Step | Hyp | Ref
| Expression |
1 | | snex 5425 |
. . 3
⊢ {(𝐴 ·s 𝐵)} ∈ V |
2 | 1 | a1i 11 |
. 2
⊢ (𝜑 → {(𝐴 ·s 𝐵)} ∈ V) |
3 | | eqid 2732 |
. . . . 5
⊢ (𝑡 ∈ 𝐿, 𝑢 ∈ 𝑆 ↦ (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))) = (𝑡 ∈ 𝐿, 𝑢 ∈ 𝑆 ↦ (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))) |
4 | 3 | rnmpo 7526 |
. . . 4
⊢ ran
(𝑡 ∈ 𝐿, 𝑢 ∈ 𝑆 ↦ (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))) = {𝑐 ∣ ∃𝑡 ∈ 𝐿 ∃𝑢 ∈ 𝑆 𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} |
5 | | ssltmul2.1 |
. . . . . . 7
⊢ (𝜑 → 𝐿 <<s 𝑅) |
6 | | ssltex1 27217 |
. . . . . . 7
⊢ (𝐿 <<s 𝑅 → 𝐿 ∈ V) |
7 | 5, 6 | syl 17 |
. . . . . 6
⊢ (𝜑 → 𝐿 ∈ V) |
8 | | ssltmul2.2 |
. . . . . . 7
⊢ (𝜑 → 𝑀 <<s 𝑆) |
9 | | ssltex2 27218 |
. . . . . . 7
⊢ (𝑀 <<s 𝑆 → 𝑆 ∈ V) |
10 | 8, 9 | syl 17 |
. . . . . 6
⊢ (𝜑 → 𝑆 ∈ V) |
11 | 3 | mpoexg 8047 |
. . . . . 6
⊢ ((𝐿 ∈ V ∧ 𝑆 ∈ V) → (𝑡 ∈ 𝐿, 𝑢 ∈ 𝑆 ↦ (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))) ∈ V) |
12 | 7, 10, 11 | syl2anc 584 |
. . . . 5
⊢ (𝜑 → (𝑡 ∈ 𝐿, 𝑢 ∈ 𝑆 ↦ (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))) ∈ V) |
13 | | rnexg 7879 |
. . . . 5
⊢ ((𝑡 ∈ 𝐿, 𝑢 ∈ 𝑆 ↦ (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))) ∈ V → ran (𝑡 ∈ 𝐿, 𝑢 ∈ 𝑆 ↦ (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))) ∈ V) |
14 | 12, 13 | syl 17 |
. . . 4
⊢ (𝜑 → ran (𝑡 ∈ 𝐿, 𝑢 ∈ 𝑆 ↦ (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))) ∈ V) |
15 | 4, 14 | eqeltrrid 2838 |
. . 3
⊢ (𝜑 → {𝑐 ∣ ∃𝑡 ∈ 𝐿 ∃𝑢 ∈ 𝑆 𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∈ V) |
16 | | eqid 2732 |
. . . . 5
⊢ (𝑣 ∈ 𝑅, 𝑤 ∈ 𝑀 ↦ (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))) = (𝑣 ∈ 𝑅, 𝑤 ∈ 𝑀 ↦ (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))) |
17 | 16 | rnmpo 7526 |
. . . 4
⊢ ran
(𝑣 ∈ 𝑅, 𝑤 ∈ 𝑀 ↦ (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))) = {𝑑 ∣ ∃𝑣 ∈ 𝑅 ∃𝑤 ∈ 𝑀 𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))} |
18 | | ssltex2 27218 |
. . . . . . 7
⊢ (𝐿 <<s 𝑅 → 𝑅 ∈ V) |
19 | 5, 18 | syl 17 |
. . . . . 6
⊢ (𝜑 → 𝑅 ∈ V) |
20 | | ssltex1 27217 |
. . . . . . 7
⊢ (𝑀 <<s 𝑆 → 𝑀 ∈ V) |
21 | 8, 20 | syl 17 |
. . . . . 6
⊢ (𝜑 → 𝑀 ∈ V) |
22 | 16 | mpoexg 8047 |
. . . . . 6
⊢ ((𝑅 ∈ V ∧ 𝑀 ∈ V) → (𝑣 ∈ 𝑅, 𝑤 ∈ 𝑀 ↦ (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))) ∈ V) |
23 | 19, 21, 22 | syl2anc 584 |
. . . . 5
⊢ (𝜑 → (𝑣 ∈ 𝑅, 𝑤 ∈ 𝑀 ↦ (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))) ∈ V) |
24 | | rnexg 7879 |
. . . . 5
⊢ ((𝑣 ∈ 𝑅, 𝑤 ∈ 𝑀 ↦ (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))) ∈ V → ran (𝑣 ∈ 𝑅, 𝑤 ∈ 𝑀 ↦ (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))) ∈ V) |
25 | 23, 24 | syl 17 |
. . . 4
