MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssltmul2 Structured version   Visualization version   GIF version

Theorem ssltmul2 28192
Description: One surreal set less-than relationship for cuts of 𝐴 and 𝐵. (Contributed by Scott Fenton, 7-Mar-2025.)
Hypotheses
Ref Expression
ssltmul2.1 (𝜑𝐿 <<s 𝑅)
ssltmul2.2 (𝜑𝑀 <<s 𝑆)
ssltmul2.3 (𝜑𝐴 = (𝐿 |s 𝑅))
ssltmul2.4 (𝜑𝐵 = (𝑀 |s 𝑆))
Assertion
Ref Expression
ssltmul2 (𝜑 → {(𝐴 ·s 𝐵)} <<s ({𝑐 ∣ ∃𝑡𝐿𝑢𝑆 𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑑 ∣ ∃𝑣𝑅𝑤𝑀 𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))}))
Distinct variable groups:   𝐴,𝑐   𝐴,𝑑   𝑡,𝐴,𝑢   𝑣,𝐴,𝑤   𝐵,𝑐   𝐵,𝑑   𝑡,𝐵,𝑢   𝑣,𝐵,𝑤   𝐿,𝑐,𝑡,𝑢   𝑀,𝑑,𝑣,𝑤   𝑅,𝑑,𝑣,𝑤   𝑆,𝑐,𝑡,𝑢   𝜑,𝑐,𝑡,𝑢   𝜑,𝑑,𝑣,𝑤
Allowed substitution hints:   𝑅(𝑢,𝑡,𝑐)   𝑆(𝑤,𝑣,𝑑)   𝐿(𝑤,𝑣,𝑑)   𝑀(𝑢,𝑡,𝑐)

Proof of Theorem ssltmul2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 snex 5451 . . 3 {(𝐴 ·s 𝐵)} ∈ V
21a1i 11 . 2 (𝜑 → {(𝐴 ·s 𝐵)} ∈ V)
3 eqid 2740 . . . . 5 (𝑡𝐿, 𝑢𝑆 ↦ (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))) = (𝑡𝐿, 𝑢𝑆 ↦ (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢)))
43rnmpo 7583 . . . 4 ran (𝑡𝐿, 𝑢𝑆 ↦ (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))) = {𝑐 ∣ ∃𝑡𝐿𝑢𝑆 𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))}
5 ssltmul2.1 . . . . . . 7 (𝜑𝐿 <<s 𝑅)
6 ssltex1 27849 . . . . . . 7 (𝐿 <<s 𝑅𝐿 ∈ V)
75, 6syl 17 . . . . . 6 (𝜑𝐿 ∈ V)
8 ssltmul2.2 . . . . . . 7 (𝜑𝑀 <<s 𝑆)
9 ssltex2 27850 . . . . . . 7 (𝑀 <<s 𝑆𝑆 ∈ V)
108, 9syl 17 . . . . . 6 (𝜑𝑆 ∈ V)
113mpoexg 8117 . . . . . 6 ((𝐿 ∈ V ∧ 𝑆 ∈ V) → (𝑡𝐿, 𝑢𝑆 ↦ (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))) ∈ V)
127, 10, 11syl2anc 583 . . . . 5 (𝜑 → (𝑡𝐿, 𝑢𝑆 ↦ (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))) ∈ V)
13 rnexg 7942 . . . . 5 ((𝑡𝐿, 𝑢𝑆 ↦ (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))) ∈ V → ran (𝑡𝐿, 𝑢𝑆 ↦ (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))) ∈ V)
1412, 13syl 17 . . . 4 (𝜑 → ran (𝑡𝐿, 𝑢𝑆 ↦ (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))) ∈ V)
154, 14eqeltrrid 2849 . . 3 (𝜑 → {𝑐 ∣ ∃𝑡𝐿𝑢𝑆 𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∈ V)
16 eqid 2740 . . . . 5 (𝑣𝑅, 𝑤𝑀 ↦ (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))) = (𝑣𝑅, 𝑤𝑀 ↦ (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤)))
1716rnmpo 7583 . . . 4 ran (𝑣𝑅, 𝑤𝑀 ↦ (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))) = {𝑑 ∣ ∃𝑣𝑅𝑤𝑀 𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))}
