Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cofcut1 Structured version   Visualization version   GIF version

Theorem cofcut1 33776
Description: If 𝐶 is cofinal with 𝐴 and 𝐷 is coinitial with 𝐵 and the cut of 𝐴 and 𝐵 lies between 𝐶 and 𝐷. Then the cut of 𝐶 and 𝐷 is equal to the cut of 𝐴 and 𝐵. Theorem 2.6 of [Gonshor] p. 10. (Contributed by Scott Fenton, 25-Sep-2024.)
Assertion
Ref Expression
cofcut1 ((𝐴 <<s 𝐵 ∧ (∀𝑥𝐴𝑦𝐶 𝑥 ≤s 𝑦 ∧ ∀𝑧𝐵𝑤𝐷 𝑤 ≤s 𝑧) ∧ (𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷)) → (𝐴 |s 𝐵) = (𝐶 |s 𝐷))
Distinct variable groups:   𝑥,𝐴   𝑧,𝐵   𝑥,𝐶,𝑦   𝑤,𝐷,𝑧
Allowed substitution hints:   𝐴(𝑦,𝑧,𝑤)   𝐵(𝑥,𝑦,𝑤)   𝐶(𝑧,𝑤)   𝐷(𝑥,𝑦)

Proof of Theorem cofcut1
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 simp3l 1203 . . 3 ((𝐴 <<s 𝐵 ∧ (∀𝑥𝐴𝑦𝐶 𝑥 ≤s 𝑦 ∧ ∀𝑧𝐵𝑤𝐷 𝑤 ≤s 𝑧) ∧ (𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷)) → 𝐶 <<s {(𝐴 |s 𝐵)})
2 simp3r 1204 . . 3 ((𝐴 <<s 𝐵 ∧ (∀𝑥𝐴𝑦𝐶 𝑥 ≤s 𝑦 ∧ ∀𝑧𝐵𝑤𝐷 𝑤 ≤s 𝑧) ∧ (𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷)) → {(𝐴 |s 𝐵)} <<s 𝐷)
3 simp1 1138 . . . . . 6 ((𝐴 <<s 𝐵 ∧ (∀𝑥𝐴𝑦𝐶 𝑥 ≤s 𝑦 ∧ ∀𝑧𝐵𝑤𝐷 𝑤 ≤s 𝑧) ∧ (𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷)) → 𝐴 <<s 𝐵)
4 scutbday 33684 . . . . . 6 (𝐴 <<s 𝐵 → ( bday ‘(𝐴 |s 𝐵)) = ( bday “ {𝑡 No ∣ (𝐴 <<s {𝑡} ∧ {𝑡} <<s 𝐵)}))
53, 4syl 17 . . . . 5 ((𝐴 <<s 𝐵 ∧ (∀𝑥𝐴𝑦𝐶 𝑥 ≤s 𝑦 ∧ ∀𝑧𝐵𝑤𝐷 𝑤 ≤s 𝑧) ∧ (𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷)) → ( bday ‘(𝐴 |s 𝐵)) = ( bday “ {𝑡 No ∣ (𝐴 <<s {𝑡} ∧ {𝑡} <<s 𝐵)}))
6 ssltex1 33667 . . . . . . . . . . . . 13 (𝐴 <<s 𝐵𝐴 ∈ V)
73, 6syl 17 . . . . . . . . . . . 12 ((𝐴 <<s 𝐵 ∧ (∀𝑥𝐴𝑦𝐶 𝑥 ≤s 𝑦 ∧ ∀𝑧𝐵𝑤𝐷 𝑤 ≤s 𝑧) ∧ (𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷)) → 𝐴 ∈ V)
87ad2antrr 726 . . . . . . . . . . 11 ((((𝐴 <<s 𝐵 ∧ (∀𝑥𝐴𝑦𝐶 𝑥 ≤s 𝑦 ∧ ∀𝑧𝐵𝑤𝐷 𝑤 ≤s 𝑧) ∧ (𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷)) ∧ 𝑡 No ) ∧ 𝐶 <<s {𝑡}) → 𝐴 ∈ V)