⊢ (𝜑 → ran (𝑣 ∈ 𝑅, 𝑤 ∈ 𝑀 ↦ (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))) ∈ V) |
26 | 17, 25 | eqeltrrid 2838 |
. . 3
⊢ (𝜑 → {𝑑 ∣ ∃𝑣 ∈ 𝑅 ∃𝑤 ∈ 𝑀 𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))} ∈ V) |
27 | 15, 26 | unexd 7725 |
. 2
⊢ (𝜑 → ({𝑐 ∣ ∃𝑡 ∈ 𝐿 ∃𝑢 ∈ 𝑆 𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ 𝑅 ∃𝑤 ∈ 𝑀 𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))}) ∈ V) |
28 | | ssltmul2.3 |
. . . . 5
⊢ (𝜑 → 𝐴 = (𝐿 |s 𝑅)) |
29 | 5 | scutcld 27233 |
. . . . 5
⊢ (𝜑 → (𝐿 |s 𝑅) ∈ No
) |
30 | 28, 29 | eqeltrd 2833 |
. . . 4
⊢ (𝜑 → 𝐴 ∈ No
) |
31 | | ssltmul2.4 |
. . . . 5
⊢ (𝜑 → 𝐵 = (𝑀 |s 𝑆)) |
32 | 8 | scutcld 27233 |
. . . . 5
⊢ (𝜑 → (𝑀 |s 𝑆) ∈ No
) |
33 | 31, 32 | eqeltrd 2833 |
. . . 4
⊢ (𝜑 → 𝐵 ∈ No
) |
34 | 30, 33 | mulscld 27520 |
. . 3
⊢ (𝜑 → (𝐴 ·s 𝐵) ∈ No
) |
35 | 34 | snssd 4806 |
. 2
⊢ (𝜑 → {(𝐴 ·s 𝐵)} ⊆ No
) |
36 | | ssltss1 27219 |
. . . . . . . . . . . 12
⊢ (𝐿 <<s 𝑅 → 𝐿 ⊆ No
) |
37 | 5, 36 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐿 ⊆ No
) |
38 | 37 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆)) → 𝐿 ⊆ No
) |
39 | | simprl 769 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆)) → 𝑡 ∈ 𝐿) |
40 | 38, 39 | sseldd 3980 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆)) → 𝑡 ∈ No
) |
41 | 33 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆)) → 𝐵 ∈ No
) |
42 | 40, 41 | mulscld 27520 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆)) → (𝑡 ·s 𝐵) ∈ No
) |
43 | 30 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆)) → 𝐴 ∈ No
) |
44 | | ssltss2 27220 |
. . . . . . . . . . . 12
⊢ (𝑀 <<s 𝑆 → 𝑆 ⊆ No
) |
45 | 8, 44 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑆 ⊆ No
) |
46 | 45 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆)) → 𝑆 ⊆ No
) |
47 | | simprr 771 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆)) → 𝑢 ∈ 𝑆) |
48 | 46, 47 | sseldd 3980 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆)) → 𝑢 ∈ No
) |
49 | 43, 48 | mulscld 27520 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆)) → (𝐴 ·s 𝑢) ∈ No
) |
50 | 42, 49 | addscld 27393 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆)) → ((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) ∈ No
) |
51 | 40, 48 | mulscld 27520 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆)) → (𝑡 ·s 𝑢) ∈ No
) |
52 | 50, 51 | subscld 27464 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆)) → (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢)) ∈ No
) |
53 | | eleq1 2821 |
. . . . . 6
⊢ (𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢)) → (𝑐 ∈ No
↔ (((𝑡
·s 𝐵)
+s (𝐴
·s 𝑢))
-s (𝑡
·s 𝑢))
∈ No )) |
