MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cofcut1 Structured version   Visualization version   GIF version

Theorem cofcut1 27239
Description: If 𝐶 is cofinal with 𝐴 and 𝐷 is coinitial with 𝐵 and the cut of 𝐴 and 𝐵 lies between 𝐶 and 𝐷, then the cut of 𝐶 and 𝐷 is equal to the cut of 𝐴 and 𝐵. Theorem 2.6 of [Gonshor] p. 10. (Contributed by Scott Fenton, 25-Sep-2024.)
Assertion
Ref Expression
cofcut1 ((𝐴 <<s 𝐵 ∧ (∀𝑥𝐴𝑦𝐶 𝑥 ≤s 𝑦 ∧ ∀𝑧𝐵𝑤𝐷 𝑤 ≤s 𝑧) ∧ (𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷)) → (𝐴 |s 𝐵) = (𝐶 |s 𝐷))
Distinct variable groups:   𝑥,𝐴   𝑧,𝐵   𝑥,𝐶,𝑦   𝑤,𝐷,𝑧
Allowed substitution hints:   𝐴(𝑦,𝑧,𝑤)   𝐵(𝑥,𝑦,𝑤)   𝐶(𝑧,𝑤)   𝐷(𝑥,𝑦)

Proof of Theorem cofcut1
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 simp3l 1201 . . 3 ((𝐴 <<s 𝐵 ∧ (∀𝑥𝐴𝑦𝐶 𝑥 ≤s 𝑦 ∧ ∀𝑧𝐵𝑤𝐷 𝑤 ≤s 𝑧) ∧ (𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷)) → 𝐶 <<s {(𝐴 |s 𝐵)})
2 simp3r 1202 . . 3 ((𝐴 <<s 𝐵 ∧ (∀𝑥𝐴𝑦𝐶 𝑥 ≤s 𝑦 ∧ ∀𝑧𝐵𝑤𝐷 𝑤 ≤s 𝑧) ∧ (𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷)) → {(𝐴 |s 𝐵)} <<s 𝐷)
3 simp1 1136 . . . . . 6 ((𝐴 <<s 𝐵 ∧ (∀𝑥𝐴𝑦𝐶 𝑥 ≤s 𝑦 ∧ ∀𝑧𝐵𝑤𝐷 𝑤 ≤s 𝑧) ∧ (𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷)) → 𝐴 <<s 𝐵)
4 scutbday 27143 . . . . . 6 (𝐴 <<s 𝐵 → ( bday ‘(𝐴 |s 𝐵)) = ( bday “ {𝑡 No ∣ (𝐴 <<s {𝑡} ∧ {𝑡} <<s 𝐵)}))
53, 4syl 17 . . . . 5 ((𝐴 <<s 𝐵 ∧ (∀𝑥𝐴𝑦𝐶 𝑥 ≤s 𝑦 ∧ ∀𝑧𝐵𝑤𝐷 𝑤 ≤s 𝑧) ∧ (𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷)) → ( bday ‘(𝐴 |s 𝐵)) = ( bday “ {𝑡 No ∣ (𝐴 <<s {𝑡} ∧ {𝑡} <<s 𝐵)}))
6 ssltex1 27126 . . . . . . . . . . . . 13 (𝐴 <<s 𝐵𝐴 ∈ V)
73, 6syl 17 . . . . . . . . . . . 12 ((𝐴 <<s 𝐵 ∧ (∀𝑥𝐴𝑦𝐶 𝑥 ≤s 𝑦 ∧ ∀𝑧𝐵𝑤𝐷 𝑤 ≤s 𝑧) ∧ (𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷)) → 𝐴 ∈ V)