9 ssltss1 33669 . . . . . . . . . . . . 13 (𝐴 <<s 𝐵𝐴 No )
103, 9syl 17 . . . . . . . . . . . 12 ((𝐴 <<s 𝐵 ∧ (∀𝑥𝐴𝑦𝐶 𝑥 ≤s 𝑦 ∧ ∀𝑧𝐵𝑤𝐷 𝑤 ≤s 𝑧) ∧ (𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷)) → 𝐴 No )
1110ad2antrr 726 . . . . . . . . . . 11 ((((𝐴 <<s 𝐵 ∧ (∀𝑥𝐴𝑦𝐶 𝑥 ≤s 𝑦 ∧ ∀𝑧𝐵𝑤𝐷 𝑤 ≤s 𝑧) ∧ (𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷)) ∧ 𝑡 No ) ∧ 𝐶 <<s {𝑡}) → 𝐴 No )
128, 11elpwd 4507 . . . . . . . . . 10 ((((𝐴 <<s 𝐵 ∧ (∀𝑥𝐴𝑦𝐶 𝑥 ≤s 𝑦 ∧ ∀𝑧𝐵𝑤𝐷 𝑤 ≤s 𝑧) ∧ (𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷)) ∧ 𝑡 No ) ∧ 𝐶 <<s {𝑡}) → 𝐴 ∈ 𝒫 No )
13 simpl2l 1228 . . . . . . . . . . 11 (((𝐴 <<s 𝐵 ∧ (∀𝑥𝐴𝑦𝐶 𝑥 ≤s 𝑦 ∧ ∀𝑧𝐵𝑤𝐷 𝑤 ≤s 𝑧) ∧ (𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷)) ∧ 𝑡 No ) → ∀𝑥𝐴𝑦𝐶 𝑥 ≤s 𝑦)
1413adantr 484 . . . . . . . . . 10 ((((𝐴 <<s 𝐵 ∧ (∀𝑥𝐴𝑦𝐶 𝑥 ≤s 𝑦 ∧ ∀𝑧𝐵𝑤𝐷 𝑤 ≤s 𝑧) ∧ (𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷)) ∧ 𝑡 No ) ∧ 𝐶 <<s {𝑡}) → ∀𝑥𝐴𝑦𝐶 𝑥 ≤s 𝑦)
15 simpr 488 . . . . . . . . . 10 ((((𝐴 <<s 𝐵 ∧ (∀𝑥𝐴𝑦𝐶 𝑥 ≤s 𝑦 ∧ ∀𝑧𝐵𝑤𝐷 𝑤 ≤s 𝑧) ∧ (𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷)) ∧ 𝑡 No ) ∧ 𝐶 <<s {𝑡}) → 𝐶 <<s {𝑡})
16 cofsslt 33774 . . . . . . . . . 10 ((𝐴 ∈ 𝒫 No ∧ ∀𝑥𝐴𝑦𝐶 𝑥 ≤s 𝑦𝐶 <<s {𝑡}) → 𝐴 <<s {𝑡})
1712, 14, 15, 16syl3anc 1373 . . . . . . . . 9 ((((𝐴 <<s 𝐵 ∧ (∀𝑥𝐴𝑦𝐶 𝑥 ≤s 𝑦 ∧ ∀𝑧𝐵𝑤𝐷 𝑤 ≤s 𝑧) ∧ (𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷)) ∧ 𝑡 No ) ∧ 𝐶 <<s {𝑡}) → 𝐴 <<s {𝑡})
1817ex 416 . . . . . . . 8 (((𝐴 <<s 𝐵 ∧ (∀𝑥𝐴𝑦𝐶 𝑥 ≤s 𝑦 ∧ ∀𝑧𝐵𝑤𝐷 𝑤 ≤s 𝑧) ∧ (𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷)) ∧ 𝑡 No ) → (𝐶 <<s {𝑡} → 𝐴 <<s {𝑡}))
19 ssltex2 33668 . . . . . . . . . . . . 13 (𝐴 <<s 𝐵𝐵 ∈ V)
203, 19syl 17 . . . . . . . . . . . 12 ((𝐴 <<s 𝐵 ∧ (∀𝑥𝐴𝑦𝐶 𝑥 ≤s 𝑦 ∧ ∀𝑧𝐵𝑤𝐷 𝑤 ≤s 𝑧) ∧ (𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷)) → 𝐵 ∈ V)
