MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssltmul2 Structured version   Visualization version   GIF version

Theorem ssltmul2 28085
Description: One surreal set less-than relationship for cuts of 𝐴 and 𝐵. (Contributed by Scott Fenton, 7-Mar-2025.)
Hypotheses
Ref Expression
ssltmul2.1 (𝜑𝐿 <<s 𝑅)
ssltmul2.2 (𝜑𝑀 <<s 𝑆)
ssltmul2.3 (𝜑𝐴 = (𝐿 |s 𝑅))
ssltmul2.4 (𝜑𝐵 = (𝑀 |s 𝑆))
Assertion
Ref Expression
ssltmul2 (𝜑 → {(𝐴 ·s 𝐵)} <<s ({𝑐 ∣ ∃𝑡𝐿𝑢𝑆 𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑑 ∣ ∃𝑣𝑅𝑤𝑀 𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))}))
Distinct variable groups:   𝐴,𝑐   𝐴,𝑑   𝑡,𝐴,𝑢   𝑣,𝐴,𝑤   𝐵,𝑐   𝐵,𝑑   𝑡,𝐵,𝑢   𝑣,𝐵,𝑤   𝐿,𝑐,𝑡,𝑢   𝑀,𝑑,𝑣,𝑤   𝑅,𝑑,𝑣,𝑤   𝑆,𝑐,𝑡,𝑢   𝜑,𝑐,𝑡,𝑢   𝜑,𝑑,𝑣,𝑤
Allowed substitution hints:   𝑅(𝑢,𝑡,𝑐)   𝑆(𝑤,𝑣,𝑑)   𝐿(𝑤,𝑣,𝑑)   𝑀(𝑢,𝑡,𝑐)

Proof of Theorem ssltmul2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 snex 5374 . . 3 {(𝐴 ·s 𝐵)} ∈ V
21a1i 11 . 2 (𝜑 → {(𝐴 ·s 𝐵)} ∈ V)
3 eqid 2731 . . . . 5 (𝑡𝐿, 𝑢𝑆 ↦ (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))) = (𝑡𝐿, 𝑢𝑆 ↦ (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢)))
43rnmpo 7479 . . . 4 ran (𝑡𝐿, 𝑢𝑆 ↦ (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))) = {𝑐 ∣ ∃𝑡𝐿𝑢𝑆 𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))}
5 ssltmul2.1 . . . . . . 7 (𝜑𝐿 <<s 𝑅)
6 ssltex1 27724 . . . . . . 7 (𝐿 <<s 𝑅𝐿 ∈ V)
75, 6syl 17 . . . . . 6 (𝜑𝐿 ∈ V)
8 ssltmul2.2 . . . . . . 7 (𝜑𝑀 <<s 𝑆)
9 ssltex2 27725 . . . . . . 7 (𝑀 <<s 𝑆𝑆 ∈ V)
108, 9syl 17 . . . . . 6 (𝜑𝑆 ∈ V)
113mpoexg 8008 . . . . . 6 ((𝐿 ∈ V ∧ 𝑆 ∈ V) → (𝑡𝐿, 𝑢𝑆 ↦ (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))) ∈ V)
127, 10, 11syl2anc 584 . . . . 5 (𝜑 → (𝑡𝐿, 𝑢𝑆 ↦ (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))) ∈ V)
13 rnexg 7832 . . . . 5 ((𝑡𝐿, 𝑢𝑆 ↦ (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))) ∈ V → ran (𝑡𝐿, 𝑢𝑆 ↦ (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))) ∈ V)
1412, 13syl 17 . . . 4 (𝜑 → ran (𝑡𝐿, 𝑢𝑆 ↦ (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))) ∈ V)
154, 14eqeltrrid 2836 . . 3 (𝜑 → {𝑐 ∣ ∃𝑡𝐿𝑢𝑆 𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∈ V)
16 eqid 2731 . . . . 5 (𝑣𝑅, 𝑤𝑀 ↦ (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))) = (𝑣𝑅, 𝑤𝑀 ↦ (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤)))
1716rnmpo 7479 . . . 4 ran (𝑣𝑅, 𝑤𝑀 ↦ (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))) = {𝑑 ∣ ∃𝑣𝑅𝑤𝑀 𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))}