87ad2antrr 724 . . . . . . . . . . 11 ((((𝐴 <<s 𝐵 ∧ (∀𝑥𝐴𝑦𝐶 𝑥 ≤s 𝑦 ∧ ∀𝑧𝐵𝑤𝐷 𝑤 ≤s 𝑧) ∧ (𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷)) ∧ 𝑡 No ) ∧ 𝐶 <<s {𝑡}) → 𝐴 ∈ V)
9 ssltss1 27128 . . . . . . . . . . . . 13 (𝐴 <<s 𝐵𝐴 No )
103, 9syl 17 . . . . . . . . . . . 12 ((𝐴 <<s 𝐵 ∧ (∀𝑥𝐴𝑦𝐶 𝑥 ≤s 𝑦 ∧ ∀𝑧𝐵𝑤𝐷 𝑤 ≤s 𝑧) ∧ (𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷)) → 𝐴 No )
1110ad2antrr 724 . . . . . . . . . . 11 ((((𝐴 <<s 𝐵 ∧ (∀𝑥𝐴𝑦𝐶 𝑥 ≤s 𝑦 ∧ ∀𝑧𝐵𝑤𝐷 𝑤 ≤s 𝑧) ∧ (𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷)) ∧ 𝑡 No ) ∧ 𝐶 <<s {𝑡}) → 𝐴 No )
128, 11elpwd 4566 . . . . . . . . . 10 ((((𝐴 <<s 𝐵 ∧ (∀𝑥𝐴𝑦𝐶 𝑥 ≤s 𝑦 ∧ ∀𝑧𝐵𝑤𝐷 𝑤 ≤s 𝑧) ∧ (𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷)) ∧ 𝑡 No ) ∧ 𝐶 <<s {𝑡}) → 𝐴 ∈ 𝒫 No )
13 simpl2l 1226 . . . . . . . . . . 11 (((𝐴 <<s 𝐵 ∧ (∀𝑥𝐴𝑦𝐶 𝑥 ≤s 𝑦 ∧ ∀𝑧𝐵𝑤𝐷 𝑤 ≤s 𝑧) ∧ (𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷)) ∧ 𝑡 No ) → ∀𝑥𝐴𝑦𝐶 𝑥 ≤s 𝑦)
1413adantr 481 . . . . . . . . . 10 ((((𝐴 <<s 𝐵 ∧ (∀𝑥𝐴𝑦𝐶 𝑥 ≤s 𝑦 ∧ ∀𝑧𝐵𝑤𝐷 𝑤 ≤s 𝑧) ∧ (𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷)) ∧ 𝑡 No ) ∧ 𝐶 <<s {𝑡}) → ∀𝑥𝐴𝑦𝐶 𝑥 ≤s 𝑦)
15 simpr 485 . . . . . . . . . 10 ((((𝐴 <<s 𝐵 ∧ (∀𝑥𝐴𝑦𝐶 𝑥 ≤s 𝑦 ∧ ∀𝑧𝐵𝑤𝐷 𝑤 ≤s 𝑧) ∧ (𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷)) ∧ 𝑡 No ) ∧ 𝐶 <<s {𝑡}) → 𝐶 <<s {𝑡})
16 cofsslt 27237 . . . . . . . . . 10 ((𝐴 ∈ 𝒫 No ∧ ∀𝑥𝐴𝑦𝐶 𝑥 ≤s 𝑦𝐶 <<s {𝑡}) → 𝐴 <<s {𝑡})
1712, 14, 15, 16syl3anc 1371 . . . . . . . . 9 ((((𝐴 <<s 𝐵 ∧ (∀𝑥𝐴𝑦𝐶 𝑥 ≤s 𝑦 ∧ ∀𝑧𝐵𝑤𝐷 𝑤 ≤s 𝑧) ∧ (𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷)) ∧ 𝑡 No ) ∧ 𝐶 <<s {𝑡}) → 𝐴 <<s {𝑡})
1817ex 413 . . . . . . . 8 (((𝐴 <<s 𝐵 ∧ (∀𝑥𝐴𝑦𝐶 𝑥 ≤s 𝑦 ∧ ∀𝑧𝐵𝑤𝐷 𝑤 ≤s 𝑧) ∧ (𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷)) ∧ 𝑡 No ) → (𝐶 <<s {𝑡} → 𝐴 <<s {𝑡}))
19 ssltex2 27127 . . . . . . . . . . . . 13 (𝐴 <<s 𝐵𝐵 ∈ V)