18 ssltex2 27850 . . . . . . 7 (𝐿 <<s 𝑅𝑅 ∈ V)
195, 18syl 17 . . . . . 6 (𝜑𝑅 ∈ V)
20 ssltex1 27849 . . . . . . 7 (𝑀 <<s 𝑆𝑀 ∈ V)
218, 20syl 17 . . . . . 6 (𝜑𝑀 ∈ V)
2216mpoexg 8117 . . . . . 6 ((𝑅 ∈ V ∧ 𝑀 ∈ V) → (𝑣𝑅, 𝑤𝑀 ↦ (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))) ∈ V)
2319, 21, 22syl2anc 583 . . . . 5 (𝜑 → (𝑣𝑅, 𝑤𝑀 ↦ (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))) ∈ V)
24 rnexg 7942 . . . . 5 ((𝑣𝑅, 𝑤𝑀 ↦ (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))) ∈ V → ran (𝑣𝑅, 𝑤𝑀 ↦ (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))) ∈ V)
2523, 24syl 17 . . . 4 (𝜑 → ran (𝑣𝑅, 𝑤𝑀 ↦ (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))) ∈ V)
2617, 25eqeltrrid 2849 . . 3 (𝜑 → {𝑑 ∣ ∃𝑣𝑅𝑤𝑀 𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))} ∈ V)
2715, 26unexd 7789 . 2 (𝜑 → ({𝑐 ∣ ∃𝑡𝐿𝑢𝑆 𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑑 ∣ ∃𝑣𝑅𝑤𝑀 𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))}) ∈ V)
28 ssltmul2.3 . . . . 5 (𝜑𝐴 = (𝐿 |s 𝑅))
295scutcld 27866 . . . . 5 (𝜑 → (𝐿 |s 𝑅) ∈ No )
3028, 29eqeltrd 2844 . . . 4 (𝜑𝐴 No )
31 ssltmul2.4 . . . . 5 (𝜑𝐵 = (𝑀 |s 𝑆))
328scutcld 27866 . . . . 5 (𝜑 → (𝑀 |s 𝑆) ∈ No )
3331, 32eqeltrd 2844 . . . 4 (𝜑𝐵 No )
3430, 33mulscld 28179 . . 3 (𝜑 → (𝐴 ·s 𝐵) ∈ No )
3534snssd 4834 . 2 (𝜑 → {(𝐴 ·s 𝐵)} ⊆ No )
36 ssltss1 27851 . . . . . . . . . . . 12 (𝐿 <<s 𝑅𝐿 No )
375, 36syl 17 . . . . . . . . . . 11 (𝜑𝐿 No )
3837adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑡𝐿𝑢𝑆)) → 𝐿 No )
39 simprl 770 . . . . . . . . . 10 ((𝜑 ∧ (𝑡𝐿𝑢𝑆)) → 𝑡𝐿)
4038, 39sseldd 4009 . . . . . . . . 9 ((𝜑 ∧ (𝑡𝐿𝑢𝑆)) → 𝑡 No )
4133adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑡𝐿𝑢𝑆)) → 𝐵 No )
4240, 41mulscld 28179 . . . . . . . 8 ((𝜑 ∧ (𝑡𝐿𝑢𝑆)) → (𝑡 ·s 𝐵) ∈ No )
4330adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑡𝐿𝑢𝑆)) → 𝐴 No )
44 ssltss2 27852 . . . . . . . . . . . 12 (𝑀 <<s 𝑆𝑆 No )
458, 44syl 17 . . . . . . . . . . 11 (𝜑𝑆 No )
4645adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑡𝐿𝑢𝑆)) → 𝑆 No )
47 simprr 772 . . . . . . . . . 10 ((𝜑 ∧ (𝑡𝐿𝑢𝑆)) → 𝑢𝑆)
4846, 47sseldd 4009 . . . . . . . . 9 ((𝜑 ∧ (𝑡𝐿𝑢𝑆)) → 𝑢 No )
4943, 48mulscld 28179 . . . . . . . 8 ((𝜑 ∧ (𝑡𝐿𝑢𝑆)) → (𝐴 ·s 𝑢) ∈ No )
5042, 49addscld 28031 . . . . . . 7 ((𝜑 ∧ (𝑡𝐿𝑢𝑆)) → ((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) ∈ No )
5140, 48mulscld 28179 . . . . . . 7 ((𝜑 ∧ (𝑡𝐿𝑢𝑆)) → (𝑡 ·s 𝑢) ∈ No )