18 ssltex2 27725 . . . . . . 7 (𝐿 <<s 𝑅𝑅 ∈ V)
195, 18syl 17 . . . . . 6 (𝜑𝑅 ∈ V)
20 ssltex1 27724 . . . . . . 7 (𝑀 <<s 𝑆𝑀 ∈ V)
218, 20syl 17 . . . . . 6 (𝜑𝑀 ∈ V)
2216mpoexg 8008 . . . . . 6 ((𝑅 ∈ V ∧ 𝑀 ∈ V) → (𝑣𝑅, 𝑤𝑀 ↦ (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))) ∈ V)
2319, 21, 22syl2anc 584 . . . . 5 (𝜑 → (𝑣𝑅, 𝑤𝑀 ↦ (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))) ∈ V)
24 rnexg 7832 . . . . 5 ((𝑣𝑅, 𝑤𝑀 ↦ (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))) ∈ V → ran (𝑣𝑅, 𝑤𝑀 ↦ (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))) ∈ V)
2523, 24syl 17 . . . 4 (𝜑 → ran (𝑣𝑅, 𝑤𝑀 ↦ (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))) ∈ V)
2617, 25eqeltrrid 2836 . . 3 (𝜑 → {𝑑 ∣ ∃𝑣𝑅𝑤𝑀 𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))} ∈ V)
2715, 26unexd 7687 . 2 (𝜑 → ({𝑐 ∣ ∃𝑡𝐿𝑢𝑆 𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑑 ∣ ∃𝑣𝑅𝑤𝑀 𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))}) ∈ V)
28 ssltmul2.3 . . . . 5 (𝜑𝐴 = (𝐿 |s 𝑅))
295scutcld 27742 . . . . 5 (𝜑 → (𝐿 |s 𝑅) ∈ No )
3028, 29eqeltrd 2831 . . . 4 (𝜑𝐴 No )
31 ssltmul2.4 . . . . 5 (𝜑𝐵 = (𝑀 |s 𝑆))
328scutcld 27742 . . . . 5 (𝜑 → (𝑀 |s 𝑆) ∈ No )
3331, 32eqeltrd 2831 . . . 4 (𝜑𝐵 No )
3430, 33mulscld 28072 . . 3 (𝜑 → (𝐴 ·s 𝐵) ∈ No )
3534snssd 4761 . 2 (𝜑 → {(𝐴 ·s 𝐵)} ⊆ No )
36 ssltss1 27726 . . . . . . . . . . . 12 (𝐿 <<s 𝑅𝐿 No )
375, 36syl 17 . . . . . . . . . . 11 (𝜑𝐿 No )
3837adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑡𝐿𝑢𝑆)) → 𝐿 No )
39 simprl 770 . . . . . . . . . 10 ((𝜑 ∧ (𝑡𝐿𝑢𝑆)) → 𝑡𝐿)
4038, 39sseldd 3935 . . . . . . . . 9 ((𝜑 ∧ (𝑡𝐿𝑢𝑆)) → 𝑡 No )
4133adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑡𝐿𝑢𝑆)) → 𝐵 No )
4240, 41mulscld 28072 . . . . . . . 8 ((𝜑 ∧ (𝑡𝐿𝑢𝑆)) → (𝑡 ·s 𝐵) ∈ No )
4330adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑡𝐿𝑢𝑆)) → 𝐴 No )
44 ssltss2 27727 . . . . . . . . . . . 12 (𝑀 <<s 𝑆𝑆 No )
458, 44syl 17 . . . . . . . . . . 11 (𝜑𝑆 No )
4645adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑡𝐿𝑢𝑆)) → 𝑆 No )
47 simprr 772 . . . . . . . . . 10 ((𝜑 ∧ (𝑡𝐿𝑢𝑆)) → 𝑢𝑆)
4846, 47sseldd 3935 . . . . . . . . 9 ((𝜑 ∧ (𝑡𝐿𝑢𝑆)) → 𝑢 No )
4943, 48mulscld 28072 . . . . . . . 8 ((𝜑 ∧ (𝑡𝐿𝑢𝑆)) → (𝐴 ·s 𝑢) ∈ No )
5042, 49addscld 27921 . . . . . . 7 ((𝜑 ∧ (𝑡𝐿𝑢𝑆)) → ((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) ∈ No )
5140, 48mulscld 28072 . . . . . . 7 ((𝜑 ∧ (𝑡𝐿𝑢𝑆)) → (𝑡 ·s 𝑢) ∈ No )
5250, 51subscld 28001 . . . . . 6 ((𝜑 ∧ (𝑡𝐿𝑢𝑆)) → (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢)) ∈ No )