203, 19syl 17 . . . . . . . . . . . 12 ((𝐴 <<s 𝐵 ∧ (∀𝑥𝐴𝑦𝐶 𝑥 ≤s 𝑦 ∧ ∀𝑧𝐵𝑤𝐷 𝑤 ≤s 𝑧) ∧ (𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷)) → 𝐵 ∈ V)
2120ad2antrr 724 . . . . . . . . . . 11 ((((𝐴 <<s 𝐵 ∧ (∀𝑥𝐴𝑦𝐶 𝑥 ≤s 𝑦 ∧ ∀𝑧𝐵𝑤𝐷 𝑤 ≤s 𝑧) ∧ (𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷)) ∧ 𝑡 No ) ∧ {𝑡} <<s 𝐷) → 𝐵 ∈ V)
22 ssltss2 27129 . . . . . . . . . . . . 13 (𝐴 <<s 𝐵𝐵 No )
233, 22syl 17 . . . . . . . . . . . 12 ((𝐴 <<s 𝐵 ∧ (∀𝑥𝐴𝑦𝐶 𝑥 ≤s 𝑦 ∧ ∀𝑧𝐵𝑤𝐷 𝑤 ≤s 𝑧) ∧ (𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷)) → 𝐵 No )
2423ad2antrr 724 . . . . . . . . . . 11 ((((𝐴 <<s 𝐵 ∧ (∀𝑥𝐴𝑦𝐶 𝑥 ≤s 𝑦 ∧ ∀𝑧𝐵𝑤𝐷 𝑤 ≤s 𝑧) ∧ (𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷)) ∧ 𝑡 No ) ∧ {𝑡} <<s 𝐷) → 𝐵 No )
2521, 24elpwd 4566 . . . . . . . . . 10 ((((𝐴 <<s 𝐵 ∧ (∀𝑥𝐴𝑦𝐶 𝑥 ≤s 𝑦 ∧ ∀𝑧𝐵𝑤𝐷 𝑤 ≤s 𝑧) ∧ (𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷)) ∧ 𝑡 No ) ∧ {𝑡} <<s 𝐷) → 𝐵 ∈ 𝒫 No )
26 simpl2r 1227 . . . . . . . . . . 11 (((𝐴 <<s 𝐵 ∧ (∀𝑥𝐴𝑦𝐶 𝑥 ≤s 𝑦 ∧ ∀𝑧𝐵𝑤𝐷 𝑤 ≤s 𝑧) ∧ (𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷)) ∧ 𝑡 No ) → ∀𝑧𝐵𝑤𝐷 𝑤 ≤s 𝑧)
2726adantr 481 . . . . . . . . . 10 ((((𝐴 <<s 𝐵 ∧ (∀𝑥𝐴𝑦𝐶 𝑥 ≤s 𝑦 ∧ ∀𝑧𝐵𝑤𝐷 𝑤 ≤s 𝑧) ∧ (𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷)) ∧ 𝑡 No ) ∧ {𝑡} <<s 𝐷) → ∀𝑧𝐵𝑤𝐷 𝑤 ≤s 𝑧)
28 simpr 485 . . . . . . . . . 10 ((((𝐴 <<s 𝐵 ∧ (∀𝑥𝐴𝑦𝐶 𝑥 ≤s 𝑦 ∧ ∀𝑧𝐵𝑤𝐷 𝑤 ≤s 𝑧) ∧ (𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷)) ∧ 𝑡 No ) ∧ {𝑡} <<s 𝐷) → {𝑡} <<s 𝐷)
29 coinitsslt 27238 . . . . . . . . . 10 ((𝐵 ∈ 𝒫 No ∧ ∀𝑧𝐵𝑤𝐷 𝑤 ≤s 𝑧 ∧ {𝑡} <<s 𝐷) → {𝑡} <<s 𝐵)
3025, 27, 28, 29syl3anc 1371 . . . . . . . . 9 ((((𝐴 <<s 𝐵 ∧ (∀𝑥𝐴𝑦𝐶 𝑥 ≤s 𝑦 ∧ ∀𝑧𝐵𝑤𝐷 𝑤 ≤s 𝑧) ∧ (𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷)) ∧ 𝑡 No ) ∧ {𝑡} <<s 𝐷) → {𝑡} <<s 𝐵)
3130ex 413 . . . . . . . 8 (((𝐴 <<s 𝐵 ∧ (∀𝑥𝐴𝑦𝐶 𝑥 ≤s 𝑦 ∧ ∀𝑧𝐵𝑤𝐷 𝑤 ≤s 𝑧) ∧ (𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷)) ∧ 𝑡 No ) → ({𝑡} <<s 𝐷 → {𝑡} <<s 𝐵))
