Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cofcut1 Structured version   Visualization version   GIF version

Theorem cofcut1 34017
Description: If 𝐶 is cofinal with 𝐴 and 𝐷 is coinitial with 𝐵 and the cut of 𝐴 and 𝐵 lies between 𝐶 and 𝐷. Then the cut of 𝐶 and 𝐷 is equal to the cut of 𝐴 and 𝐵. Theorem 2.6 of [Gonshor] p. 10. (Contributed by Scott Fenton, 25-Sep-2024.)
Assertion
Ref Expression
cofcut1 ((𝐴 <<s 𝐵 ∧ (∀𝑥𝐴𝑦𝐶 𝑥 ≤s 𝑦 ∧ ∀𝑧𝐵𝑤𝐷 𝑤 ≤s 𝑧) ∧ (𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷)) → (𝐴 |s 𝐵) = (𝐶 |s 𝐷))
Distinct variable groups:   𝑥,𝐴   𝑧,𝐵   𝑥,𝐶,𝑦   𝑤,𝐷,𝑧
Allowed substitution hints:   𝐴(𝑦,𝑧,𝑤)   𝐵(𝑥,𝑦,𝑤)   𝐶(𝑧,𝑤)   𝐷(𝑥,𝑦)

Proof of Theorem cofcut1
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 simp3l 1199 . . 3 ((𝐴 <<s 𝐵 ∧ (∀𝑥𝐴𝑦𝐶 𝑥 ≤s 𝑦 ∧ ∀𝑧𝐵𝑤𝐷 𝑤 ≤s 𝑧) ∧ (𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷)) → 𝐶 <<s {(𝐴 |s 𝐵)})
2 simp3r 1200 . . 3 ((𝐴 <<s 𝐵 ∧ (∀𝑥𝐴𝑦𝐶 𝑥 ≤s 𝑦 ∧ ∀𝑧𝐵𝑤𝐷 𝑤 ≤s 𝑧) ∧ (𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷)) → {(𝐴 |s 𝐵)} <<s 𝐷)
3 simp1 1134 . . . . . 6 ((𝐴 <<s 𝐵 ∧ (∀𝑥𝐴𝑦𝐶 𝑥 ≤s 𝑦 ∧ ∀𝑧𝐵𝑤𝐷 𝑤 ≤s 𝑧) ∧ (𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷)) → 𝐴 <<s 𝐵)
4 scutbday 33925 . . . . . 6 (𝐴 <<s 𝐵 → ( bday ‘(𝐴 |s 𝐵)) = ( bday “ {𝑡 No ∣ (𝐴 <<s {𝑡} ∧ {𝑡} <<s 𝐵)}))
53, 4syl 17 . . . . 5 ((𝐴 <<s 𝐵 ∧ (∀𝑥𝐴𝑦𝐶 𝑥 ≤s 𝑦 ∧ ∀𝑧𝐵𝑤𝐷 𝑤 ≤s 𝑧) ∧ (𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷)) → ( bday ‘(𝐴 |s 𝐵)) = ( bday “ {𝑡 No ∣ (𝐴 <<s {𝑡} ∧ {𝑡} <<s 𝐵)}))
6 ssltex1 33908 . . . . . . . . . . . . 13 (𝐴 <<s 𝐵𝐴 ∈ V)
73, 6syl 17 . . . . . . . . . . . 12 ((𝐴 <<s 𝐵 ∧ (∀𝑥𝐴𝑦𝐶 𝑥 ≤s 𝑦 ∧ ∀𝑧𝐵𝑤𝐷 𝑤 ≤s 𝑧) ∧ (𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷)) → 𝐴 ∈ V)