53 eleq1 2819 . . . . . 6 (𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢)) → (𝑐 No ↔ (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢)) ∈ No ))
5452, 53syl5ibrcom 247 . . . . 5 ((𝜑 ∧ (𝑡𝐿𝑢𝑆)) → (𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢)) → 𝑐 No ))
5554rexlimdvva 3189 . . . 4 (𝜑 → (∃𝑡𝐿𝑢𝑆 𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢)) → 𝑐 No ))
5655abssdv 4019 . . 3 (𝜑 → {𝑐 ∣ ∃𝑡𝐿𝑢𝑆 𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ⊆ No )
57 ssltss2 27727 . . . . . . . . . . . 12 (𝐿 <<s 𝑅𝑅 No )
585, 57syl 17 . . . . . . . . . . 11 (𝜑𝑅 No )
5958adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑣𝑅𝑤𝑀)) → 𝑅 No )
60 simprl 770 . . . . . . . . . 10 ((𝜑 ∧ (𝑣𝑅𝑤𝑀)) → 𝑣𝑅)
6159, 60sseldd 3935 . . . . . . . . 9 ((𝜑 ∧ (𝑣𝑅𝑤𝑀)) → 𝑣 No )
6233adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑣𝑅𝑤𝑀)) → 𝐵 No )
6361, 62mulscld 28072 . . . . . . . 8 ((𝜑 ∧ (𝑣𝑅𝑤𝑀)) → (𝑣 ·s 𝐵) ∈ No )
6430adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑣𝑅𝑤𝑀)) → 𝐴 No )
65 ssltss1 27726 . . . . . . . . . . . 12 (𝑀 <<s 𝑆𝑀 No )
668, 65syl 17 . . . . . . . . . . 11 (𝜑𝑀 No )
6766adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑣𝑅𝑤𝑀)) → 𝑀 No )
68 simprr 772 . . . . . . . . . 10 ((𝜑 ∧ (𝑣𝑅𝑤𝑀)) → 𝑤𝑀)
6967, 68sseldd 3935 . . . . . . . . 9 ((𝜑 ∧ (𝑣𝑅𝑤𝑀)) → 𝑤 No )
7064, 69mulscld 28072 . . . . . . . 8 ((𝜑 ∧ (𝑣𝑅𝑤𝑀)) → (𝐴 ·s 𝑤) ∈ No )
7163, 70addscld 27921 . . . . . . 7 ((𝜑 ∧ (𝑣𝑅𝑤𝑀)) → ((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) ∈ No )
7261, 69mulscld 28072 . . . . . . 7 ((𝜑 ∧ (𝑣𝑅𝑤𝑀)) → (𝑣 ·s 𝑤) ∈ No )
7371, 72subscld 28001 . . . . . 6 ((𝜑 ∧ (𝑣𝑅𝑤𝑀)) → (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤)) ∈ No )
74 eleq1 2819 . . . . . 6 (𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤)) → (𝑑 No ↔ (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤)) ∈ No ))
7573, 74syl5ibrcom 247 . . . . 5 ((𝜑 ∧ (𝑣𝑅𝑤𝑀)) → (𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤)) → 𝑑 No ))
7675rexlimdvva 3189 . . . 4 (𝜑 → (∃𝑣𝑅𝑤𝑀 𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤)) → 𝑑 No ))
7776abssdv 4019 . . 3 (𝜑 → {𝑑 ∣ ∃𝑣𝑅𝑤𝑀 𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))} ⊆ No )
7856, 77unssd 4142 . 2 (𝜑 → ({𝑐 ∣ ∃𝑡𝐿𝑢𝑆 𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑑 ∣ ∃𝑣𝑅𝑤𝑀 𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))}) ⊆ No )