5250, 51subscld 28111 . . . . . 6 ((𝜑 ∧ (𝑡𝐿𝑢𝑆)) → (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢)) ∈ No )
53 eleq1 2832 . . . . . 6 (𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢)) → (𝑐 No ↔ (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢)) ∈ No ))
5452, 53syl5ibrcom 247 . . . . 5 ((𝜑 ∧ (𝑡𝐿𝑢𝑆)) → (𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢)) → 𝑐 No ))
5554rexlimdvva 3219 . . . 4 (𝜑 → (∃𝑡𝐿𝑢𝑆 𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢)) → 𝑐 No ))
5655abssdv 4091 . . 3 (𝜑 → {𝑐 ∣ ∃𝑡𝐿𝑢𝑆 𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ⊆ No )
57 ssltss2 27852 . . . . . . . . . . . 12 (𝐿 <<s 𝑅𝑅 No )
585, 57syl 17 . . . . . . . . . . 11 (𝜑𝑅 No )
5958adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑣𝑅𝑤𝑀)) → 𝑅 No )
60 simprl 770 . . . . . . . . . 10 ((𝜑 ∧ (𝑣𝑅𝑤𝑀)) → 𝑣𝑅)
6159, 60sseldd 4009 . . . . . . . . 9 ((𝜑 ∧ (𝑣𝑅𝑤𝑀)) → 𝑣 No )
6233adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑣𝑅𝑤𝑀)) → 𝐵 No )
6361, 62mulscld 28179 . . . . . . . 8 ((𝜑 ∧ (𝑣𝑅𝑤𝑀)) → (𝑣 ·s 𝐵) ∈ No )
6430adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑣𝑅𝑤𝑀)) → 𝐴 No )
65 ssltss1 27851 . . . . . . . . . . . 12 (𝑀 <<s 𝑆𝑀 No )
668, 65syl 17 . . . . . . . . . . 11 (𝜑𝑀 No )
6766adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑣𝑅𝑤𝑀)) → 𝑀 No )
68 simprr 772 . . . . . . . . . 10 ((𝜑 ∧ (𝑣𝑅𝑤𝑀)) → 𝑤𝑀)
6967, 68sseldd 4009 . . . . . . . . 9 ((𝜑 ∧ (𝑣𝑅𝑤𝑀)) → 𝑤 No )
7064, 69mulscld 28179 . . . . . . . 8 ((𝜑 ∧ (𝑣𝑅𝑤𝑀)) → (𝐴 ·s 𝑤) ∈ No )
7163, 70addscld 28031 . . . . . . 7 ((𝜑 ∧ (𝑣𝑅𝑤𝑀)) → ((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) ∈ No )
7261, 69mulscld 28179 . . . . . . 7 ((𝜑 ∧ (𝑣𝑅𝑤𝑀)) → (𝑣 ·s 𝑤) ∈ No )
7371, 72subscld 28111 . . . . . 6 ((𝜑 ∧ (𝑣𝑅𝑤𝑀)) → (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤)) ∈ No )
74 eleq1 2832 . . . . . 6 (𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤)) → (𝑑 No ↔ (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤)) ∈ No ))
7573, 74syl5ibrcom 247 . . . . 5 ((𝜑 ∧ (𝑣𝑅𝑤𝑀)) → (𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤)) → 𝑑 No ))
7675rexlimdvva 3219 . . . 4 (𝜑 → (∃𝑣𝑅𝑤𝑀 𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤)) → 𝑑 No ))
7776abssdv 4091 . . 3 (𝜑 → {𝑑 ∣ ∃𝑣𝑅𝑤𝑀 𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))} ⊆ No )
7856, 77unssd 4215 . 2 (𝜑 → ({𝑐 ∣ ∃𝑡𝐿𝑢𝑆 𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑑 ∣ ∃𝑣𝑅𝑤𝑀 𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))}) ⊆ No )
