MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cofcut1 Structured version   Visualization version   GIF version

Theorem cofcut1 27864
Description: If 𝐶 is cofinal with 𝐴 and 𝐷 is coinitial with 𝐵 and the cut of 𝐴 and 𝐵 lies between 𝐶 and 𝐷, then the cut of 𝐶 and 𝐷 is equal to the cut of 𝐴 and 𝐵. Theorem 2.6 of [Gonshor] p. 10. (Contributed by Scott Fenton, 25-Sep-2024.)
Assertion
Ref Expression
cofcut1 ((𝐴 <<s 𝐵 ∧ (∀𝑥𝐴𝑦𝐶 𝑥 ≤s 𝑦 ∧ ∀𝑧𝐵𝑤𝐷 𝑤 ≤s 𝑧) ∧ (𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷)) → (𝐴 |s 𝐵) = (𝐶 |s 𝐷))
Distinct variable groups:   𝑥,𝐴   𝑧,𝐵   𝑥,𝐶,𝑦   𝑤,𝐷,𝑧
Allowed substitution hints:   𝐴(𝑦,𝑧,𝑤)   𝐵(𝑥,𝑦,𝑤)   𝐶(𝑧,𝑤)   𝐷(𝑥,𝑦)

Proof of Theorem cofcut1
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 simp3l 1202 . . 3 ((𝐴 <<s 𝐵 ∧ (∀𝑥𝐴𝑦𝐶 𝑥 ≤s 𝑦 ∧ ∀𝑧𝐵𝑤𝐷 𝑤 ≤s 𝑧) ∧ (𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷)) → 𝐶 <<s {(𝐴 |s 𝐵)})
2 simp3r 1203 . . 3 ((𝐴 <<s 𝐵 ∧ (∀𝑥𝐴𝑦𝐶 𝑥 ≤s 𝑦 ∧ ∀𝑧𝐵𝑤𝐷 𝑤 ≤s 𝑧) ∧ (𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷)) → {(𝐴 |s 𝐵)} <<s 𝐷)
3 simp1 1136 . . . . . 6 ((𝐴 <<s 𝐵 ∧ (∀𝑥𝐴𝑦𝐶 𝑥 ≤s 𝑦 ∧ ∀𝑧𝐵𝑤𝐷 𝑤 ≤s 𝑧) ∧ (𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷)) → 𝐴 <<s 𝐵)
4 scutbday 27745 . . . . . 6 (𝐴 <<s 𝐵 → ( bday ‘(𝐴 |s 𝐵)) = ( bday “ {𝑡 No ∣ (𝐴 <<s {𝑡} ∧ {𝑡} <<s 𝐵)}))
53, 4syl 17 . . . . 5 ((𝐴 <<s 𝐵 ∧ (∀𝑥𝐴𝑦𝐶 𝑥 ≤s 𝑦 ∧ ∀𝑧𝐵𝑤𝐷 𝑤 ≤s 𝑧) ∧ (𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷)) → ( bday ‘(𝐴 |s 𝐵)) = ( bday “ {𝑡 No ∣ (𝐴 <<s {𝑡} ∧ {𝑡} <<s 𝐵)}))
6 ssltex1 27726 . . . . . . . . . . . . 13 (𝐴 <<s 𝐵𝐴 ∈ V)
73, 6syl 17 . . . . . . . . . . . 12 ((𝐴 <<s 𝐵 ∧ (∀𝑥𝐴𝑦𝐶 𝑥 ≤s 𝑦 ∧ ∀𝑧𝐵𝑤𝐷 𝑤 ≤s 𝑧) ∧ (𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷)) → 𝐴 ∈ V)