54 | 52, 53 | syl5ibrcom 246 |
. . . . 5
⊢ ((𝜑 ∧ (𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆)) → (𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢)) → 𝑐 ∈ No
)) |
55 | 54 | rexlimdvva 3211 |
. . . 4
⊢ (𝜑 → (∃𝑡 ∈ 𝐿 ∃𝑢 ∈ 𝑆 𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢)) → 𝑐 ∈ No
)) |
56 | 55 | abssdv 4062 |
. . 3
⊢ (𝜑 → {𝑐 ∣ ∃𝑡 ∈ 𝐿 ∃𝑢 ∈ 𝑆 𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ⊆ No
) |
57 | | ssltss2 27220 |
. . . . . . . . . . . 12
⊢ (𝐿 <<s 𝑅 → 𝑅 ⊆ No
) |
58 | 5, 57 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑅 ⊆ No
) |
59 | 58 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀)) → 𝑅 ⊆ No
) |
60 | | simprl 769 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀)) → 𝑣 ∈ 𝑅) |
61 | 59, 60 | sseldd 3980 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀)) → 𝑣 ∈ No
) |
62 | 33 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀)) → 𝐵 ∈ No
) |
63 | 61, 62 | mulscld 27520 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀)) → (𝑣 ·s 𝐵) ∈ No
) |
64 | 30 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀)) → 𝐴 ∈ No
) |
65 | | ssltss1 27219 |
. . . . . . . . . . . 12
⊢ (𝑀 <<s 𝑆 → 𝑀 ⊆ No
) |
66 | 8, 65 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑀 ⊆ No
) |
67 | 66 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀)) → 𝑀 ⊆ No
) |
68 | | simprr 771 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀)) → 𝑤 ∈ 𝑀) |
69 | 67, 68 | sseldd 3980 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀)) → 𝑤 ∈ No
) |
70 | 64, 69 | mulscld 27520 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀)) → (𝐴 ·s 𝑤) ∈ No
) |
71 | 63, 70 | addscld 27393 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀)) → ((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) ∈ No
) |
72 | 61, 69 | mulscld 27520 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀)) → (𝑣 ·s 𝑤) ∈ No
) |
73 | 71, 72 | subscld 27464 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀)) → (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤)) ∈ No
) |
74 | | eleq1 2821 |
. . . . . 6
⊢ (𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤)) → (𝑑 ∈ No
↔ (((𝑣
·s 𝐵)
+s (𝐴
·s 𝑤))
-s (𝑣
·s 𝑤))
∈ No )) |
75 | 73, 74 | syl5ibrcom 246 |
. . . . 5
⊢ ((𝜑 ∧ (𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀)) → (𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤)) → 𝑑 ∈ No
)) |
76 | 75 | rexlimdvva 3211 |
. . . 4
⊢ (𝜑 → (∃𝑣 ∈ 𝑅 ∃𝑤 ∈ 𝑀 𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤)) → 𝑑 ∈ No
)) |
77 | 76 | abssdv 4062 |
. . 3
⊢ (𝜑 → {𝑑 ∣ ∃𝑣 ∈ 𝑅 ∃𝑤 ∈ 𝑀 𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))} ⊆ No