3218, 31anim12d 609 . . . . . . 7 (((𝐴 <<s 𝐵 ∧ (∀𝑥𝐴𝑦𝐶 𝑥 ≤s 𝑦 ∧ ∀𝑧𝐵𝑤𝐷 𝑤 ≤s 𝑧) ∧ (𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷)) ∧ 𝑡 No ) → ((𝐶 <<s {𝑡} ∧ {𝑡} <<s 𝐷) → (𝐴 <<s {𝑡} ∧ {𝑡} <<s 𝐵)))
3332ss2rabdv 4033 . . . . . 6 ((𝐴 <<s 𝐵 ∧ (∀𝑥𝐴𝑦𝐶 𝑥 ≤s 𝑦 ∧ ∀𝑧𝐵𝑤𝐷 𝑤 ≤s 𝑧) ∧ (𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷)) → {𝑡 No ∣ (𝐶 <<s {𝑡} ∧ {𝑡} <<s 𝐷)} ⊆ {𝑡 No ∣ (𝐴 <<s {𝑡} ∧ {𝑡} <<s 𝐵)})
34 imass2 6054 . . . . . 6 ({𝑡 No ∣ (𝐶 <<s {𝑡} ∧ {𝑡} <<s 𝐷)} ⊆ {𝑡 No ∣ (𝐴 <<s {𝑡} ∧ {𝑡} <<s 𝐵)} → ( bday “ {𝑡 No ∣ (𝐶 <<s {𝑡} ∧ {𝑡} <<s 𝐷)}) ⊆ ( bday “ {𝑡 No ∣ (𝐴 <<s {𝑡} ∧ {𝑡} <<s 𝐵)}))
35 intss 4930 . . . . . 6 (( bday “ {𝑡 No ∣ (𝐶 <<s {𝑡} ∧ {𝑡} <<s 𝐷)}) ⊆ ( bday “ {𝑡 No ∣ (𝐴 <<s {𝑡} ∧ {𝑡} <<s 𝐵)}) → ( bday “ {𝑡 No ∣ (𝐴 <<s {𝑡} ∧ {𝑡} <<s 𝐵)}) ⊆ ( bday “ {𝑡 No ∣ (𝐶 <<s {𝑡} ∧ {𝑡} <<s 𝐷)}))
3633, 34, 353syl 18 . . . . 5 ((𝐴 <<s 𝐵 ∧ (∀𝑥𝐴𝑦𝐶 𝑥 ≤s 𝑦 ∧ ∀𝑧𝐵𝑤𝐷 𝑤 ≤s 𝑧) ∧ (𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷)) → ( bday “ {𝑡 No ∣ (𝐴 <<s {𝑡} ∧ {𝑡} <<s 𝐵)}) ⊆ ( bday “ {𝑡 No ∣ (𝐶 <<s {𝑡} ∧ {𝑡} <<s 𝐷)}))
375, 36eqsstrd 3982 . . . 4 ((𝐴 <<s 𝐵 ∧ (∀𝑥𝐴𝑦𝐶 𝑥 ≤s 𝑦 ∧ ∀𝑧𝐵𝑤𝐷 𝑤 ≤s 𝑧) ∧ (𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷)) → ( bday ‘(𝐴 |s 𝐵)) ⊆ ( bday “ {𝑡 No ∣ (𝐶 <<s {𝑡} ∧ {𝑡} <<s 𝐷)}))
38 bdayfn 27113 . . . . . 6 bday Fn No
39 ssrab2 4037 . . . . . 6 {𝑡 No ∣ (𝐶 <<s {𝑡} ∧ {𝑡} <<s 𝐷)} ⊆ No
40 sneq 4596 . . . . . . . . 9 (𝑡 = (𝐴 |s 𝐵) → {𝑡} = {(𝐴 |s 𝐵)})
4140breq2d 5117 . . . . . . . 8 (𝑡 = (𝐴 |s 𝐵) → (𝐶 <<s {𝑡} ↔ 𝐶 <<s {(𝐴 |s 𝐵)}))
4240breq1d 5115 . . . . . . . 8 (𝑡 = (𝐴 |s 𝐵) → ({𝑡} <<s 𝐷 ↔ {(𝐴 |s 𝐵)} <<s 𝐷))
4341, 42anbi12d 631 . . . . . . 7 (𝑡 = (𝐴 |s 𝐵) → ((𝐶 <<s {𝑡} ∧ {𝑡} <<s 𝐷) ↔ (𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷)))