79 elun 4176 . . . . . 6 (𝑦 ∈ ({𝑐 ∣ ∃𝑡𝐿𝑢𝑆 𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑑 ∣ ∃𝑣𝑅𝑤𝑀 𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))}) ↔ (𝑦 ∈ {𝑐 ∣ ∃𝑡𝐿𝑢𝑆 𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∨ 𝑦 ∈ {𝑑 ∣ ∃𝑣𝑅𝑤𝑀 𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))}))
80 vex 3492 . . . . . . . 8 𝑦 ∈ V
81 eqeq1 2744 . . . . . . . . 9 (𝑐 = 𝑦 → (𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢)) ↔ 𝑦 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))))
82812rexbidv 3228 . . . . . . . 8 (𝑐 = 𝑦 → (∃𝑡𝐿𝑢𝑆 𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢)) ↔ ∃𝑡𝐿𝑢𝑆 𝑦 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))))
8380, 82elab 3694 . . . . . . 7 (𝑦 ∈ {𝑐 ∣ ∃𝑡𝐿𝑢𝑆 𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ↔ ∃𝑡𝐿𝑢𝑆 𝑦 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢)))
84 eqeq1 2744 . . . . . . . . 9 (𝑑 = 𝑦 → (𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤)) ↔ 𝑦 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))))
85842rexbidv 3228 . . . . . . . 8 (𝑑 = 𝑦 → (∃𝑣𝑅𝑤𝑀 𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤)) ↔ ∃𝑣𝑅𝑤𝑀 𝑦 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))))
8680, 85elab 3694 . . . . . . 7 (𝑦 ∈ {𝑑 ∣ ∃𝑣𝑅𝑤𝑀 𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))} ↔ ∃𝑣𝑅𝑤𝑀 𝑦 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤)))
8783, 86orbi12i 913 . . . . . 6 ((𝑦 ∈ {𝑐 ∣ ∃𝑡𝐿𝑢𝑆 𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∨ 𝑦 ∈ {𝑑 ∣ ∃𝑣𝑅𝑤𝑀 𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))}) ↔ (∃𝑡𝐿𝑢𝑆 𝑦 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢)) ∨ ∃𝑣𝑅𝑤𝑀 𝑦 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))))
8879, 87bitri 275 . . . . 5 (𝑦 ∈ ({𝑐 ∣ ∃𝑡𝐿𝑢𝑆 𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑑 ∣ ∃𝑣𝑅𝑤𝑀 𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))}) ↔ (∃𝑡𝐿𝑢𝑆 𝑦 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢)) ∨ ∃𝑣𝑅𝑤𝑀 𝑦 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))))
89 scutcut 27864 . . . . . . . . . . . . . . 15 (𝐿 <<s 𝑅 → ((𝐿 |s 𝑅) ∈ No 𝐿 <<s {(𝐿 |s 𝑅)} ∧ {(𝐿 |s 𝑅)} <<s 𝑅))
905, 89syl 17 . . . . . . . . . . . . . 14 (𝜑 → ((𝐿 |s 𝑅) ∈ No 𝐿 <<s {(𝐿 |s 𝑅)} ∧ {(𝐿 |s 𝑅)} <<s 𝑅))
9190simp2d 1143 . . . . . . . . . . . . 13 (𝜑𝐿 <<s {(𝐿 |s 𝑅)})
9291adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑡𝐿𝑢𝑆)) → 𝐿 <<s {(𝐿 |s 𝑅)})
93 ovex 7481 . . . . . . . . . . . . . . 15 (𝐿 |s 𝑅) ∈ V