79 elun 4103 . . . . . 6 (𝑦 ∈ ({𝑐 ∣ ∃𝑡𝐿𝑢𝑆 𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑑 ∣ ∃𝑣𝑅𝑤𝑀 𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))}) ↔ (𝑦 ∈ {𝑐 ∣ ∃𝑡𝐿𝑢𝑆 𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∨ 𝑦 ∈ {𝑑 ∣ ∃𝑣𝑅𝑤𝑀 𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))}))
80 vex 3440 . . . . . . . 8 𝑦 ∈ V
81 eqeq1 2735 . . . . . . . . 9 (𝑐 = 𝑦 → (𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢)) ↔ 𝑦 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))))
82812rexbidv 3197 . . . . . . . 8 (𝑐 = 𝑦 → (∃𝑡𝐿𝑢𝑆 𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢)) ↔ ∃𝑡𝐿𝑢𝑆 𝑦 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))))
8380, 82elab 3635 . . . . . . 7 (𝑦 ∈ {𝑐 ∣ ∃𝑡𝐿𝑢𝑆 𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ↔ ∃𝑡𝐿𝑢𝑆 𝑦 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢)))
84 eqeq1 2735 . . . . . . . . 9 (𝑑 = 𝑦 → (𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤)) ↔ 𝑦 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))))
85842rexbidv 3197 . . . . . . . 8 (𝑑 = 𝑦 → (∃𝑣𝑅𝑤𝑀 𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤)) ↔ ∃𝑣𝑅𝑤𝑀 𝑦 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))))
8680, 85elab 3635 . . . . . . 7 (𝑦 ∈ {𝑑 ∣ ∃𝑣𝑅𝑤𝑀 𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))} ↔ ∃𝑣𝑅𝑤𝑀 𝑦 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤)))
8783, 86orbi12i 914 . . . . . 6 ((𝑦 ∈ {𝑐 ∣ ∃𝑡𝐿𝑢𝑆 𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∨ 𝑦 ∈ {𝑑 ∣ ∃𝑣𝑅𝑤𝑀 𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))}) ↔ (∃𝑡𝐿𝑢𝑆 𝑦 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢)) ∨ ∃𝑣𝑅𝑤𝑀 𝑦 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))))
8879, 87bitri 275 . . . . 5 (𝑦 ∈ ({𝑐 ∣ ∃𝑡𝐿𝑢𝑆 𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑑 ∣ ∃𝑣𝑅𝑤𝑀 𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))}) ↔ (∃𝑡𝐿𝑢𝑆 𝑦 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢)) ∨ ∃𝑣𝑅𝑤𝑀 𝑦 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))))
89 scutcut 27740 . . . . . . . . . . . . . . 15 (𝐿 <<s 𝑅 → ((𝐿 |s 𝑅) ∈ No 𝐿 <<s {(𝐿 |s 𝑅)} ∧ {(𝐿 |s 𝑅)} <<s 𝑅))
905, 89syl 17 . . . . . . . . . . . . . 14 (𝜑 → ((𝐿 |s 𝑅) ∈ No 𝐿 <<s {(𝐿 |s 𝑅)} ∧ {(𝐿 |s 𝑅)} <<s 𝑅))
9190simp2d 1143 . . . . . . . . . . . . 13 (𝜑𝐿 <<s {(𝐿 |s 𝑅)})
9291adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑡𝐿𝑢𝑆)) → 𝐿 <<s {(𝐿 |s 𝑅)})
93 ovex 7379 . . . . . . . . . . . . . . 15 (𝐿 |s 𝑅) ∈ V
9493snid 4615 . . . . . . . . . . . . . 14 (𝐿 |s 𝑅) ∈ {(𝐿 |s 𝑅)}