443scutcld 27142 . . . . . . 7 ((𝐴 <<s 𝐵 ∧ (∀𝑥𝐴𝑦𝐶 𝑥 ≤s 𝑦 ∧ ∀𝑧𝐵𝑤𝐷 𝑤 ≤s 𝑧) ∧ (𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷)) → (𝐴 |s 𝐵) ∈ No )
45 simp3 1138 . . . . . . 7 ((𝐴 <<s 𝐵 ∧ (∀𝑥𝐴𝑦𝐶 𝑥 ≤s 𝑦 ∧ ∀𝑧𝐵𝑤𝐷 𝑤 ≤s 𝑧) ∧ (𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷)) → (𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷))
4643, 44, 45elrabd 3647 . . . . . 6 ((𝐴 <<s 𝐵 ∧ (∀𝑥𝐴𝑦𝐶 𝑥 ≤s 𝑦 ∧ ∀𝑧𝐵𝑤𝐷 𝑤 ≤s 𝑧) ∧ (𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷)) → (𝐴 |s 𝐵) ∈ {𝑡 No ∣ (𝐶 <<s {𝑡} ∧ {𝑡} <<s 𝐷)})
47 fnfvima 7183 . . . . . 6 (( bday Fn No ∧ {𝑡 No ∣ (𝐶 <<s {𝑡} ∧ {𝑡} <<s 𝐷)} ⊆ No ∧ (𝐴 |s 𝐵) ∈ {𝑡 No ∣ (𝐶 <<s {𝑡} ∧ {𝑡} <<s 𝐷)}) → ( bday ‘(𝐴 |s 𝐵)) ∈ ( bday “ {𝑡 No ∣ (𝐶 <<s {𝑡} ∧ {𝑡} <<s 𝐷)}))
4838, 39, 46, 47mp3an12i 1465 . . . . 5 ((𝐴 <<s 𝐵 ∧ (∀𝑥𝐴𝑦𝐶 𝑥 ≤s 𝑦 ∧ ∀𝑧𝐵𝑤𝐷 𝑤 ≤s 𝑧) ∧ (𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷)) → ( bday ‘(𝐴 |s 𝐵)) ∈ ( bday “ {𝑡 No ∣ (𝐶 <<s {𝑡} ∧ {𝑡} <<s 𝐷)}))
49 intss1 4924 . . . . 5 (( bday ‘(𝐴 |s 𝐵)) ∈ ( bday “ {𝑡 No ∣ (𝐶 <<s {𝑡} ∧ {𝑡} <<s 𝐷)}) → ( bday “ {𝑡 No ∣ (𝐶 <<s {𝑡} ∧ {𝑡} <<s 𝐷)}) ⊆ ( bday ‘(𝐴 |s 𝐵)))
5048, 49syl 17 . . . 4 ((𝐴 <<s 𝐵 ∧ (∀𝑥𝐴𝑦𝐶 𝑥 ≤s 𝑦 ∧ ∀𝑧𝐵𝑤𝐷 𝑤 ≤s 𝑧) ∧ (𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷)) → ( bday “ {𝑡 No ∣ (𝐶 <<s {𝑡} ∧ {𝑡} <<s 𝐷)}) ⊆ ( bday ‘(𝐴 |s 𝐵)))
5137, 50eqssd 3961 . . 3 ((𝐴 <<s 𝐵 ∧ (∀𝑥𝐴𝑦𝐶 𝑥 ≤s 𝑦 ∧ ∀𝑧𝐵𝑤𝐷 𝑤 ≤s 𝑧) ∧ (𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷)) → ( bday ‘(𝐴 |s 𝐵)) = ( bday “ {𝑡 No ∣ (𝐶 <<s {𝑡} ∧ {𝑡} <<s 𝐷)}))
52 ovex 7390 . . . . . . 7 (𝐴 |s 𝐵) ∈ V
5352snnz 4737 . . . . . 6 {(𝐴 |s 𝐵)} ≠ ∅
54 sslttr 27146 . . . . . 6 ((𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷 ∧ {(𝐴 |s 𝐵)} ≠ ∅) → 𝐶 <<s 𝐷)