2120ad2antrr 726 . . . . . . . . . . 11 ((((𝐴 <<s 𝐵 ∧ (∀𝑥𝐴𝑦𝐶 𝑥 ≤s 𝑦 ∧ ∀𝑧𝐵𝑤𝐷 𝑤 ≤s 𝑧) ∧ (𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷)) ∧ 𝑡 No ) ∧ {𝑡} <<s 𝐷) → 𝐵 ∈ V)
22 ssltss2 33670 . . . . . . . . . . . . 13 (𝐴 <<s 𝐵𝐵 No )
233, 22syl 17 . . . . . . . . . . . 12 ((𝐴 <<s 𝐵 ∧ (∀𝑥𝐴𝑦𝐶 𝑥 ≤s 𝑦 ∧ ∀𝑧𝐵𝑤𝐷 𝑤 ≤s 𝑧) ∧ (𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷)) → 𝐵 No )
2423ad2antrr 726 . . . . . . . . . . 11 ((((𝐴 <<s 𝐵 ∧ (∀𝑥𝐴𝑦𝐶 𝑥 ≤s 𝑦 ∧ ∀𝑧𝐵𝑤𝐷 𝑤 ≤s 𝑧) ∧ (𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷)) ∧ 𝑡 No ) ∧ {𝑡} <<s 𝐷) → 𝐵 No )
2521, 24elpwd 4507 . . . . . . . . . 10 ((((𝐴 <<s 𝐵 ∧ (∀𝑥𝐴𝑦𝐶 𝑥 ≤s 𝑦 ∧ ∀𝑧𝐵𝑤𝐷 𝑤 ≤s 𝑧) ∧ (𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷)) ∧ 𝑡 No ) ∧ {𝑡} <<s 𝐷) → 𝐵 ∈ 𝒫 No )
26 simpl2r 1229 . . . . . . . . . . 11 (((𝐴 <<s 𝐵 ∧ (∀𝑥𝐴𝑦𝐶 𝑥 ≤s 𝑦 ∧ ∀𝑧𝐵𝑤𝐷 𝑤 ≤s 𝑧) ∧ (𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷)) ∧ 𝑡 No ) → ∀𝑧𝐵𝑤𝐷 𝑤 ≤s 𝑧)
2726adantr 484 . . . . . . . . . 10 ((((𝐴 <<s 𝐵 ∧ (∀𝑥𝐴𝑦𝐶 𝑥 ≤s 𝑦 ∧ ∀𝑧𝐵𝑤𝐷 𝑤 ≤s 𝑧) ∧ (𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷)) ∧ 𝑡 No ) ∧ {𝑡} <<s 𝐷) → ∀𝑧𝐵𝑤𝐷 𝑤 ≤s 𝑧)
28 simpr 488 . . . . . . . . . 10 ((((𝐴 <<s 𝐵 ∧ (∀𝑥𝐴𝑦𝐶 𝑥 ≤s 𝑦 ∧ ∀𝑧𝐵𝑤𝐷 𝑤 ≤s 𝑧) ∧ (𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷)) ∧ 𝑡 No ) ∧ {𝑡} <<s 𝐷) → {𝑡} <<s 𝐷)
29 coinitsslt 33775 . . . . . . . . . 10 ((𝐵 ∈ 𝒫 No ∧ ∀𝑧𝐵𝑤𝐷 𝑤 ≤s 𝑧 ∧ {𝑡} <<s 𝐷) → {𝑡} <<s 𝐵)
3025, 27, 28, 29syl3anc 1373 . . . . . . . . 9 ((((𝐴 <<s 𝐵 ∧ (∀𝑥𝐴𝑦𝐶 𝑥 ≤s 𝑦 ∧ ∀𝑧𝐵𝑤𝐷 𝑤 ≤s 𝑧) ∧ (𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷)) ∧ 𝑡 No ) ∧ {𝑡} <<s 𝐷) → {𝑡} <<s 𝐵)
3130ex 416 . . . . . . . 8 (((𝐴 <<s 𝐵 ∧ (∀𝑥𝐴𝑦𝐶 𝑥 ≤s 𝑦 ∧ ∀𝑧𝐵𝑤𝐷 𝑤 ≤s 𝑧) ∧ (𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷)) ∧ 𝑡 No ) → ({𝑡} <<s 𝐷 → {𝑡} <<s 𝐵))
3218, 31anim12d 612 . . . . . . 7 (((𝐴 <<s 𝐵 ∧ (∀𝑥𝐴𝑦𝐶 𝑥 ≤s 𝑦 ∧ ∀𝑧𝐵𝑤𝐷 𝑤 ≤s 𝑧) ∧ (𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷)) ∧ 𝑡 No ) → ((𝐶 <<s {𝑡} ∧ {𝑡} <<s 𝐷) → (𝐴 <<s {𝑡} ∧ {𝑡} <<s 𝐵)))