87ad2antrr 726 . . . . . . . . . . 11 ((((𝐴 <<s 𝐵 ∧ (∀𝑥𝐴𝑦𝐶 𝑥 ≤s 𝑦 ∧ ∀𝑧𝐵𝑤𝐷 𝑤 ≤s 𝑧) ∧ (𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷)) ∧ 𝑡 No ) ∧ 𝐶 <<s {𝑡}) → 𝐴 ∈ V)
9 ssltss1 27728 . . . . . . . . . . . . 13 (𝐴 <<s 𝐵𝐴 No )
103, 9syl 17 . . . . . . . . . . . 12 ((𝐴 <<s 𝐵 ∧ (∀𝑥𝐴𝑦𝐶 𝑥 ≤s 𝑦 ∧ ∀𝑧𝐵𝑤𝐷 𝑤 ≤s 𝑧) ∧ (𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷)) → 𝐴 No )
1110ad2antrr 726 . . . . . . . . . . 11 ((((𝐴 <<s 𝐵 ∧ (∀𝑥𝐴𝑦𝐶 𝑥 ≤s 𝑦 ∧ ∀𝑧𝐵𝑤𝐷 𝑤 ≤s 𝑧) ∧ (𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷)) ∧ 𝑡 No ) ∧ 𝐶 <<s {𝑡}) → 𝐴 No )
128, 11elpwd 4553 . . . . . . . . . 10 ((((𝐴 <<s 𝐵 ∧ (∀𝑥𝐴𝑦𝐶 𝑥 ≤s 𝑦 ∧ ∀𝑧𝐵𝑤𝐷 𝑤 ≤s 𝑧) ∧ (𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷)) ∧ 𝑡 No ) ∧ 𝐶 <<s {𝑡}) → 𝐴 ∈ 𝒫 No )
13 simpl2l 1227 . . . . . . . . . . 11 (((𝐴 <<s 𝐵 ∧ (∀𝑥𝐴𝑦𝐶 𝑥 ≤s 𝑦 ∧ ∀𝑧𝐵𝑤𝐷 𝑤 ≤s 𝑧) ∧ (𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷)) ∧ 𝑡 No ) → ∀𝑥𝐴𝑦𝐶 𝑥 ≤s 𝑦)
1413adantr 480 . . . . . . . . . 10 ((((𝐴 <<s 𝐵 ∧ (∀𝑥𝐴𝑦𝐶 𝑥 ≤s 𝑦 ∧ ∀𝑧𝐵𝑤𝐷 𝑤 ≤s 𝑧) ∧ (𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷)) ∧ 𝑡 No ) ∧ 𝐶 <<s {𝑡}) → ∀𝑥𝐴𝑦𝐶 𝑥 ≤s 𝑦)
15 simpr 484 . . . . . . . . . 10 ((((𝐴 <<s 𝐵 ∧ (∀𝑥𝐴𝑦𝐶 𝑥 ≤s 𝑦 ∧ ∀𝑧𝐵𝑤𝐷 𝑤 ≤s 𝑧) ∧ (𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷)) ∧ 𝑡 No ) ∧ 𝐶 <<s {𝑡}) → 𝐶 <<s {𝑡})
16 cofsslt 27862 . . . . . . . . . 10 ((𝐴 ∈ 𝒫 No ∧ ∀𝑥𝐴𝑦𝐶 𝑥 ≤s 𝑦𝐶 <<s {𝑡}) → 𝐴 <<s {𝑡})
1712, 14, 15, 16syl3anc 1373 . . . . . . . . 9 ((((𝐴 <<s 𝐵 ∧ (∀𝑥𝐴𝑦𝐶 𝑥 ≤s 𝑦 ∧ ∀𝑧𝐵𝑤𝐷 𝑤 ≤s 𝑧) ∧ (𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷)) ∧ 𝑡 No ) ∧ 𝐶 <<s {𝑡}) → 𝐴 <<s {𝑡})
1817ex 412 . . . . . . . 8 (((𝐴 <<s 𝐵 ∧ (∀𝑥𝐴𝑦𝐶 𝑥 ≤s 𝑦 ∧ ∀𝑧𝐵𝑤𝐷 𝑤 ≤s 𝑧) ∧ (𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷)) ∧ 𝑡 No ) → (𝐶 <<s {𝑡} → 𝐴 <<s {𝑡}))
19 ssltex2 27727 . . . . . . . . . . . . 13 (𝐴 <<s 𝐵𝐵 ∈ V)