87ad2antrr 722 . . . . . . . . . . 11 ((((𝐴 <<s 𝐵 ∧ (∀𝑥𝐴𝑦𝐶 𝑥 ≤s 𝑦 ∧ ∀𝑧𝐵𝑤𝐷 𝑤 ≤s 𝑧) ∧ (𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷)) ∧ 𝑡 No ) ∧ 𝐶 <<s {𝑡}) → 𝐴 ∈ V)
9 ssltss1 33910 . . . . . . . . . . . . 13 (𝐴 <<s 𝐵𝐴 No )
103, 9syl 17 . . . . . . . . . . . 12 ((𝐴 <<s 𝐵 ∧ (∀𝑥𝐴𝑦𝐶 𝑥 ≤s 𝑦 ∧ ∀𝑧𝐵𝑤𝐷 𝑤 ≤s 𝑧) ∧ (𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷)) → 𝐴 No )
1110ad2antrr 722 . . . . . . . . . . 11 ((((𝐴 <<s 𝐵 ∧ (∀𝑥𝐴𝑦𝐶 𝑥 ≤s 𝑦 ∧ ∀𝑧𝐵𝑤𝐷 𝑤 ≤s 𝑧) ∧ (𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷)) ∧ 𝑡 No ) ∧ 𝐶 <<s {𝑡}) → 𝐴 No )
128, 11elpwd 4538 . . . . . . . . . 10 ((((𝐴 <<s 𝐵 ∧ (∀𝑥𝐴𝑦𝐶 𝑥 ≤s 𝑦 ∧ ∀𝑧𝐵𝑤𝐷 𝑤 ≤s 𝑧) ∧ (𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷)) ∧ 𝑡 No ) ∧ 𝐶 <<s {𝑡}) → 𝐴 ∈ 𝒫 No )
13 simpl2l 1224 . . . . . . . . . . 11 (((𝐴 <<s 𝐵 ∧ (∀𝑥𝐴𝑦𝐶 𝑥 ≤s 𝑦 ∧ ∀𝑧𝐵𝑤𝐷 𝑤 ≤s 𝑧) ∧ (𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷)) ∧ 𝑡 No ) → ∀𝑥𝐴𝑦𝐶 𝑥 ≤s 𝑦)
1413adantr 480 . . . . . . . . . 10 ((((𝐴 <<s 𝐵 ∧ (∀𝑥𝐴𝑦𝐶 𝑥 ≤s 𝑦 ∧ ∀𝑧𝐵𝑤𝐷 𝑤 ≤s 𝑧) ∧ (𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷)) ∧ 𝑡 No ) ∧ 𝐶 <<s {𝑡}) → ∀𝑥𝐴𝑦𝐶 𝑥 ≤s 𝑦)
15 simpr 484 . . . . . . . . . 10 ((((𝐴 <<s 𝐵 ∧ (∀𝑥𝐴𝑦𝐶 𝑥 ≤s 𝑦 ∧ ∀𝑧𝐵𝑤𝐷 𝑤 ≤s 𝑧) ∧ (𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷)) ∧ 𝑡 No ) ∧ 𝐶 <<s {𝑡}) → 𝐶 <<s {𝑡})
16 cofsslt 34015 . . . . . . . . . 10 ((𝐴 ∈ 𝒫 No ∧ ∀𝑥𝐴𝑦𝐶 𝑥 ≤s 𝑦𝐶 <<s {𝑡}) → 𝐴 <<s {𝑡})
1712, 14, 15, 16syl3anc 1369 . . . . . . . . 9 ((((𝐴 <<s 𝐵 ∧ (∀𝑥𝐴𝑦𝐶 𝑥 ≤s 𝑦 ∧ ∀𝑧𝐵𝑤𝐷 𝑤 ≤s 𝑧) ∧ (𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷)) ∧ 𝑡 No ) ∧ 𝐶 <<s {𝑡}) → 𝐴 <<s {𝑡})
1817ex 412 . . . . . . . 8 (((𝐴 <<s 𝐵 ∧ (∀𝑥𝐴𝑦𝐶 𝑥 ≤s 𝑦 ∧ ∀𝑧𝐵𝑤𝐷 𝑤 ≤s 𝑧) ∧ (𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷)) ∧ 𝑡 No ) → (𝐶 <<s {𝑡} → 𝐴 <<s {𝑡}))
19 ssltex2 33909 . . . . . . . . . . . . 13 (𝐴 <<s 𝐵𝐵 ∈ V)