3332ss2rabdv 3975 . . . . . 6 ((𝐴 <<s 𝐵 ∧ (∀𝑥𝐴𝑦𝐶 𝑥 ≤s 𝑦 ∧ ∀𝑧𝐵𝑤𝐷 𝑤 ≤s 𝑧) ∧ (𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷)) → {𝑡 No ∣ (𝐶 <<s {𝑡} ∧ {𝑡} <<s 𝐷)} ⊆ {𝑡 No ∣ (𝐴 <<s {𝑡} ∧ {𝑡} <<s 𝐵)})
34 imass2 5950 . . . . . 6 ({𝑡 No ∣ (𝐶 <<s {𝑡} ∧ {𝑡} <<s 𝐷)} ⊆ {𝑡 No ∣ (𝐴 <<s {𝑡} ∧ {𝑡} <<s 𝐵)} → ( bday “ {𝑡 No ∣ (𝐶 <<s {𝑡} ∧ {𝑡} <<s 𝐷)}) ⊆ ( bday “ {𝑡 No ∣ (𝐴 <<s {𝑡} ∧ {𝑡} <<s 𝐵)}))
35 intss 4866 . . . . . 6 (( bday “ {𝑡 No ∣ (𝐶 <<s {𝑡} ∧ {𝑡} <<s 𝐷)}) ⊆ ( bday “ {𝑡 No ∣ (𝐴 <<s {𝑡} ∧ {𝑡} <<s 𝐵)}) → ( bday “ {𝑡 No ∣ (𝐴 <<s {𝑡} ∧ {𝑡} <<s 𝐵)}) ⊆ ( bday “ {𝑡 No ∣ (𝐶 <<s {𝑡} ∧ {𝑡} <<s 𝐷)}))
3633, 34, 353syl 18 . . . . 5 ((𝐴 <<s 𝐵 ∧ (∀𝑥𝐴𝑦𝐶 𝑥 ≤s 𝑦 ∧ ∀𝑧𝐵𝑤𝐷 𝑤 ≤s 𝑧) ∧ (𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷)) → ( bday “ {𝑡 No ∣ (𝐴 <<s {𝑡} ∧ {𝑡} <<s 𝐵)}) ⊆ ( bday “ {𝑡 No ∣ (𝐶 <<s {𝑡} ∧ {𝑡} <<s 𝐷)}))
375, 36eqsstrd 3925 . . . 4 ((𝐴 <<s 𝐵 ∧ (∀𝑥𝐴𝑦𝐶 𝑥 ≤s 𝑦 ∧ ∀𝑧𝐵𝑤𝐷 𝑤 ≤s 𝑧) ∧ (𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷)) → ( bday ‘(𝐴 |s 𝐵)) ⊆ ( bday “ {𝑡 No ∣ (𝐶 <<s {𝑡} ∧ {𝑡} <<s 𝐷)}))
38 bdayfn 33654 . . . . . 6 bday Fn No
39 ssrab2 3979 . . . . . 6 {𝑡 No ∣ (𝐶 <<s {𝑡} ∧ {𝑡} <<s 𝐷)} ⊆ No
40 sneq 4537 . . . . . . . . 9 (𝑡 = (𝐴 |s 𝐵) → {𝑡} = {(𝐴 |s 𝐵)})
4140breq2d 5051 . . . . . . . 8 (𝑡 = (𝐴 |s 𝐵) → (𝐶 <<s {𝑡} ↔ 𝐶 <<s {(𝐴 |s 𝐵)}))
4240breq1d 5049 . . . . . . . 8 (𝑡 = (𝐴 |s 𝐵) → ({𝑡} <<s 𝐷 ↔ {(𝐴 |s 𝐵)} <<s 𝐷))
4341, 42anbi12d 634 . . . . . . 7 (𝑡 = (𝐴 |s 𝐵) → ((𝐶 <<s {𝑡} ∧ {𝑡} <<s 𝐷) ↔ (𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷)))
443scutcld 33683 . . . . . . 7 ((𝐴 <<s 𝐵 ∧ (∀𝑥𝐴𝑦𝐶 𝑥 ≤s 𝑦 ∧ ∀𝑧𝐵𝑤𝐷 𝑤 ≤s 𝑧) ∧ (𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷)) → (𝐴 |s 𝐵) ∈ No )
45 simp3 1140 . . . . . . 7 ((𝐴 <<s 𝐵 ∧ (∀𝑥𝐴𝑦𝐶 𝑥 ≤s 𝑦 ∧ ∀𝑧𝐵𝑤𝐷 𝑤 ≤s 𝑧) ∧ (𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷)) → (𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷))