9493snid 4684 . . . . . . . . . . . . . 14 (𝐿 |s 𝑅) ∈ {(𝐿 |s 𝑅)}
9528, 94eqeltrdi 2852 . . . . . . . . . . . . 13 (𝜑𝐴 ∈ {(𝐿 |s 𝑅)})
9695adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑡𝐿𝑢𝑆)) → 𝐴 ∈ {(𝐿 |s 𝑅)})
9792, 39, 96ssltsepcd 27857 . . . . . . . . . . 11 ((𝜑 ∧ (𝑡𝐿𝑢𝑆)) → 𝑡 <s 𝐴)
98 scutcut 27864 . . . . . . . . . . . . . . 15 (𝑀 <<s 𝑆 → ((𝑀 |s 𝑆) ∈ No 𝑀 <<s {(𝑀 |s 𝑆)} ∧ {(𝑀 |s 𝑆)} <<s 𝑆))
998, 98syl 17 . . . . . . . . . . . . . 14 (𝜑 → ((𝑀 |s 𝑆) ∈ No 𝑀 <<s {(𝑀 |s 𝑆)} ∧ {(𝑀 |s 𝑆)} <<s 𝑆))
10099simp3d 1144 . . . . . . . . . . . . 13 (𝜑 → {(𝑀 |s 𝑆)} <<s 𝑆)
101100adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑡𝐿𝑢𝑆)) → {(𝑀 |s 𝑆)} <<s 𝑆)
102 ovex 7481 . . . . . . . . . . . . . . 15 (𝑀 |s 𝑆) ∈ V
103102snid 4684 . . . . . . . . . . . . . 14 (𝑀 |s 𝑆) ∈ {(𝑀 |s 𝑆)}
10431, 103eqeltrdi 2852 . . . . . . . . . . . . 13 (𝜑𝐵 ∈ {(𝑀 |s 𝑆)})
105104adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑡𝐿𝑢𝑆)) → 𝐵 ∈ {(𝑀 |s 𝑆)})
106101, 105, 47ssltsepcd 27857 . . . . . . . . . . 11 ((𝜑 ∧ (𝑡𝐿𝑢𝑆)) → 𝐵 <s 𝑢)
10740, 43, 41, 48, 97, 106sltmuld 28181 . . . . . . . . . 10 ((𝜑 ∧ (𝑡𝐿𝑢𝑆)) → ((𝑡 ·s 𝑢) -s (𝑡 ·s 𝐵)) <s ((𝐴 ·s 𝑢) -s (𝐴 ·s 𝐵)))
10834adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑡𝐿𝑢𝑆)) → (𝐴 ·s 𝐵) ∈ No )
10951, 42, 49, 108sltsubsub2bd 28132 . . . . . . . . . . 11 ((𝜑 ∧ (𝑡𝐿𝑢𝑆)) → (((𝑡 ·s 𝑢) -s (𝑡 ·s 𝐵)) <s ((𝐴 ·s 𝑢) -s (𝐴 ·s 𝐵)) ↔ ((𝐴 ·s 𝐵) -s (𝐴 ·s 𝑢)) <s ((𝑡 ·s 𝐵) -s (𝑡 ·s 𝑢))))
11042, 51subscld 28111 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑡𝐿𝑢𝑆)) → ((𝑡 ·s 𝐵) -s (𝑡 ·s 𝑢)) ∈ No )
111108, 49, 110sltsubaddd 28137 . . . . . . . . . . 11 ((𝜑 ∧ (𝑡𝐿𝑢𝑆)) → (((𝐴 ·s 𝐵) -s (𝐴 ·s 𝑢)) <s ((𝑡 ·s 𝐵) -s (𝑡 ·s 𝑢)) ↔ (𝐴 ·s 𝐵) <s (((𝑡 ·s 𝐵) -s (𝑡 ·s 𝑢)) +s (𝐴 ·s 𝑢))))
112109, 111bitrd 279 . . . . . . . . . 10 ((𝜑 ∧ (𝑡𝐿𝑢𝑆)) → (((𝑡 ·s 𝑢) -s (𝑡 ·s 𝐵)) <s ((𝐴 ·s 𝑢) -s (𝐴 ·s 𝐵)) ↔ (𝐴 ·s 𝐵) <s (((𝑡 ·s 𝐵) -s (𝑡 ·s 𝑢)) +s (𝐴 ·s 𝑢))))
113107, 112mpbid 232 . . . . . . . . 9 ((𝜑 ∧ (𝑡𝐿𝑢𝑆)) → (𝐴 ·s 𝐵) <s (((𝑡 ·s 𝐵) -s (𝑡 ·s 𝑢)) +s (𝐴 ·s 𝑢)))
11442, 49, 51addsubsd 28130 . . . . . . . . 9 ((𝜑 ∧ (𝑡𝐿𝑢𝑆)) → (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢)) = (((𝑡 ·s 𝐵) -s (𝑡 ·s 𝑢)) +s (𝐴 ·s 𝑢)))
115113, 114breqtrrd 5194 . . . . . . . 8 ((𝜑 ∧ (𝑡𝐿𝑢𝑆)) → (𝐴 ·s 𝐵) <s (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢)))
116 breq2 5170 . . . . . . . 8 (𝑦 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢)) → ((𝐴 ·s 𝐵) <s 𝑦 ↔ (𝐴 ·s 𝐵) <s (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))))