203, 19syl 17 . . . . . . . . . . . 12 ((𝐴 <<s 𝐵 ∧ (∀𝑥𝐴𝑦𝐶 𝑥 ≤s 𝑦 ∧ ∀𝑧𝐵𝑤𝐷 𝑤 ≤s 𝑧) ∧ (𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷)) → 𝐵 ∈ V)
2120ad2antrr 722 . . . . . . . . . . 11 ((((𝐴 <<s 𝐵 ∧ (∀𝑥𝐴𝑦𝐶 𝑥 ≤s 𝑦 ∧ ∀𝑧𝐵𝑤𝐷 𝑤 ≤s 𝑧) ∧ (𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷)) ∧ 𝑡 No ) ∧ {𝑡} <<s 𝐷) → 𝐵 ∈ V)
22 ssltss2 33911 . . . . . . . . . . . . 13 (𝐴 <<s 𝐵𝐵 No )
233, 22syl 17 . . . . . . . . . . . 12 ((𝐴 <<s 𝐵 ∧ (∀𝑥𝐴𝑦𝐶 𝑥 ≤s 𝑦 ∧ ∀𝑧𝐵𝑤𝐷 𝑤 ≤s 𝑧) ∧ (𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷)) → 𝐵 No )
2423ad2antrr 722 . . . . . . . . . . 11 ((((𝐴 <<s 𝐵 ∧ (∀𝑥𝐴𝑦𝐶 𝑥 ≤s 𝑦 ∧ ∀𝑧𝐵𝑤𝐷 𝑤 ≤s 𝑧) ∧ (𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷)) ∧ 𝑡 No ) ∧ {𝑡} <<s 𝐷) → 𝐵 No )
2521, 24elpwd 4538 . . . . . . . . . 10 ((((𝐴 <<s 𝐵 ∧ (∀𝑥𝐴𝑦𝐶 𝑥 ≤s 𝑦 ∧ ∀𝑧𝐵𝑤𝐷 𝑤 ≤s 𝑧) ∧ (𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷)) ∧ 𝑡 No ) ∧ {𝑡} <<s 𝐷) → 𝐵 ∈ 𝒫 No )
26 simpl2r 1225 . . . . . . . . . . 11 (((𝐴 <<s 𝐵 ∧ (∀𝑥𝐴𝑦𝐶 𝑥 ≤s 𝑦 ∧ ∀𝑧𝐵𝑤𝐷 𝑤 ≤s 𝑧) ∧ (𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷)) ∧ 𝑡 No ) → ∀𝑧𝐵𝑤𝐷 𝑤 ≤s 𝑧)
2726adantr 480 . . . . . . . . . 10 ((((𝐴 <<s 𝐵 ∧ (∀𝑥𝐴𝑦𝐶 𝑥 ≤s 𝑦 ∧ ∀𝑧𝐵𝑤𝐷 𝑤 ≤s 𝑧) ∧ (𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷)) ∧ 𝑡 No ) ∧ {𝑡} <<s 𝐷) → ∀𝑧𝐵𝑤𝐷 𝑤 ≤s 𝑧)
28 simpr 484 . . . . . . . . . 10 ((((𝐴 <<s 𝐵 ∧ (∀𝑥𝐴𝑦𝐶 𝑥 ≤s 𝑦 ∧ ∀𝑧𝐵𝑤𝐷 𝑤 ≤s 𝑧) ∧ (𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷)) ∧ 𝑡 No ) ∧ {𝑡} <<s 𝐷) → {𝑡} <<s 𝐷)
29 coinitsslt 34016 . . . . . . . . . 10 ((𝐵 ∈ 𝒫 No ∧ ∀𝑧𝐵𝑤𝐷 𝑤 ≤s 𝑧 ∧ {𝑡} <<s 𝐷) → {𝑡} <<s 𝐵)
3025, 27, 28, 29syl3anc 1369 . . . . . . . . 9 ((((𝐴 <<s 𝐵 ∧ (∀𝑥𝐴𝑦𝐶 𝑥 ≤s 𝑦 ∧ ∀𝑧𝐵𝑤𝐷 𝑤 ≤s 𝑧) ∧ (𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷)) ∧ 𝑡 No ) ∧ {𝑡} <<s 𝐷) → {𝑡} <<s 𝐵)