) |
78 | 56, 77 | unssd 4183 |
. 2
⊢ (𝜑 → ({𝑐 ∣ ∃𝑡 ∈ 𝐿 ∃𝑢 ∈ 𝑆 𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ 𝑅 ∃𝑤 ∈ 𝑀 𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))}) ⊆ No
) |
79 | | elun 4145 |
. . . . . 6
⊢ (𝑦 ∈ ({𝑐 ∣ ∃𝑡 ∈ 𝐿 ∃𝑢 ∈ 𝑆 𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ 𝑅 ∃𝑤 ∈ 𝑀 𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))}) ↔ (𝑦 ∈ {𝑐 ∣ ∃𝑡 ∈ 𝐿 ∃𝑢 ∈ 𝑆 𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∨ 𝑦 ∈ {𝑑 ∣ ∃𝑣 ∈ 𝑅 ∃𝑤 ∈ 𝑀 𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))})) |
80 | | vex 3478 |
. . . . . . . 8
⊢ 𝑦 ∈ V |
81 | | eqeq1 2736 |
. . . . . . . . 9
⊢ (𝑐 = 𝑦 → (𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢)) ↔ 𝑦 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢)))) |
82 | 81 | 2rexbidv 3219 |
. . . . . . . 8
⊢ (𝑐 = 𝑦 → (∃𝑡 ∈ 𝐿 ∃𝑢 ∈ 𝑆 𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢)) ↔ ∃𝑡 ∈ 𝐿 ∃𝑢 ∈ 𝑆 𝑦 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢)))) |
83 | 80, 82 | elab 3665 |
. . . . . . 7
⊢ (𝑦 ∈ {𝑐 ∣ ∃𝑡 ∈ 𝐿 ∃𝑢 ∈ 𝑆 𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ↔ ∃𝑡 ∈ 𝐿 ∃𝑢 ∈ 𝑆 𝑦 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))) |
84 | | eqeq1 2736 |
. . . . . . . . 9
⊢ (𝑑 = 𝑦 → (𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤)) ↔ 𝑦 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤)))) |
85 | 84 | 2rexbidv 3219 |
. . . . . . . 8
⊢ (𝑑 = 𝑦 → (∃𝑣 ∈ 𝑅 ∃𝑤 ∈ 𝑀 𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤)) ↔ ∃𝑣 ∈ 𝑅 ∃𝑤 ∈ 𝑀 𝑦 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤)))) |
86 | 80, 85 | elab 3665 |
. . . . . . 7
⊢ (𝑦 ∈ {𝑑 ∣ ∃𝑣 ∈ 𝑅 ∃𝑤 ∈ 𝑀 𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))} ↔ ∃𝑣 ∈ 𝑅 ∃𝑤 ∈ 𝑀 𝑦 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))) |
87 | 83, 86 | orbi12i 913 |
. . . . . 6
⊢ ((𝑦 ∈ {𝑐 ∣ ∃𝑡 ∈ 𝐿 ∃𝑢 ∈ 𝑆 𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∨ 𝑦 ∈ {𝑑 ∣ ∃𝑣 ∈ 𝑅 ∃𝑤 ∈ 𝑀 𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))}) ↔ (∃𝑡 ∈ 𝐿 ∃𝑢 ∈ 𝑆 𝑦 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢)) ∨ ∃𝑣 ∈ 𝑅 ∃𝑤 ∈ 𝑀 𝑦 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤)))) |
88 | 79, 87 | bitri 274 |
. . . . 5
⊢ (𝑦 ∈ ({𝑐 ∣ ∃𝑡 ∈ 𝐿 ∃𝑢 ∈ 𝑆 𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ 𝑅 ∃𝑤 ∈ 𝑀 𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))}) ↔ (∃𝑡 ∈ 𝐿 ∃𝑢 ∈ 𝑆 𝑦 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢)) ∨ ∃𝑣 ∈ 𝑅 ∃𝑤 ∈ 𝑀 𝑦 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤)))) |
89 | | scutcut 27231 |
. . . . . . . . . . . . . . 15
⊢ (𝐿 <<s 𝑅 → ((𝐿 |s 𝑅) ∈ No
∧ 𝐿 <<s {(𝐿 |s 𝑅)} ∧ {(𝐿 |s 𝑅)} <<s 𝑅)) |