203, 19syl 17 . . . . . . . . . . . 12 ((𝐴 <<s 𝐵 ∧ (∀𝑥𝐴𝑦𝐶 𝑥 ≤s 𝑦 ∧ ∀𝑧𝐵𝑤𝐷 𝑤 ≤s 𝑧) ∧ (𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷)) → 𝐵 ∈ V)
2120ad2antrr 726 . . . . . . . . . . 11 ((((𝐴 <<s 𝐵 ∧ (∀𝑥𝐴𝑦𝐶 𝑥 ≤s 𝑦 ∧ ∀𝑧𝐵𝑤𝐷 𝑤 ≤s 𝑧) ∧ (𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷)) ∧ 𝑡 No ) ∧ {𝑡} <<s 𝐷) → 𝐵 ∈ V)
22 ssltss2 27729 . . . . . . . . . . . . 13 (𝐴 <<s 𝐵𝐵 No )
233, 22syl 17 . . . . . . . . . . . 12 ((𝐴 <<s 𝐵 ∧ (∀𝑥𝐴𝑦𝐶 𝑥 ≤s 𝑦 ∧ ∀𝑧𝐵𝑤𝐷 𝑤 ≤s 𝑧) ∧ (𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷)) → 𝐵 No )
2423ad2antrr 726 . . . . . . . . . . 11 ((((𝐴 <<s 𝐵 ∧ (∀𝑥𝐴𝑦𝐶 𝑥 ≤s 𝑦 ∧ ∀𝑧𝐵𝑤𝐷 𝑤 ≤s 𝑧) ∧ (𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷)) ∧ 𝑡 No ) ∧ {𝑡} <<s 𝐷) → 𝐵 No )
2521, 24elpwd 4553 . . . . . . . . . 10 ((((𝐴 <<s 𝐵 ∧ (∀𝑥𝐴𝑦𝐶 𝑥 ≤s 𝑦 ∧ ∀𝑧𝐵𝑤𝐷 𝑤 ≤s 𝑧) ∧ (𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷)) ∧ 𝑡 No ) ∧ {𝑡} <<s 𝐷) → 𝐵 ∈ 𝒫 No )
26 simpl2r 1228 . . . . . . . . . . 11 (((𝐴 <<s 𝐵 ∧ (∀𝑥𝐴𝑦𝐶 𝑥 ≤s 𝑦 ∧ ∀𝑧𝐵𝑤𝐷 𝑤 ≤s 𝑧) ∧ (𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷)) ∧ 𝑡 No ) → ∀𝑧𝐵𝑤𝐷 𝑤 ≤s 𝑧)
2726adantr 480 . . . . . . . . . 10 ((((𝐴 <<s 𝐵 ∧ (∀𝑥𝐴𝑦𝐶 𝑥 ≤s 𝑦 ∧ ∀𝑧𝐵𝑤𝐷 𝑤 ≤s 𝑧) ∧ (𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷)) ∧ 𝑡 No ) ∧ {𝑡} <<s 𝐷) → ∀𝑧𝐵𝑤𝐷 𝑤 ≤s 𝑧)
28 simpr 484 . . . . . . . . . 10 ((((𝐴 <<s 𝐵 ∧ (∀𝑥𝐴𝑦𝐶 𝑥 ≤s 𝑦 ∧ ∀𝑧𝐵𝑤𝐷 𝑤 ≤s 𝑧) ∧ (𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷)) ∧ 𝑡 No ) ∧ {𝑡} <<s 𝐷) → {𝑡} <<s 𝐷)
29 coinitsslt 27863 . . . . . . . . . 10 ((𝐵 ∈ 𝒫 No ∧ ∀𝑧𝐵𝑤𝐷 𝑤 ≤s 𝑧 ∧ {𝑡} <<s 𝐷) → {𝑡} <<s 𝐵)
3025, 27, 28, 29syl3anc 1373 . . . . . . . . 9 ((((𝐴 <<s 𝐵 ∧ (∀𝑥𝐴𝑦𝐶 𝑥 ≤s 𝑦 ∧ ∀𝑧𝐵𝑤𝐷 𝑤 ≤s 𝑧) ∧ (𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷)) ∧ 𝑡 No ) ∧ {𝑡} <<s 𝐷) → {𝑡} <<s 𝐵)
3130ex 412 . . . . . . . 8 (((𝐴 <<s 𝐵 ∧ (∀𝑥𝐴𝑦𝐶 𝑥 ≤s 𝑦 ∧ ∀𝑧𝐵𝑤𝐷 𝑤 ≤s 𝑧) ∧ (𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷)) ∧ 𝑡 No ) → ({𝑡} <<s 𝐷 → {𝑡} <<s 𝐵))