3130ex 412 . . . . . . . 8 (((𝐴 <<s 𝐵 ∧ (∀𝑥𝐴𝑦𝐶 𝑥 ≤s 𝑦 ∧ ∀𝑧𝐵𝑤𝐷 𝑤 ≤s 𝑧) ∧ (𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷)) ∧ 𝑡 No ) → ({𝑡} <<s 𝐷 → {𝑡} <<s 𝐵))
3218, 31anim12d 608 . . . . . . 7 (((𝐴 <<s 𝐵 ∧ (∀𝑥𝐴𝑦𝐶 𝑥 ≤s 𝑦 ∧ ∀𝑧𝐵𝑤𝐷 𝑤 ≤s 𝑧) ∧ (𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷)) ∧ 𝑡 No ) → ((𝐶 <<s {𝑡} ∧ {𝑡} <<s 𝐷) → (𝐴 <<s {𝑡} ∧ {𝑡} <<s 𝐵)))
3332ss2rabdv 4005 . . . . . 6 ((𝐴 <<s 𝐵 ∧ (∀𝑥𝐴𝑦𝐶 𝑥 ≤s 𝑦 ∧ ∀𝑧𝐵𝑤𝐷 𝑤 ≤s 𝑧) ∧ (𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷)) → {𝑡 No ∣ (𝐶 <<s {𝑡} ∧ {𝑡} <<s 𝐷)} ⊆ {𝑡 No ∣ (𝐴 <<s {𝑡} ∧ {𝑡} <<s 𝐵)})
34 imass2 5999 . . . . . 6 ({𝑡 No ∣ (𝐶 <<s {𝑡} ∧ {𝑡} <<s 𝐷)} ⊆ {𝑡 No ∣ (𝐴 <<s {𝑡} ∧ {𝑡} <<s 𝐵)} → ( bday “ {𝑡 No ∣ (𝐶 <<s {𝑡} ∧ {𝑡} <<s 𝐷)}) ⊆ ( bday “ {𝑡 No ∣ (𝐴 <<s {𝑡} ∧ {𝑡} <<s 𝐵)}))
35 intss 4897 . . . . . 6 (( bday “ {𝑡 No ∣ (𝐶 <<s {𝑡} ∧ {𝑡} <<s 𝐷)}) ⊆ ( bday “ {𝑡 No ∣ (𝐴 <<s {𝑡} ∧ {𝑡} <<s 𝐵)}) → ( bday “ {𝑡 No ∣ (𝐴 <<s {𝑡} ∧ {𝑡} <<s 𝐵)}) ⊆ ( bday “ {𝑡 No ∣ (𝐶 <<s {𝑡} ∧ {𝑡} <<s 𝐷)}))
3633, 34, 353syl 18 . . . . 5 ((𝐴 <<s 𝐵 ∧ (∀𝑥𝐴𝑦𝐶 𝑥 ≤s 𝑦 ∧ ∀𝑧𝐵𝑤𝐷 𝑤 ≤s 𝑧) ∧ (𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷)) → ( bday “ {𝑡 No ∣ (𝐴 <<s {𝑡} ∧ {𝑡} <<s 𝐵)}) ⊆ ( bday “ {𝑡 No ∣ (𝐶 <<s {𝑡} ∧ {𝑡} <<s 𝐷)}))
375, 36eqsstrd 3955 . . . 4 ((𝐴 <<s 𝐵 ∧ (∀𝑥𝐴𝑦𝐶 𝑥 ≤s 𝑦 ∧ ∀𝑧𝐵𝑤𝐷 𝑤 ≤s 𝑧) ∧ (𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷)) → ( bday ‘(𝐴 |s 𝐵)) ⊆ ( bday “ {𝑡 No ∣ (𝐶 <<s {𝑡} ∧ {𝑡} <<s 𝐷)}))
38 bdayfn 33895 . . . . . 6 bday Fn No
39 ssrab2 4009 . . . . . 6 {𝑡 No ∣ (𝐶 <<s {𝑡} ∧ {𝑡} <<s 𝐷)} ⊆ No
40 sneq 4568 . . . . . . . . 9 (𝑡 = (𝐴 |s 𝐵) → {𝑡} = {(𝐴 |s 𝐵)})
4140breq2d 5082 . . . . . . . 8 (𝑡 = (𝐴 |s 𝐵) → (𝐶 <<s {𝑡} ↔ 𝐶 <<s {(𝐴 |s 𝐵)}))
4240breq1d 5080 . . . . . . . 8 (𝑡 = (𝐴 |s 𝐵) → ({𝑡} <<s 𝐷 ↔ {(𝐴 |s 𝐵)} <<s 𝐷))