90 | 5, 89 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ((𝐿 |s 𝑅) ∈ No
∧ 𝐿 <<s {(𝐿 |s 𝑅)} ∧ {(𝐿 |s 𝑅)} <<s 𝑅)) |
91 | 90 | simp2d 1143 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐿 <<s {(𝐿 |s 𝑅)}) |
92 | 91 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆)) → 𝐿 <<s {(𝐿 |s 𝑅)}) |
93 | | ovex 7427 |
. . . . . . . . . . . . . . 15
⊢ (𝐿 |s 𝑅) ∈ V |
94 | 93 | snid 4659 |
. . . . . . . . . . . . . 14
⊢ (𝐿 |s 𝑅) ∈ {(𝐿 |s 𝑅)} |
95 | 28, 94 | eqeltrdi 2841 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐴 ∈ {(𝐿 |s 𝑅)}) |
96 | 95 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆)) → 𝐴 ∈ {(𝐿 |s 𝑅)}) |
97 | 92, 39, 96 | ssltsepcd 27224 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆)) → 𝑡 <s 𝐴) |
98 | | scutcut 27231 |
. . . . . . . . . . . . . . 15
⊢ (𝑀 <<s 𝑆 → ((𝑀 |s 𝑆) ∈ No
∧ 𝑀 <<s {(𝑀 |s 𝑆)} ∧ {(𝑀 |s 𝑆)} <<s 𝑆)) |
99 | 8, 98 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ((𝑀 |s 𝑆) ∈ No
∧ 𝑀 <<s {(𝑀 |s 𝑆)} ∧ {(𝑀 |s 𝑆)} <<s 𝑆)) |
100 | 99 | simp3d 1144 |
. . . . . . . . . . . . 13
⊢ (𝜑 → {(𝑀 |s 𝑆)} <<s 𝑆) |
101 | 100 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆)) → {(𝑀 |s 𝑆)} <<s 𝑆) |
102 | | ovex 7427 |
. . . . . . . . . . . . . . 15
⊢ (𝑀 |s 𝑆) ∈ V |
103 | 102 | snid 4659 |
. . . . . . . . . . . . . 14
⊢ (𝑀 |s 𝑆) ∈ {(𝑀 |s 𝑆)} |
104 | 31, 103 | eqeltrdi 2841 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐵 ∈ {(𝑀 |s 𝑆)}) |
105 | 104 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆)) → 𝐵 ∈ {(𝑀 |s 𝑆)}) |
106 | 101, 105,
47 | ssltsepcd 27224 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆)) → 𝐵 <s 𝑢) |
107 | 40, 43, 41, 48, 97, 106 | sltmuld 27522 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆)) → ((𝑡 ·s 𝑢) -s (𝑡 ·s 𝐵)) <s ((𝐴 ·s 𝑢) -s (𝐴 ·s 𝐵))) |
108 | 34 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆)) → (𝐴 ·s 𝐵) ∈ No
) |
109 | 51, 42, 49, 108 | sltsubsub2bd 27480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆)) → (((𝑡 ·s 𝑢) -s (𝑡 ·s 𝐵)) <s ((𝐴 ·s 𝑢) -s (𝐴 ·s 𝐵)) ↔ ((𝐴 ·s 𝐵) -s (𝐴 ·s 𝑢)) <s ((𝑡 ·s 𝐵) -s (𝑡 ·s 𝑢)))) |
110 | 42, 51 | subscld 27464 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆)) → ((𝑡 ·s 𝐵) -s (𝑡 ·s 𝑢)) ∈ No
) |
111 | 108, 49, 110 | sltsubaddd 27485 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆)) → (((𝐴 ·s 𝐵) -s (𝐴 ·s 𝑢)) <s ((𝑡 ·s 𝐵) -s (𝑡 ·s 𝑢)) ↔ (𝐴 ·s 𝐵) <s (((𝑡 ·s 𝐵) -s (𝑡 ·s 𝑢)) +s (𝐴 ·s 𝑢)))) |
112 | 109, 111 | bitrd 278 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆)) → (((𝑡 ·s 𝑢) -s (𝑡 ·s 𝐵)) <s ((𝐴 ·s 𝑢) -s (𝐴 ·s 𝐵)) ↔ (𝐴 ·s 𝐵) <s (((𝑡 ·s 𝐵) -s (𝑡 ·s 𝑢)) +s (𝐴 ·s 𝑢)))) |
113 | 107, 112 | mpbid 231 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆)) → (𝐴 ·s 𝐵) <s (((𝑡 ·s 𝐵) -s (𝑡 ·s 𝑢)) +s (𝐴 ·s 𝑢))) |