3218, 31anim12d 609 . . . . . . 7 (((𝐴 <<s 𝐵 ∧ (∀𝑥𝐴𝑦𝐶 𝑥 ≤s 𝑦 ∧ ∀𝑧𝐵𝑤𝐷 𝑤 ≤s 𝑧) ∧ (𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷)) ∧ 𝑡 No ) → ((𝐶 <<s {𝑡} ∧ {𝑡} <<s 𝐷) → (𝐴 <<s {𝑡} ∧ {𝑡} <<s 𝐵)))
3332ss2rabdv 4021 . . . . . 6 ((𝐴 <<s 𝐵 ∧ (∀𝑥𝐴𝑦𝐶 𝑥 ≤s 𝑦 ∧ ∀𝑧𝐵𝑤𝐷 𝑤 ≤s 𝑧) ∧ (𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷)) → {𝑡 No ∣ (𝐶 <<s {𝑡} ∧ {𝑡} <<s 𝐷)} ⊆ {𝑡 No ∣ (𝐴 <<s {𝑡} ∧ {𝑡} <<s 𝐵)})
34 imass2 6050 . . . . . 6 ({𝑡 No ∣ (𝐶 <<s {𝑡} ∧ {𝑡} <<s 𝐷)} ⊆ {𝑡 No ∣ (𝐴 <<s {𝑡} ∧ {𝑡} <<s 𝐵)} → ( bday “ {𝑡 No ∣ (𝐶 <<s {𝑡} ∧ {𝑡} <<s 𝐷)}) ⊆ ( bday “ {𝑡 No ∣ (𝐴 <<s {𝑡} ∧ {𝑡} <<s 𝐵)}))
35 intss 4917 . . . . . 6 (( bday “ {𝑡 No ∣ (𝐶 <<s {𝑡} ∧ {𝑡} <<s 𝐷)}) ⊆ ( bday “ {𝑡 No ∣ (𝐴 <<s {𝑡} ∧ {𝑡} <<s 𝐵)}) → ( bday “ {𝑡 No ∣ (𝐴 <<s {𝑡} ∧ {𝑡} <<s 𝐵)}) ⊆ ( bday “ {𝑡 No ∣ (𝐶 <<s {𝑡} ∧ {𝑡} <<s 𝐷)}))
3633, 34, 353syl 18 . . . . 5 ((𝐴 <<s 𝐵 ∧ (∀𝑥𝐴𝑦𝐶 𝑥 ≤s 𝑦 ∧ ∀𝑧𝐵𝑤𝐷 𝑤 ≤s 𝑧) ∧ (𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷)) → ( bday “ {𝑡 No ∣ (𝐴 <<s {𝑡} ∧ {𝑡} <<s 𝐵)}) ⊆ ( bday “ {𝑡 No ∣ (𝐶 <<s {𝑡} ∧ {𝑡} <<s 𝐷)}))
375, 36eqsstrd 3964 . . . 4 ((𝐴 <<s 𝐵 ∧ (∀𝑥𝐴𝑦𝐶 𝑥 ≤s 𝑦 ∧ ∀𝑧𝐵𝑤𝐷 𝑤 ≤s 𝑧) ∧ (𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷)) → ( bday ‘(𝐴 |s 𝐵)) ⊆ ( bday “ {𝑡 No ∣ (𝐶 <<s {𝑡} ∧ {𝑡} <<s 𝐷)}))
38 bdayfn 27712 . . . . . 6 bday Fn No
39 ssrab2 4027 . . . . . 6 {𝑡 No ∣ (𝐶 <<s {𝑡} ∧ {𝑡} <<s 𝐷)} ⊆ No
40 sneq 4583 . . . . . . . . 9 (𝑡 = (𝐴 |s 𝐵) → {𝑡} = {(𝐴 |s 𝐵)})
4140breq2d 5101 . . . . . . . 8 (𝑡 = (𝐴 |s 𝐵) → (𝐶 <<s {𝑡} ↔ 𝐶 <<s {(𝐴 |s 𝐵)}))
4240breq1d 5099 . . . . . . . 8 (𝑡 = (𝐴 |s 𝐵) → ({𝑡} <<s 𝐷 ↔ {(𝐴 |s 𝐵)} <<s 𝐷))
4341, 42anbi12d 632 . . . . . . 7 (𝑡 = (𝐴 |s 𝐵) → ((𝐶 <<s {𝑡} ∧ {𝑡} <<s 𝐷) ↔ (𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷)))
