 ·s 𝐵) -s (𝐴 ·s 𝑤)) <s ((𝑣 ·s 𝐵) -s (𝑣 ·s 𝑤))) | 
| 128 | 34 | adantr 480 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀)) → (𝐴 ·s 𝐵) ∈  No
) | 
| 129 | 63, 72 | subscld 28094 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀)) → ((𝑣 ·s 𝐵) -s (𝑣 ·s 𝑤)) ∈  No
) | 
| 130 | 128, 70, 129 | sltsubaddd 28120 | . . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀)) → (((𝐴 ·s 𝐵) -s (𝐴 ·s 𝑤)) <s ((𝑣 ·s 𝐵) -s (𝑣 ·s 𝑤)) ↔ (𝐴 ·s 𝐵) <s (((𝑣 ·s 𝐵) -s (𝑣 ·s 𝑤)) +s (𝐴 ·s 𝑤)))) | 
| 131 | 127, 130 | mpbid 232 | . . . . . . . . 9
⊢ ((𝜑 ∧ (𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀)) → (𝐴 ·s 𝐵) <s (((𝑣 ·s 𝐵) -s (𝑣 ·s 𝑤)) +s (𝐴 ·s 𝑤))) | 
| 132 | 63, 70, 72 | addsubsd 28113 | . . . . . . . . 9
⊢ ((𝜑 ∧ (𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀)) → (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤)) = (((𝑣 ·s 𝐵) -s (𝑣 ·s 𝑤)) +s (𝐴 ·s 𝑤))) | 
| 133 | 131, 132 | breqtrrd 5170 | . . . . . . . 8
⊢ ((𝜑 ∧ (𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀)) → (𝐴 ·s 𝐵) <s (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))) | 
| 134 |  | breq2 5146 | . . . . . . . 8
⊢ (𝑦 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤)) → ((𝐴 ·s 𝐵) <s 𝑦 ↔ (𝐴 ·s 𝐵) <s (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤)))) | 
| 135 | 133, 134 | syl5ibrcom 247 | . . . . . . 7
⊢ ((𝜑 ∧ (𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀)) → (𝑦 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤)) → (𝐴 ·s 𝐵) <s 𝑦)) | 
| 136 | 135 | rexlimdvva 3212 | . . . . . 6
⊢ (𝜑 → (∃𝑣 ∈ 𝑅 ∃𝑤 ∈ 𝑀 𝑦 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤)) → (𝐴 ·s 𝐵) <s 𝑦)) | 
| 137 | 118, 136 | jaod 859 | . . . . 5
⊢ (𝜑 → ((∃𝑡 ∈ 𝐿 ∃𝑢 ∈ 𝑆 𝑦 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢)) ∨ ∃𝑣 ∈ 𝑅 ∃𝑤 ∈ 𝑀 𝑦 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))) → (𝐴 ·s 𝐵) <s 𝑦)) | 
| 138 | 88, 137 | biimtrid 242 | . . . 4
⊢ (𝜑 → (𝑦 ∈ ({𝑐 ∣ ∃𝑡 ∈ 𝐿 ∃𝑢 ∈ 𝑆 𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ 𝑅 ∃𝑤 ∈ 𝑀 𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))}) → (𝐴 ·s 𝐵) <s 𝑦)) | 
| 139 |  | velsn 4641 | . . . . 5
⊢ (𝑥 ∈ {(𝐴 ·s 𝐵)} ↔ 𝑥 = (𝐴 ·s 𝐵)) | 
| 140 |  | breq1 5145 | . . . . . 6
⊢ (𝑥 = (𝐴 ·s 𝐵) → (𝑥 <s 𝑦 ↔ (𝐴 ·s 𝐵) <s 𝑦)) | 
| 141 | 140 | imbi2d 340 | . . . . 5
⊢ (𝑥 = (𝐴 ·s 𝐵) → ((𝑦 ∈ ({𝑐 ∣ ∃𝑡 ∈ 𝐿 ∃𝑢 ∈ 𝑆 𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ 𝑅 ∃𝑤 ∈ 𝑀 𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))}) → 𝑥 <s 𝑦) ↔ (𝑦 ∈ ({𝑐 ∣ ∃𝑡 ∈ 𝐿 ∃𝑢 ∈ 𝑆 𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ 𝑅 ∃𝑤 ∈ 𝑀 𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))}) → (𝐴 ·s 𝐵) <s 𝑦))) | 
| 142 | 139, 141 | sylbi 217 | . . . 4
⊢ (𝑥 ∈ {(𝐴 ·s 𝐵)} → ((𝑦 ∈ ({𝑐 ∣ ∃𝑡 ∈ 𝐿 ∃𝑢 ∈ 𝑆 𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ 𝑅 ∃𝑤 ∈ 𝑀 𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))}) → 𝑥 <s 𝑦) ↔ (𝑦 ∈ ({𝑐 ∣ ∃𝑡 ∈ 𝐿 ∃𝑢 ∈ 𝑆 𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ 𝑅 ∃𝑤 ∈ 𝑀 𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))}) → (𝐴 ·s 𝐵) <s 𝑦))) | 
| 143 | 138, 142 | syl5ibrcom 247 | . . 3
⊢ (𝜑 → (𝑥 ∈ {(𝐴 ·s 𝐵)} → (𝑦 ∈ ({𝑐 ∣ ∃𝑡 ∈ 𝐿 ∃𝑢 ∈ 𝑆 𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ 𝑅 ∃𝑤 ∈ 𝑀 𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))}) → 𝑥 <s 𝑦))) | 
| 144 | 143 | 3imp 1110 | . 2
⊢ ((𝜑 ∧ 𝑥 ∈ {(𝐴 ·s 𝐵)} ∧ 𝑦 ∈ ({𝑐 ∣ ∃𝑡 ∈ 𝐿 ∃𝑢 ∈ 𝑆 𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ 𝑅 ∃𝑤 ∈ 𝑀 𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))})) → 𝑥 <s 𝑦) | 
| 145 | 2, 27, 35, 78, 144 | ssltd 27837 | 1
⊢ (𝜑 → {(𝐴 ·s 𝐵)} <<s ({𝑐 ∣ ∃𝑡 ∈ 𝐿 ∃𝑢 ∈ 𝑆 𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ 𝑅 ∃𝑤 ∈ 𝑀 𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))})) |