4341, 42anbi12d 630 . . . . . . 7 (𝑡 = (𝐴 |s 𝐵) → ((𝐶 <<s {𝑡} ∧ {𝑡} <<s 𝐷) ↔ (𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷)))
443scutcld 33924 . . . . . . 7 ((𝐴 <<s 𝐵 ∧ (∀𝑥𝐴𝑦𝐶 𝑥 ≤s 𝑦 ∧ ∀𝑧𝐵𝑤𝐷 𝑤 ≤s 𝑧) ∧ (𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷)) → (𝐴 |s 𝐵) ∈ No )
45 simp3 1136 . . . . . . 7 ((𝐴 <<s 𝐵 ∧ (∀𝑥𝐴𝑦𝐶 𝑥 ≤s 𝑦 ∧ ∀𝑧𝐵𝑤𝐷 𝑤 ≤s 𝑧) ∧ (𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷)) → (𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷))
4643, 44, 45elrabd 3619 . . . . . 6 ((𝐴 <<s 𝐵 ∧ (∀𝑥𝐴𝑦𝐶 𝑥 ≤s 𝑦 ∧ ∀𝑧𝐵𝑤𝐷 𝑤 ≤s 𝑧) ∧ (𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷)) → (𝐴 |s 𝐵) ∈ {𝑡 No ∣ (𝐶 <<s {𝑡} ∧ {𝑡} <<s 𝐷)})
47 fnfvima 7091 . . . . . 6 (( bday Fn No ∧ {𝑡 No ∣ (𝐶 <<s {𝑡} ∧ {𝑡} <<s 𝐷)} ⊆ No ∧ (𝐴 |s 𝐵) ∈ {𝑡 No ∣ (𝐶 <<s {𝑡} ∧ {𝑡} <<s 𝐷)}) → ( bday ‘(𝐴 |s 𝐵)) ∈ ( bday “ {𝑡 No ∣ (𝐶 <<s {𝑡} ∧ {𝑡} <<s 𝐷)}))
4838, 39, 46, 47mp3an12i 1463 . . . . 5 ((𝐴 <<s 𝐵 ∧ (∀𝑥𝐴𝑦𝐶 𝑥 ≤s 𝑦 ∧ ∀𝑧𝐵𝑤𝐷 𝑤 ≤s 𝑧) ∧ (𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷)) → ( bday ‘(𝐴 |s 𝐵)) ∈ ( bday “ {𝑡 No ∣ (𝐶 <<s {𝑡} ∧ {𝑡} <<s 𝐷)}))
49 intss1 4891 . . . . 5 (( bday ‘(𝐴 |s 𝐵)) ∈ ( bday “ {𝑡 No ∣ (𝐶 <<s {𝑡} ∧ {𝑡} <<s 𝐷)}) → ( bday “ {𝑡 No ∣ (𝐶 <<s {𝑡} ∧ {𝑡} <<s 𝐷)}) ⊆ ( bday ‘(𝐴 |s 𝐵)))
5048, 49syl 17 . . . 4 ((𝐴 <<s 𝐵 ∧ (∀𝑥𝐴𝑦𝐶 𝑥 ≤s 𝑦 ∧ ∀𝑧𝐵𝑤𝐷 𝑤 ≤s 𝑧) ∧ (𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷)) → ( bday “ {𝑡 No ∣ (𝐶 <<s {𝑡} ∧ {𝑡} <<s 𝐷)}) ⊆ ( bday ‘(𝐴 |s 𝐵)))
5137, 50eqssd 3934 . . 3 ((𝐴 <<s 𝐵 ∧ (∀𝑥𝐴𝑦𝐶 𝑥 ≤s 𝑦 ∧ ∀𝑧𝐵𝑤𝐷 𝑤 ≤s 𝑧) ∧ (𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷)) → ( bday ‘(𝐴 |s 𝐵)) = ( bday “ {𝑡 No ∣ (𝐶 <<s {𝑡} ∧ {𝑡} <<s 𝐷)}))
52 ovex 7288 . . . . . . 7 (𝐴 |s 𝐵) ∈ V
5352snnz 4709 . . . . . 6 {(𝐴 |s 𝐵)} ≠ ∅
54 sslttr 33928 . . . . . 6 ((𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷 ∧ {(𝐴 |s 𝐵)} ≠ ∅) → 𝐶 <<s 𝐷)