4643, 44, 45elrabd 3593 . . . . . 6 ((𝐴 <<s 𝐵 ∧ (∀𝑥𝐴𝑦𝐶 𝑥 ≤s 𝑦 ∧ ∀𝑧𝐵𝑤𝐷 𝑤 ≤s 𝑧) ∧ (𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷)) → (𝐴 |s 𝐵) ∈ {𝑡 No ∣ (𝐶 <<s {𝑡} ∧ {𝑡} <<s 𝐷)})
47 fnfvima 7027 . . . . . 6 (( bday Fn No ∧ {𝑡 No ∣ (𝐶 <<s {𝑡} ∧ {𝑡} <<s 𝐷)} ⊆ No ∧ (𝐴 |s 𝐵) ∈ {𝑡 No ∣ (𝐶 <<s {𝑡} ∧ {𝑡} <<s 𝐷)}) → ( bday ‘(𝐴 |s 𝐵)) ∈ ( bday “ {𝑡 No ∣ (𝐶 <<s {𝑡} ∧ {𝑡} <<s 𝐷)}))
4838, 39, 46, 47mp3an12i 1467 . . . . 5 ((𝐴 <<s 𝐵 ∧ (∀𝑥𝐴𝑦𝐶 𝑥 ≤s 𝑦 ∧ ∀𝑧𝐵𝑤𝐷 𝑤 ≤s 𝑧) ∧ (𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷)) → ( bday ‘(𝐴 |s 𝐵)) ∈ ( bday “ {𝑡 No ∣ (𝐶 <<s {𝑡} ∧ {𝑡} <<s 𝐷)}))
49 intss1 4860 . . . . 5 (( bday ‘(𝐴 |s 𝐵)) ∈ ( bday “ {𝑡 No ∣ (𝐶 <<s {𝑡} ∧ {𝑡} <<s 𝐷)}) → ( bday “ {𝑡 No ∣ (𝐶 <<s {𝑡} ∧ {𝑡} <<s 𝐷)}) ⊆ ( bday ‘(𝐴 |s 𝐵)))
5048, 49syl 17 . . . 4 ((𝐴 <<s 𝐵 ∧ (∀𝑥𝐴𝑦𝐶 𝑥 ≤s 𝑦 ∧ ∀𝑧𝐵𝑤𝐷 𝑤 ≤s 𝑧) ∧ (𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷)) → ( bday “ {𝑡 No ∣ (𝐶 <<s {𝑡} ∧ {𝑡} <<s 𝐷)}) ⊆ ( bday ‘(𝐴 |s 𝐵)))
5137, 50eqssd 3904 . . 3 ((𝐴 <<s 𝐵 ∧ (∀𝑥𝐴𝑦𝐶 𝑥 ≤s 𝑦 ∧ ∀𝑧𝐵𝑤𝐷 𝑤 ≤s 𝑧) ∧ (𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷)) → ( bday ‘(𝐴 |s 𝐵)) = ( bday “ {𝑡 No ∣ (𝐶 <<s {𝑡} ∧ {𝑡} <<s 𝐷)}))
52 ovex 7224 . . . . . . 7 (𝐴 |s 𝐵) ∈ V
5352snnz 4678 . . . . . 6 {(𝐴 |s 𝐵)} ≠ ∅
54 sslttr 33687 . . . . . 6 ((𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷 ∧ {(𝐴 |s 𝐵)} ≠ ∅) → 𝐶 <<s 𝐷)
5553, 54mp3an3 1452 . . . . 5 ((𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷) → 𝐶 <<s 𝐷)
56553ad2ant3 1137 . . . 4 ((𝐴 <<s 𝐵 ∧ (∀𝑥𝐴𝑦𝐶 𝑥 ≤s 𝑦 ∧ ∀𝑧𝐵𝑤𝐷 𝑤 ≤s 𝑧) ∧ (𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷)) → 𝐶 <<s 𝐷)
57 eqscut 33685 . . . 4 ((𝐶 <<s 𝐷 ∧ (𝐴 |s 𝐵) ∈ No ) → ((𝐶 |s 𝐷) = (𝐴 |s 𝐵) ↔ (𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷 ∧ ( bday ‘(𝐴 |s 𝐵)) = ( bday “ {𝑡 No ∣ (𝐶 <<s {𝑡} ∧ {𝑡} <<s 𝐷)}))))