114 | 42, 49, 51 | addsubsd 27478 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆)) → (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢)) = (((𝑡 ·s 𝐵) -s (𝑡 ·s 𝑢)) +s (𝐴 ·s 𝑢))) |
115 | 113, 114 | breqtrrd 5170 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆)) → (𝐴 ·s 𝐵) <s (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))) |
116 | | breq2 5146 |
. . . . . . . 8
⊢ (𝑦 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢)) → ((𝐴 ·s 𝐵) <s 𝑦 ↔ (𝐴 ·s 𝐵) <s (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢)))) |
117 | 115, 116 | syl5ibrcom 246 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆)) → (𝑦 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢)) → (𝐴 ·s 𝐵) <s 𝑦)) |
118 | 117 | rexlimdvva 3211 |
. . . . . 6
⊢ (𝜑 → (∃𝑡 ∈ 𝐿 ∃𝑢 ∈ 𝑆 𝑦 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢)) → (𝐴 ·s 𝐵) <s 𝑦)) |
119 | 90 | simp3d 1144 |
. . . . . . . . . . . . 13
⊢ (𝜑 → {(𝐿 |s 𝑅)} <<s 𝑅) |
120 | 119 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀)) → {(𝐿 |s 𝑅)} <<s 𝑅) |
121 | 95 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀)) → 𝐴 ∈ {(𝐿 |s 𝑅)}) |
122 | 120, 121,
60 | ssltsepcd 27224 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀)) → 𝐴 <s 𝑣) |
123 | 99 | simp2d 1143 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑀 <<s {(𝑀 |s 𝑆)}) |
124 | 123 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀)) → 𝑀 <<s {(𝑀 |s 𝑆)}) |
125 | 104 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀)) → 𝐵 ∈ {(𝑀 |s 𝑆)}) |
126 | 124, 68, 125 | ssltsepcd 27224 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀)) → 𝑤 <s 𝐵) |
127 | 64, 61, 69, 62, 122, 126 | sltmuld 27522 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀)) → ((𝐴 ·s 𝐵) -s (𝐴 ·s 𝑤)) <s ((𝑣 ·s 𝐵) -s (𝑣 ·s 𝑤))) |
128 | 34 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀)) → (𝐴 ·s 𝐵) ∈ No
) |
129 | 63, 72 | subscld 27464 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀)) → ((𝑣 ·s 𝐵) -s (𝑣 ·s 𝑤)) ∈ No
) |
130 | 128, 70, 129 | sltsubaddd 27485 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀)) → (((𝐴 ·s 𝐵) -s (𝐴 ·s 𝑤)) <s ((𝑣 ·s 𝐵) -s (𝑣 ·s 𝑤)) ↔ (𝐴 ·s 𝐵) <s (((𝑣 ·s 𝐵) -s (𝑣 ·s 𝑤)) +s (𝐴 ·s 𝑤)))) |
131 | 127, 130 | mpbid 231 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀)) → (𝐴 ·s 𝐵) <s (((𝑣 ·s 𝐵) -s (𝑣 ·s 𝑤)) +s (𝐴 ·s 𝑤))) |
132 | 63, 70, 72 | addsubsd 27478 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀)) → (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤)) = (((𝑣 ·s 𝐵) -s (𝑣 ·s 𝑤)) +s (𝐴 ·s 𝑤))) |