9528, 94eqeltrdi 2839 . . . . . . . . . . . . 13 (𝜑𝐴 ∈ {(𝐿 |s 𝑅)})
9695adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑡𝐿𝑢𝑆)) → 𝐴 ∈ {(𝐿 |s 𝑅)})
9792, 39, 96ssltsepcd 27733 . . . . . . . . . . 11 ((𝜑 ∧ (𝑡𝐿𝑢𝑆)) → 𝑡 <s 𝐴)
98 scutcut 27740 . . . . . . . . . . . . . . 15 (𝑀 <<s 𝑆 → ((𝑀 |s 𝑆) ∈ No 𝑀 <<s {(𝑀 |s 𝑆)} ∧ {(𝑀 |s 𝑆)} <<s 𝑆))
998, 98syl 17 . . . . . . . . . . . . . 14 (𝜑 → ((𝑀 |s 𝑆) ∈ No 𝑀 <<s {(𝑀 |s 𝑆)} ∧ {(𝑀 |s 𝑆)} <<s 𝑆))
10099simp3d 1144 . . . . . . . . . . . . 13 (𝜑 → {(𝑀 |s 𝑆)} <<s 𝑆)
101100adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑡𝐿𝑢𝑆)) → {(𝑀 |s 𝑆)} <<s 𝑆)
102 ovex 7379 . . . . . . . . . . . . . . 15 (𝑀 |s 𝑆) ∈ V
103102snid 4615 . . . . . . . . . . . . . 14 (𝑀 |s 𝑆) ∈ {(𝑀 |s 𝑆)}
10431, 103eqeltrdi 2839 . . . . . . . . . . . . 13 (𝜑𝐵 ∈ {(𝑀 |s 𝑆)})
105104adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑡𝐿𝑢𝑆)) → 𝐵 ∈ {(𝑀 |s 𝑆)})
106101, 105, 47ssltsepcd 27733 . . . . . . . . . . 11 ((𝜑 ∧ (𝑡𝐿𝑢𝑆)) → 𝐵 <s 𝑢)
10740, 43, 41, 48, 97, 106sltmuld 28074 . . . . . . . . . 10 ((𝜑 ∧ (𝑡𝐿𝑢𝑆)) → ((𝑡 ·s 𝑢) -s (𝑡 ·s 𝐵)) <s ((𝐴 ·s 𝑢) -s (𝐴 ·s 𝐵)))
10834adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑡𝐿𝑢𝑆)) → (𝐴 ·s 𝐵) ∈ No )
10951, 42, 49, 108sltsubsub2bd 28022 . . . . . . . . . . 11 ((𝜑 ∧ (𝑡𝐿𝑢𝑆)) → (((𝑡 ·s 𝑢) -s (𝑡 ·s 𝐵)) <s ((𝐴 ·s 𝑢) -s (𝐴 ·s 𝐵)) ↔ ((𝐴 ·s 𝐵) -s (𝐴 ·s 𝑢)) <s ((𝑡 ·s 𝐵) -s (𝑡 ·s 𝑢))))
11042, 51subscld 28001 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑡𝐿𝑢𝑆)) → ((𝑡 ·s 𝐵) -s (𝑡 ·s 𝑢)) ∈ No )
111108, 49, 110sltsubaddd 28027 . . . . . . . . . . 11 ((𝜑 ∧ (𝑡𝐿𝑢𝑆)) → (((𝐴 ·s 𝐵) -s (𝐴 ·s 𝑢)) <s ((𝑡 ·s 𝐵) -s (𝑡 ·s 𝑢)) ↔ (𝐴 ·s 𝐵) <s (((𝑡 ·s 𝐵) -s (𝑡 ·s 𝑢)) +s (𝐴 ·s 𝑢))))
112109, 111bitrd 279 . . . . . . . . . 10 ((𝜑 ∧ (𝑡𝐿𝑢𝑆)) → (((𝑡 ·s 𝑢) -s (𝑡 ·s 𝐵)) <s ((𝐴 ·s 𝑢) -s (𝐴 ·s 𝐵)) ↔ (𝐴 ·s 𝐵) <s (((𝑡 ·s 𝐵) -s (𝑡 ·s 𝑢)) +s (𝐴 ·s 𝑢))))
113107, 112mpbid 232 . . . . . . . . 9 ((𝜑 ∧ (𝑡𝐿𝑢𝑆)) → (𝐴 ·s 𝐵) <s (((𝑡 ·s 𝐵) -s (𝑡 ·s 𝑢)) +s (𝐴 ·s 𝑢)))
11442, 49, 51addsubsd 28020 . . . . . . . . 9 ((𝜑 ∧ (𝑡𝐿𝑢𝑆)) → (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢)) = (((𝑡 ·s 𝐵) -s (𝑡 ·s 𝑢)) +s (𝐴 ·s 𝑢)))
115113, 114breqtrrd 5119 . . . . . . . 8 ((𝜑 ∧ (𝑡𝐿𝑢𝑆)) → (𝐴 ·s 𝐵) <s (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢)))
116 breq2 5095 . . . . . . . 8 (𝑦 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢)) → ((𝐴 ·s 𝐵) <s 𝑦 ↔ (𝐴 ·s 𝐵) <s (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))))