443scutcld 27744 . . . . . . 7 ((𝐴 <<s 𝐵 ∧ (∀𝑥𝐴𝑦𝐶 𝑥 ≤s 𝑦 ∧ ∀𝑧𝐵𝑤𝐷 𝑤 ≤s 𝑧) ∧ (𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷)) → (𝐴 |s 𝐵) ∈ No )
45 simp3 1138 . . . . . . 7 ((𝐴 <<s 𝐵 ∧ (∀𝑥𝐴𝑦𝐶 𝑥 ≤s 𝑦 ∧ ∀𝑧𝐵𝑤𝐷 𝑤 ≤s 𝑧) ∧ (𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷)) → (𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷))
4643, 44, 45elrabd 3644 . . . . . 6 ((𝐴 <<s 𝐵 ∧ (∀𝑥𝐴𝑦𝐶 𝑥 ≤s 𝑦 ∧ ∀𝑧𝐵𝑤𝐷 𝑤 ≤s 𝑧) ∧ (𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷)) → (𝐴 |s 𝐵) ∈ {𝑡 No ∣ (𝐶 <<s {𝑡} ∧ {𝑡} <<s 𝐷)})
47 fnfvima 7167 . . . . . 6 (( bday Fn No ∧ {𝑡 No ∣ (𝐶 <<s {𝑡} ∧ {𝑡} <<s 𝐷)} ⊆ No ∧ (𝐴 |s 𝐵) ∈ {𝑡 No ∣ (𝐶 <<s {𝑡} ∧ {𝑡} <<s 𝐷)}) → ( bday ‘(𝐴 |s 𝐵)) ∈ ( bday “ {𝑡 No ∣ (𝐶 <<s {𝑡} ∧ {𝑡} <<s 𝐷)}))
4838, 39, 46, 47mp3an12i 1467 . . . . 5 ((𝐴 <<s 𝐵 ∧ (∀𝑥𝐴𝑦𝐶 𝑥 ≤s 𝑦 ∧ ∀𝑧𝐵𝑤𝐷 𝑤 ≤s 𝑧) ∧ (𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷)) → ( bday ‘(𝐴 |s 𝐵)) ∈ ( bday “ {𝑡 No ∣ (𝐶 <<s {𝑡} ∧ {𝑡} <<s 𝐷)}))
49 intss1 4911 . . . . 5 (( bday ‘(𝐴 |s 𝐵)) ∈ ( bday “ {𝑡 No ∣ (𝐶 <<s {𝑡} ∧ {𝑡} <<s 𝐷)}) → ( bday “ {𝑡 No ∣ (𝐶 <<s {𝑡} ∧ {𝑡} <<s 𝐷)}) ⊆ ( bday ‘(𝐴 |s 𝐵)))
5048, 49syl 17 . . . 4 ((𝐴 <<s 𝐵 ∧ (∀𝑥𝐴𝑦𝐶 𝑥 ≤s 𝑦 ∧ ∀𝑧𝐵𝑤𝐷 𝑤 ≤s 𝑧) ∧ (𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷)) → ( bday “ {𝑡 No ∣ (𝐶 <<s {𝑡} ∧ {𝑡} <<s 𝐷)}) ⊆ ( bday ‘(𝐴 |s 𝐵)))
5137, 50eqssd 3947 . . 3 ((𝐴 <<s 𝐵 ∧ (∀𝑥𝐴𝑦𝐶 𝑥 ≤s 𝑦 ∧ ∀𝑧𝐵𝑤𝐷 𝑤 ≤s 𝑧) ∧ (𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷)) → ( bday ‘(𝐴 |s 𝐵)) = ( bday “ {𝑡 No ∣ (𝐶 <<s {𝑡} ∧ {𝑡} <<s 𝐷)}))
52 ovex 7379 . . . . . . 7 (𝐴 |s 𝐵) ∈ V
5352snnz 4726 . . . . . 6 {(𝐴 |s 𝐵)} ≠ ∅
54 sslttr 27748 . . . . . 6 ((𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷 ∧ {(𝐴 |s 𝐵)} ≠ ∅) → 𝐶 <<s 𝐷)