5553, 54mp3an3 1448 . . . . 5 ((𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷) → 𝐶 <<s 𝐷)
56553ad2ant3 1133 . . . 4 ((𝐴 <<s 𝐵 ∧ (∀𝑥𝐴𝑦𝐶 𝑥 ≤s 𝑦 ∧ ∀𝑧𝐵𝑤𝐷 𝑤 ≤s 𝑧) ∧ (𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷)) → 𝐶 <<s 𝐷)
57 eqscut 33926 . . . 4 ((𝐶 <<s 𝐷 ∧ (𝐴 |s 𝐵) ∈ No ) → ((𝐶 |s 𝐷) = (𝐴 |s 𝐵) ↔ (𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷 ∧ ( bday ‘(𝐴 |s 𝐵)) = ( bday “ {𝑡 No ∣ (𝐶 <<s {𝑡} ∧ {𝑡} <<s 𝐷)}))))
5856, 44, 57syl2anc 583 . . 3 ((𝐴 <<s 𝐵 ∧ (∀𝑥𝐴𝑦𝐶 𝑥 ≤s 𝑦 ∧ ∀𝑧𝐵𝑤𝐷 𝑤 ≤s 𝑧) ∧ (𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷)) → ((𝐶 |s 𝐷) = (𝐴 |s 𝐵) ↔ (𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷 ∧ ( bday ‘(𝐴 |s 𝐵)) = ( bday “ {𝑡 No ∣ (𝐶 <<s {𝑡} ∧ {𝑡} <<s 𝐷)}))))
591, 2, 51, 58mpbir3and 1340 . 2 ((𝐴 <<s 𝐵 ∧ (∀𝑥𝐴𝑦𝐶 𝑥 ≤s 𝑦 ∧ ∀𝑧𝐵𝑤𝐷 𝑤 ≤s 𝑧) ∧ (𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷)) → (𝐶 |s 𝐷) = (𝐴 |s 𝐵))
6059eqcomd 2744 1 ((𝐴 <<s 𝐵 ∧ (∀𝑥𝐴𝑦𝐶 𝑥 ≤s 𝑦 ∧ ∀𝑧𝐵𝑤𝐷 𝑤 ≤s 𝑧) ∧ (𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷)) → (𝐴 |s 𝐵) = (𝐶 |s 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wne 2942  wral 3063  wrex 3064  {crab 3067  Vcvv 3422  wss 3883  c0 4253  𝒫 cpw 4530  {csn 4558   cint 4876   class class class wbr 5070  cima 5583   Fn wfn 6413  cfv 6418  (class class class)co 7255   No csur 33770   bday cbday 33772   ≤s csle 33874   <<s csslt 33902   |s cscut 33904
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-ord 6254  df-on 6255  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-1o 8267  df-2o 8268  df-no 33773  df-slt 33774  df-bday 33775  df-sle 33875  df-sslt 33903  df-scut 33905
This theorem is referenced by:  cofcut2  34018
  Copyright terms: Public domain W3C validator