5553, 54mp3an3 1450 . . . . 5 ((𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷) → 𝐶 <<s 𝐷)
56553ad2ant3 1135 . . . 4 ((𝐴 <<s 𝐵 ∧ (∀𝑥𝐴𝑦𝐶 𝑥 ≤s 𝑦 ∧ ∀𝑧𝐵𝑤𝐷 𝑤 ≤s 𝑧) ∧ (𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷)) → 𝐶 <<s 𝐷)
57 eqscut 27144 . . . 4 ((𝐶 <<s 𝐷 ∧ (𝐴 |s 𝐵) ∈ No ) → ((𝐶 |s 𝐷) = (𝐴 |s 𝐵) ↔ (𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷 ∧ ( bday ‘(𝐴 |s 𝐵)) = ( bday “ {𝑡 No ∣ (𝐶 <<s {𝑡} ∧ {𝑡} <<s 𝐷)}))))
5856, 44, 57syl2anc 584 . . 3 ((𝐴 <<s 𝐵 ∧ (∀𝑥𝐴𝑦𝐶 𝑥 ≤s 𝑦 ∧ ∀𝑧𝐵𝑤𝐷 𝑤 ≤s 𝑧) ∧ (𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷)) → ((𝐶 |s 𝐷) = (𝐴 |s 𝐵) ↔ (𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷 ∧ ( bday ‘(𝐴 |s 𝐵)) = ( bday “ {𝑡 No ∣ (𝐶 <<s {𝑡} ∧ {𝑡} <<s 𝐷)}))))
591, 2, 51, 58mpbir3and 1342 . 2 ((𝐴 <<s 𝐵 ∧ (∀𝑥𝐴𝑦𝐶 𝑥 ≤s 𝑦 ∧ ∀𝑧𝐵𝑤𝐷 𝑤 ≤s 𝑧) ∧ (𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷)) → (𝐶 |s 𝐷) = (𝐴 |s 𝐵))
6059eqcomd 2742 1 ((𝐴 <<s 𝐵 ∧ (∀𝑥𝐴𝑦𝐶 𝑥 ≤s 𝑦 ∧ ∀𝑧𝐵𝑤𝐷 𝑤 ≤s 𝑧) ∧ (𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷)) → (𝐴 |s 𝐵) = (𝐶 |s 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wne 2943  wral 3064  wrex 3073  {crab 3407  Vcvv 3445  wss 3910  c0 4282  𝒫 cpw 4560  {csn 4586   cint 4907   class class class wbr 5105  cima 5636   Fn wfn 6491  cfv 6496  (class class class)co 7357   No csur 26988   bday cbday 26990   ≤s csle 27092   <<s csslt 27120   |s cscut 27122
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pr 5384  ax-un 7672
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-ord 6320  df-on 6321  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-1o 8412  df-2o 8413  df-no 26991  df-slt 26992  df-bday 26993  df-sle 27093  df-sslt 27121  df-scut 27123
This theorem is referenced by:  cofcut1d  27240  cofcut2  27241
  Copyright terms: Public domain W3C validator