5553, 54mp3an3 1452 . . . . 5 ((𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷) → 𝐶 <<s 𝐷)
56553ad2ant3 1135 . . . 4 ((𝐴 <<s 𝐵 ∧ (∀𝑥𝐴𝑦𝐶 𝑥 ≤s 𝑦 ∧ ∀𝑧𝐵𝑤𝐷 𝑤 ≤s 𝑧) ∧ (𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷)) → 𝐶 <<s 𝐷)
57 eqscut 27746 . . . 4 ((𝐶 <<s 𝐷 ∧ (𝐴 |s 𝐵) ∈ No ) → ((𝐶 |s 𝐷) = (𝐴 |s 𝐵) ↔ (𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷 ∧ ( bday ‘(𝐴 |s 𝐵)) = ( bday “ {𝑡 No ∣ (𝐶 <<s {𝑡} ∧ {𝑡} <<s 𝐷)}))))
5856, 44, 57syl2anc 584 . . 3 ((𝐴 <<s 𝐵 ∧ (∀𝑥𝐴𝑦𝐶 𝑥 ≤s 𝑦 ∧ ∀𝑧𝐵𝑤𝐷 𝑤 ≤s 𝑧) ∧ (𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷)) → ((𝐶 |s 𝐷) = (𝐴 |s 𝐵) ↔ (𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷 ∧ ( bday ‘(𝐴 |s 𝐵)) = ( bday “ {𝑡 No ∣ (𝐶 <<s {𝑡} ∧ {𝑡} <<s 𝐷)}))))
591, 2, 51, 58mpbir3and 1343 . 2 ((𝐴 <<s 𝐵 ∧ (∀𝑥𝐴𝑦𝐶 𝑥 ≤s 𝑦 ∧ ∀𝑧𝐵𝑤𝐷 𝑤 ≤s 𝑧) ∧ (𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷)) → (𝐶 |s 𝐷) = (𝐴 |s 𝐵))
6059eqcomd 2737 1 ((𝐴 <<s 𝐵 ∧ (∀𝑥𝐴𝑦𝐶 𝑥 ≤s 𝑦 ∧ ∀𝑧𝐵𝑤𝐷 𝑤 ≤s 𝑧) ∧ (𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷)) → (𝐴 |s 𝐵) = (𝐶 |s 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wne 2928  wral 3047  wrex 3056  {crab 3395  Vcvv 3436  wss 3897  c0 4280  𝒫 cpw 4547  {csn 4573   cint 4895   class class class wbr 5089  cima 5617   Fn wfn 6476  cfv 6481  (class class class)co 7346   No csur 27578   bday cbday 27580   ≤s csle 27683   <<s csslt 27720   |s cscut 27722
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4857  df-int 4896  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-ord 6309  df-on 6310  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1o 8385  df-2o 8386  df-no 27581  df-slt 27582  df-bday 27583  df-sle 27684  df-sslt 27721  df-scut 27723
This theorem is referenced by:  cofcut1d  27865  cofcut2  27866
  Copyright terms: Public domain W3C validator