5856, 44, 57syl2anc 587 . . 3 ((𝐴 <<s 𝐵 ∧ (∀𝑥𝐴𝑦𝐶 𝑥 ≤s 𝑦 ∧ ∀𝑧𝐵𝑤𝐷 𝑤 ≤s 𝑧) ∧ (𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷)) → ((𝐶 |s 𝐷) = (𝐴 |s 𝐵) ↔ (𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷 ∧ ( bday ‘(𝐴 |s 𝐵)) = ( bday “ {𝑡 No ∣ (𝐶 <<s {𝑡} ∧ {𝑡} <<s 𝐷)}))))
591, 2, 51, 58mpbir3and 1344 . 2 ((𝐴 <<s 𝐵 ∧ (∀𝑥𝐴𝑦𝐶 𝑥 ≤s 𝑦 ∧ ∀𝑧𝐵𝑤𝐷 𝑤 ≤s 𝑧) ∧ (𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷)) → (𝐶 |s 𝐷) = (𝐴 |s 𝐵))
6059eqcomd 2742 1 ((𝐴 <<s 𝐵 ∧ (∀𝑥𝐴𝑦𝐶 𝑥 ≤s 𝑦 ∧ ∀𝑧𝐵𝑤𝐷 𝑤 ≤s 𝑧) ∧ (𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷)) → (𝐴 |s 𝐵) = (𝐶 |s 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1089   = wceq 1543  wcel 2112  wne 2932  wral 3051  wrex 3052  {crab 3055  Vcvv 3398  wss 3853  c0 4223  𝒫 cpw 4499  {csn 4527   cint 4845   class class class wbr 5039  cima 5539   Fn wfn 6353  cfv 6358  (class class class)co 7191   No csur 33529   bday cbday 33531   ≤s csle 33633   <<s csslt 33661   |s cscut 33663
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pr 5307  ax-un 7501
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-ral 3056  df-rex 3057  df-reu 3058  df-rmo 3059  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-tp 4532  df-op 4534  df-uni 4806  df-int 4846  df-iun 4892  df-br 5040  df-opab 5102  df-mpt 5121  df-tr 5147  df-id 5440  df-eprel 5445  df-po 5453  df-so 5454  df-fr 5494  df-we 5496  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-ord 6194  df-on 6195  df-suc 6197  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7148  df-ov 7194  df-oprab 7195  df-mpo 7196  df-1o 8180  df-2o 8181  df-no 33532  df-slt 33533  df-bday 33534  df-sle 33634  df-sslt 33662  df-scut 33664
This theorem is referenced by:  cofcut2  33777
  Copyright terms: Public domain W3C validator