117115, 116syl5ibrcom 247 . . . . . . 7 ((𝜑 ∧ (𝑡𝐿𝑢𝑆)) → (𝑦 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢)) → (𝐴 ·s 𝐵) <s 𝑦))
118117rexlimdvva 3219 . . . . . 6 (𝜑 → (∃𝑡𝐿𝑢𝑆 𝑦 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢)) → (𝐴 ·s 𝐵) <s 𝑦))
11990simp3d 1144 . . . . . . . . . . . . 13 (𝜑 → {(𝐿 |s 𝑅)} <<s 𝑅)
120119adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑣𝑅𝑤𝑀)) → {(𝐿 |s 𝑅)} <<s 𝑅)
12195adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑣𝑅𝑤𝑀)) → 𝐴 ∈ {(𝐿 |s 𝑅)})
122120, 121, 60ssltsepcd 27857 . . . . . . . . . . 11 ((𝜑 ∧ (𝑣𝑅𝑤𝑀)) → 𝐴 <s 𝑣)
12399simp2d 1143 . . . . . . . . . . . . 13 (𝜑𝑀 <<s {(𝑀 |s 𝑆)})
124123adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑣𝑅𝑤𝑀)) → 𝑀 <<s {(𝑀 |s 𝑆)})
125104adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑣𝑅𝑤𝑀)) → 𝐵 ∈ {(𝑀 |s 𝑆)})
126124, 68, 125ssltsepcd 27857 . . . . . . . . . . 11 ((𝜑 ∧ (𝑣𝑅𝑤𝑀)) → 𝑤 <s 𝐵)
12764, 61, 69, 62, 122, 126sltmuld 28181 . . . . . . . . . 10 ((𝜑 ∧ (𝑣𝑅𝑤𝑀)) → ((𝐴 ·s 𝐵) -s (𝐴 ·s 𝑤)) <s ((𝑣 ·s 𝐵) -s (𝑣 ·s 𝑤)))
12834adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑣𝑅𝑤𝑀)) → (𝐴 ·s 𝐵) ∈ No )
12963, 72subscld 28111 . . . . . . . . . . 11 ((𝜑 ∧ (𝑣𝑅𝑤𝑀)) → ((𝑣 ·s 𝐵) -s (𝑣 ·s 𝑤)) ∈ No )
130128, 70, 129sltsubaddd 28137 . . . . . . . . . 10 ((𝜑 ∧ (𝑣𝑅𝑤𝑀)) → (((𝐴 ·s 𝐵) -s (𝐴 ·s 𝑤)) <s ((𝑣 ·s 𝐵) -s (𝑣 ·s 𝑤)) ↔ (𝐴 ·s 𝐵) <s (((𝑣 ·s 𝐵) -s (𝑣 ·s 𝑤)) +s (𝐴 ·s 𝑤))))
131127, 130mpbid 232 . . . . . . . . 9 ((𝜑 ∧ (𝑣𝑅𝑤𝑀)) → (𝐴 ·s 𝐵) <s (((𝑣 ·s 𝐵) -s (𝑣 ·s 𝑤)) +s (𝐴 ·s 𝑤)))
13263, 70, 72addsubsd 28130 . . . . . . . . 9 ((𝜑 ∧ (𝑣𝑅𝑤𝑀)) → (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤)) = (((𝑣 ·s 𝐵) -s (𝑣 ·s 𝑤)) +s (𝐴 ·s 𝑤)))
133131, 132breqtrrd 5194 . . . . . . . 8 ((𝜑 ∧ (𝑣𝑅𝑤𝑀)) → (𝐴 ·s 𝐵) <s (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤)))
134 breq2 5170 . . . . . . . 8 (𝑦 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤)) → ((𝐴 ·s 𝐵) <s 𝑦 ↔ (𝐴 ·s 𝐵) <s (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))))
135133, 134syl5ibrcom 247 . . . . . . 7 ((𝜑 ∧ (𝑣𝑅𝑤𝑀)) → (𝑦 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤)) → (𝐴 ·s 𝐵) <s 𝑦))
136135rexlimdvva 3219 . . . . . 6 (𝜑 → (∃𝑣𝑅𝑤𝑀 𝑦 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤)) → (𝐴 ·s 𝐵) <s 𝑦))
137118, 136jaod 858 . . . . 5 (𝜑 → ((∃𝑡𝐿𝑢𝑆 𝑦 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢)) ∨ ∃𝑣𝑅𝑤𝑀 𝑦 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))) → (𝐴 ·s 𝐵) <s 𝑦))