117115, 116syl5ibrcom 247 . . . . . . 7 ((𝜑 ∧ (𝑡𝐿𝑢𝑆)) → (𝑦 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢)) → (𝐴 ·s 𝐵) <s 𝑦))
118117rexlimdvva 3189 . . . . . 6 (𝜑 → (∃𝑡𝐿𝑢𝑆 𝑦 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢)) → (𝐴 ·s 𝐵) <s 𝑦))
11990simp3d 1144 . . . . . . . . . . . . 13 (𝜑 → {(𝐿 |s 𝑅)} <<s 𝑅)
120119adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑣𝑅𝑤𝑀)) → {(𝐿 |s 𝑅)} <<s 𝑅)
12195adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑣𝑅𝑤𝑀)) → 𝐴 ∈ {(𝐿 |s 𝑅)})
122120, 121, 60ssltsepcd 27733 . . . . . . . . . . 11 ((𝜑 ∧ (𝑣𝑅𝑤𝑀)) → 𝐴 <s 𝑣)
12399simp2d 1143 . . . . . . . . . . . . 13 (𝜑𝑀 <<s {(𝑀 |s 𝑆)})
124123adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑣𝑅𝑤𝑀)) → 𝑀 <<s {(𝑀 |s 𝑆)})
125104adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑣𝑅𝑤𝑀)) → 𝐵 ∈ {(𝑀 |s 𝑆)})
126124, 68, 125ssltsepcd 27733 . . . . . . . . . . 11 ((𝜑 ∧ (𝑣𝑅𝑤𝑀)) → 𝑤 <s 𝐵)
12764, 61, 69, 62, 122, 126sltmuld 28074 . . . . . . . . . 10 ((𝜑 ∧ (𝑣𝑅𝑤𝑀)) → ((𝐴 ·s 𝐵) -s (𝐴 ·s 𝑤)) <s ((𝑣 ·s 𝐵) -s (𝑣 ·s 𝑤)))
12834adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑣𝑅𝑤𝑀)) → (𝐴 ·s 𝐵) ∈ No )
12963, 72subscld 28001 . . . . . . . . . . 11 ((𝜑 ∧ (𝑣𝑅𝑤𝑀)) → ((𝑣 ·s 𝐵) -s (𝑣 ·s 𝑤)) ∈ No )
130128, 70, 129sltsubaddd 28027 . . . . . . . . . 10 ((𝜑 ∧ (𝑣𝑅𝑤𝑀)) → (((𝐴 ·s 𝐵) -s (𝐴 ·s 𝑤)) <s ((𝑣 ·s 𝐵) -s (𝑣 ·s 𝑤)) ↔ (𝐴 ·s 𝐵) <s (((𝑣 ·s 𝐵) -s (𝑣 ·s 𝑤)) +s (𝐴 ·s 𝑤))))
131127, 130mpbid 232 . . . . . . . . 9 ((𝜑 ∧ (𝑣𝑅𝑤𝑀)) → (𝐴 ·s 𝐵) <s (((𝑣 ·s 𝐵) -s (𝑣 ·s 𝑤)) +s (𝐴 ·s 𝑤)))
13263, 70, 72addsubsd 28020 . . . . . . . . 9 ((𝜑 ∧ (𝑣𝑅𝑤𝑀)) → (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤)) = (((𝑣 ·s 𝐵) -s (𝑣 ·s 𝑤)) +s (𝐴 ·s 𝑤)))
133131, 132breqtrrd 5119 . . . . . . . 8 ((𝜑 ∧ (𝑣𝑅𝑤𝑀)) → (𝐴 ·s 𝐵) <s (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤)))
134 breq2 5095 . . . . . . . 8 (𝑦 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤)) → ((𝐴 ·s 𝐵) <s 𝑦 ↔ (𝐴 ·s 𝐵) <s (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))))
135133, 134syl5ibrcom 247 . . . . . . 7 ((𝜑 ∧ (𝑣𝑅𝑤𝑀)) → (𝑦 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤)) → (𝐴 ·s 𝐵) <s 𝑦))
136135rexlimdvva 3189 . . . . . 6 (𝜑 → (∃𝑣𝑅𝑤𝑀 𝑦 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤)) → (𝐴 ·s 𝐵) <s 𝑦))
137118, 136jaod 859 . . . . 5 (𝜑 → ((∃𝑡𝐿𝑢𝑆 𝑦 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢)) ∨ ∃𝑣𝑅𝑤𝑀 𝑦 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))) → (𝐴 ·s 𝐵) <s 𝑦))