133 | 131, 132 | breqtrrd 5170 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀)) → (𝐴 ·s 𝐵) <s (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))) |
134 | | breq2 5146 |
. . . . . . . 8
⊢ (𝑦 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤)) → ((𝐴 ·s 𝐵) <s 𝑦 ↔ (𝐴 ·s 𝐵) <s (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤)))) |
135 | 133, 134 | syl5ibrcom 246 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀)) → (𝑦 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤)) → (𝐴 ·s 𝐵) <s 𝑦)) |
136 | 135 | rexlimdvva 3211 |
. . . . . 6
⊢ (𝜑 → (∃𝑣 ∈ 𝑅 ∃𝑤 ∈ 𝑀 𝑦 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤)) → (𝐴 ·s 𝐵) <s 𝑦)) |
137 | 118, 136 | jaod 857 |
. . . . 5
⊢ (𝜑 → ((∃𝑡 ∈ 𝐿 ∃𝑢 ∈ 𝑆 𝑦 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢)) ∨ ∃𝑣 ∈ 𝑅 ∃𝑤 ∈ 𝑀 𝑦 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))) → (𝐴 ·s 𝐵) <s 𝑦)) |
138 | 88, 137 | biimtrid 241 |
. . . 4
⊢ (𝜑 → (𝑦 ∈ ({𝑐 ∣ ∃𝑡 ∈ 𝐿 ∃𝑢 ∈ 𝑆 𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ 𝑅 ∃𝑤 ∈ 𝑀 𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))}) → (𝐴 ·s 𝐵) <s 𝑦)) |
139 | | velsn 4639 |
. . . . 5
⊢ (𝑥 ∈ {(𝐴 ·s 𝐵)} ↔ 𝑥 = (𝐴 ·s 𝐵)) |
140 | | breq1 5145 |
. . . . . 6
⊢ (𝑥 = (𝐴 ·s 𝐵) → (𝑥 <s 𝑦 ↔ (𝐴 ·s 𝐵) <s 𝑦)) |
141 | 140 | imbi2d 340 |
. . . . 5
⊢ (𝑥 = (𝐴 ·s 𝐵) → ((𝑦 ∈ ({𝑐 ∣ ∃𝑡 ∈ 𝐿 ∃𝑢 ∈ 𝑆 𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ 𝑅 ∃𝑤 ∈ 𝑀 𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))}) → 𝑥 <s 𝑦) ↔ (𝑦 ∈ ({𝑐 ∣ ∃𝑡 ∈ 𝐿 ∃𝑢 ∈ 𝑆 𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ 𝑅 ∃𝑤 ∈ 𝑀 𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))}) → (𝐴 ·s 𝐵) <s 𝑦))) |
142 | 139, 141 | sylbi 216 |
. . . 4
⊢ (𝑥 ∈ {(𝐴 ·s 𝐵)} → ((𝑦 ∈ ({𝑐 ∣ ∃𝑡 ∈ 𝐿 ∃𝑢 ∈ 𝑆 𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ 𝑅 ∃𝑤 ∈ 𝑀 𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))}) → 𝑥 <s 𝑦) ↔ (𝑦 ∈ ({𝑐 ∣ ∃𝑡 ∈ 𝐿 ∃𝑢 ∈ 𝑆 𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ 𝑅 ∃𝑤 ∈ 𝑀 𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))}) → (𝐴 ·s 𝐵) <s 𝑦))) |
143 | 138, 142 | syl5ibrcom 246 |
. . 3
⊢ (𝜑 → (𝑥 ∈ {(𝐴 ·s 𝐵)} → (𝑦 ∈ ({𝑐 ∣ ∃𝑡 ∈ 𝐿 ∃𝑢 ∈ 𝑆 𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ 𝑅 ∃𝑤 ∈ 𝑀 𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))}) → 𝑥 <s 𝑦))) |
144 | 143 | 3imp 1111 |
. 2
⊢ ((𝜑 ∧ 𝑥 ∈ {(𝐴 ·s 𝐵)} ∧ 𝑦 ∈ ({𝑐 ∣ ∃𝑡 ∈ 𝐿 ∃𝑢 ∈ 𝑆 𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ 𝑅 ∃𝑤 ∈ 𝑀 𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))})) → 𝑥 <s 𝑦) |
145 | 2, 27, 35, 78, 144 | ssltd 27222 |
1
⊢ (𝜑 → {(𝐴 ·s 𝐵)} <<s ({𝑐 ∣ ∃𝑡 ∈ 𝐿 ∃𝑢 ∈ 𝑆 𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ 𝑅 ∃𝑤 ∈ 𝑀 𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))})) |