13888, 137biimtrid 242 . . . 4 (𝜑 → (𝑦 ∈ ({𝑐 ∣ ∃𝑡𝐿𝑢𝑆 𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑑 ∣ ∃𝑣𝑅𝑤𝑀 𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))}) → (𝐴 ·s 𝐵) <s 𝑦))
139 velsn 4664 . . . . 5 (𝑥 ∈ {(𝐴 ·s 𝐵)} ↔ 𝑥 = (𝐴 ·s 𝐵))
140 breq1 5169 . . . . . 6 (𝑥 = (𝐴 ·s 𝐵) → (𝑥 <s 𝑦 ↔ (𝐴 ·s 𝐵) <s 𝑦))
141140imbi2d 340 . . . . 5 (𝑥 = (𝐴 ·s 𝐵) → ((𝑦 ∈ ({𝑐 ∣ ∃𝑡𝐿𝑢𝑆 𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑑 ∣ ∃𝑣𝑅𝑤𝑀 𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))}) → 𝑥 <s 𝑦) ↔ (𝑦 ∈ ({𝑐 ∣ ∃𝑡𝐿𝑢𝑆 𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑑 ∣ ∃𝑣𝑅𝑤𝑀 𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))}) → (𝐴 ·s 𝐵) <s 𝑦)))
142139, 141sylbi 217 . . . 4 (𝑥 ∈ {(𝐴 ·s 𝐵)} → ((𝑦 ∈ ({𝑐 ∣ ∃𝑡𝐿𝑢𝑆 𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑑 ∣ ∃𝑣𝑅𝑤𝑀 𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))}) → 𝑥 <s 𝑦) ↔ (𝑦 ∈ ({𝑐 ∣ ∃𝑡𝐿𝑢𝑆 𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑑 ∣ ∃𝑣𝑅𝑤𝑀 𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))}) → (𝐴 ·s 𝐵) <s 𝑦)))
143138, 142syl5ibrcom 247 . . 3 (𝜑 → (𝑥 ∈ {(𝐴 ·s 𝐵)} → (𝑦 ∈ ({𝑐 ∣ ∃𝑡𝐿𝑢𝑆 𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑑 ∣ ∃𝑣𝑅𝑤𝑀 𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))}) → 𝑥 <s 𝑦)))
1441433imp 1111 . 2 ((𝜑𝑥 ∈ {(𝐴 ·s 𝐵)} ∧ 𝑦 ∈ ({𝑐 ∣ ∃𝑡𝐿𝑢𝑆 𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑑 ∣ ∃𝑣𝑅𝑤𝑀 𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))})) → 𝑥 <s 𝑦)
1452, 27, 35, 78, 144ssltd 27854 1 (𝜑 → {(𝐴 ·s 𝐵)} <<s ({𝑐 ∣ ∃𝑡𝐿𝑢𝑆 𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑑 ∣ ∃𝑣𝑅𝑤𝑀 𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 846  w3a 1087   = wceq 1537  wcel 2108  {cab 2717  wrex 3076  Vcvv 3488  cun 3974  wss 3976  {csn 4648   class class class wbr 5166  ran crn 5701  (class class class)co 7448  cmpo 7450   No csur 27702   <s cslt 27703   <<s csslt 27843   |s cscut 27845   +s cadds 28010   -s csubs 28070   ·s cmuls 28150
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-ot 4657  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-1o 8522  df-2o 8523  df-nadd 8722  df-no 27705  df-slt 27706  df-bday 27707  df-sle 27808  df-sslt 27844  df-scut 27846  df-0s 27887  df-made 27904  df-old 27905  df-left 27907  df-right 27908  df-norec 27989  df-norec2 28000  df-adds 28011  df-negs 28071  df-subs 28072  df-muls 28151
This theorem is referenced by:  mulsuniflem  28193
  Copyright terms: Public domain W3C validator