13888, 137biimtrid 242 . . . 4 (𝜑 → (𝑦 ∈ ({𝑐 ∣ ∃𝑡𝐿𝑢𝑆 𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑑 ∣ ∃𝑣𝑅𝑤𝑀 𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))}) → (𝐴 ·s 𝐵) <s 𝑦))
139 velsn 4592 . . . . 5 (𝑥 ∈ {(𝐴 ·s 𝐵)} ↔ 𝑥 = (𝐴 ·s 𝐵))
140 breq1 5094 . . . . . 6 (𝑥 = (𝐴 ·s 𝐵) → (𝑥 <s 𝑦 ↔ (𝐴 ·s 𝐵) <s 𝑦))
141140imbi2d 340 . . . . 5 (𝑥 = (𝐴 ·s 𝐵) → ((𝑦 ∈ ({𝑐 ∣ ∃𝑡𝐿𝑢𝑆 𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑑 ∣ ∃𝑣𝑅𝑤𝑀 𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))}) → 𝑥 <s 𝑦) ↔ (𝑦 ∈ ({𝑐 ∣ ∃𝑡𝐿𝑢𝑆 𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑑 ∣ ∃𝑣𝑅𝑤𝑀 𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))}) → (𝐴 ·s 𝐵) <s 𝑦)))
142139, 141sylbi 217 . . . 4 (𝑥 ∈ {(𝐴 ·s 𝐵)} → ((𝑦 ∈ ({𝑐 ∣ ∃𝑡𝐿𝑢𝑆 𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑑 ∣ ∃𝑣𝑅𝑤𝑀 𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))}) → 𝑥 <s 𝑦) ↔ (𝑦 ∈ ({𝑐 ∣ ∃𝑡𝐿𝑢𝑆 𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑑 ∣ ∃𝑣𝑅𝑤𝑀 𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))}) → (𝐴 ·s 𝐵) <s 𝑦)))
143138, 142syl5ibrcom 247 . . 3 (𝜑 → (𝑥 ∈ {(𝐴 ·s 𝐵)} → (𝑦 ∈ ({𝑐 ∣ ∃𝑡𝐿𝑢𝑆 𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑑 ∣ ∃𝑣𝑅𝑤𝑀 𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))}) → 𝑥 <s 𝑦)))
1441433imp 1110 . 2 ((𝜑𝑥 ∈ {(𝐴 ·s 𝐵)} ∧ 𝑦 ∈ ({𝑐 ∣ ∃𝑡𝐿𝑢𝑆 𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑑 ∣ ∃𝑣𝑅𝑤𝑀 𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))})) → 𝑥 <s 𝑦)
1452, 27, 35, 78, 144ssltd 27729 1 (𝜑 → {(𝐴 ·s 𝐵)} <<s ({𝑐 ∣ ∃𝑡𝐿𝑢𝑆 𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑑 ∣ ∃𝑣𝑅𝑤𝑀 𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1541  wcel 2111  {cab 2709  wrex 3056  Vcvv 3436  cun 3900  wss 3902  {csn 4576   class class class wbr 5091  ran crn 5617  (class class class)co 7346  cmpo 7348   No csur 27576   <s cslt 27577   <<s csslt 27718   |s cscut 27720   +s cadds 27900   -s csubs 27960   ·s cmuls 28043
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-tp 4581  df-op 4583  df-ot 4585  df-uni 4860  df-int 4898  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-se 5570  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-1o 8385  df-2o 8386  df-nadd 8581  df-no 27579  df-slt 27580  df-bday 27581  df-sle 27682  df-sslt 27719  df-scut 27721  df-0s 27766  df-made 27786  df-old 27787  df-left 27789  df-right 27790  df-norec 27879  df-norec2 27890  df-adds 27901  df-negs 27961  df-subs 27962  df-muls 28044
This theorem is referenced by:  mulsuniflem  28086
  Copyright terms: Public domain W3C validator