Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  madecut Structured version   Visualization version   GIF version

Theorem madecut 33656
Description: Given a section that is a subset of an old set, the cut is a member of the made set. (Contributed by Scott Fenton, 7-Aug-2024.)
Assertion
Ref Expression
madecut (((𝐴 ∈ On ∧ 𝐿 <<s 𝑅) ∧ (𝐿 ⊆ ( O ‘𝐴) ∧ 𝑅 ⊆ ( O ‘𝐴))) → (𝐿 |s 𝑅) ∈ ( M ‘𝐴))

Proof of Theorem madecut
Dummy variables 𝑙 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simplr 768 . . . . 5 (((𝐴 ∈ On ∧ 𝐿 <<s 𝑅) ∧ (𝐿 ⊆ ( O ‘𝐴) ∧ 𝑅 ⊆ ( O ‘𝐴))) → 𝐿 <<s 𝑅)
2 ssltex1 33578 . . . . 5 (𝐿 <<s 𝑅𝐿 ∈ V)
31, 2syl 17 . . . 4 (((𝐴 ∈ On ∧ 𝐿 <<s 𝑅) ∧ (𝐿 ⊆ ( O ‘𝐴) ∧ 𝑅 ⊆ ( O ‘𝐴))) → 𝐿 ∈ V)
4 simprl 770 . . . 4 (((𝐴 ∈ On ∧ 𝐿 <<s 𝑅) ∧ (𝐿 ⊆ ( O ‘𝐴) ∧ 𝑅 ⊆ ( O ‘𝐴))) → 𝐿 ⊆ ( O ‘𝐴))
53, 4elpwd 4505 . . 3 (((𝐴 ∈ On ∧ 𝐿 <<s 𝑅) ∧ (𝐿 ⊆ ( O ‘𝐴) ∧ 𝑅 ⊆ ( O ‘𝐴))) → 𝐿 ∈ 𝒫 ( O ‘𝐴))
6 ssltex2 33579 . . . . 5 (𝐿 <<s 𝑅𝑅 ∈ V)
71, 6syl 17 . . . 4 (((𝐴 ∈ On ∧ 𝐿 <<s 𝑅) ∧ (𝐿 ⊆ ( O ‘𝐴) ∧ 𝑅 ⊆ ( O ‘𝐴))) → 𝑅 ∈ V)
8 simprr 772 . . . 4 (((𝐴 ∈ On ∧ 𝐿 <<s 𝑅) ∧ (𝐿 ⊆ ( O ‘𝐴) ∧ 𝑅 ⊆ ( O ‘𝐴))) → 𝑅 ⊆ ( O ‘𝐴))
97, 8elpwd 4505 . . 3 (((𝐴 ∈ On ∧ 𝐿 <<s 𝑅) ∧ (𝐿 ⊆ ( O ‘𝐴) ∧ 𝑅 ⊆ ( O ‘𝐴))) → 𝑅 ∈ 𝒫 ( O ‘𝐴))
10 eqidd 2759 . . 3 (((𝐴 ∈ On ∧ 𝐿 <<s 𝑅) ∧ (𝐿 ⊆ ( O ‘𝐴) ∧ 𝑅 ⊆ ( O ‘𝐴))) → (𝐿 |s 𝑅) = (𝐿 |s 𝑅))
11 breq1 5039 . . . . 5 (𝑙 = 𝐿 → (𝑙 <<s 𝑟𝐿 <<s 𝑟))
12 oveq1 7163 . . . . . 6 (𝑙 = 𝐿 → (𝑙 |s 𝑟) = (𝐿 |s 𝑟))
1312eqeq1d 2760 . . . . 5 (𝑙 = 𝐿 → ((𝑙 |s 𝑟) = (𝐿 |s 𝑅) ↔ (𝐿 |s 𝑟) = (𝐿 |s 𝑅)))
1411, 13anbi12d 633 . . . 4 (𝑙 = 𝐿 → ((𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = (𝐿 |s 𝑅)) ↔ (𝐿 <<s 𝑟 ∧ (𝐿 |s 𝑟) = (𝐿 |s 𝑅))))
15 breq2 5040 . . . . 5 (𝑟 = 𝑅 → (𝐿 <<s 𝑟𝐿 <<s 𝑅))
16 oveq2 7164 . . . . . 6 (𝑟 = 𝑅 → (𝐿 |s 𝑟) = (𝐿 |s 𝑅))
1716eqeq1d 2760 . . . . 5 (𝑟 = 𝑅 → ((𝐿 |s 𝑟) = (𝐿 |s 𝑅) ↔ (𝐿 |s 𝑅) = (𝐿 |s 𝑅)))
1815, 17anbi12d 633 . . . 4 (𝑟 = 𝑅 → ((𝐿 <<s 𝑟 ∧ (𝐿 |s 𝑟) = (𝐿 |s 𝑅)) ↔ (𝐿 <<s 𝑅 ∧ (𝐿 |s 𝑅) = (𝐿 |s 𝑅))))
1914, 18rspc2ev 3555 . . 3 ((𝐿 ∈ 𝒫 ( O ‘𝐴) ∧ 𝑅 ∈ 𝒫 ( O ‘𝐴) ∧ (𝐿 <<s 𝑅 ∧ (𝐿 |s 𝑅) = (𝐿 |s 𝑅))) → ∃𝑙 ∈ 𝒫 ( O ‘𝐴)∃𝑟 ∈ 𝒫 ( O ‘𝐴)(𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = (𝐿 |s 𝑅)))
205, 9, 1, 10, 19syl112anc 1371 . 2 (((𝐴 ∈ On ∧ 𝐿 <<s 𝑅) ∧ (𝐿 ⊆ ( O ‘𝐴) ∧ 𝑅 ⊆ ( O ‘𝐴))) → ∃𝑙 ∈ 𝒫 ( O ‘𝐴)∃𝑟 ∈ 𝒫 ( O ‘𝐴)(𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = (𝐿 |s 𝑅)))
21 elmade2 33642 . . 3 (𝐴 ∈ On → ((𝐿 |s 𝑅) ∈ ( M ‘𝐴) ↔ ∃𝑙 ∈ 𝒫 ( O ‘𝐴)∃𝑟 ∈ 𝒫 ( O ‘𝐴)(𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = (𝐿 |s 𝑅))))
2221ad2antrr 725 . 2 (((𝐴 ∈ On ∧ 𝐿 <<s 𝑅) ∧ (𝐿 ⊆ ( O ‘𝐴) ∧ 𝑅 ⊆ ( O ‘𝐴))) → ((𝐿 |s 𝑅) ∈ ( M ‘𝐴) ↔ ∃𝑙 ∈ 𝒫 ( O ‘𝐴)∃𝑟 ∈ 𝒫 ( O ‘𝐴)(𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = (𝐿 |s 𝑅))))
2320, 22mpbird 260 1 (((𝐴 ∈ On ∧ 𝐿 <<s 𝑅) ∧ (𝐿 ⊆ ( O ‘𝐴) ∧ 𝑅 ⊆ ( O ‘𝐴))) → (𝐿 |s 𝑅) ∈ ( M ‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  wrex 3071  Vcvv 3409  wss 3860  𝒫 cpw 4497   class class class wbr 5036  Oncon0 6174  cfv 6340  (class class class)co 7156   <<s csslt 33572   |s cscut 33574   M cmade 33620   O cold 33621
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5160  ax-sep 5173  ax-nul 5180  ax-pow 5238  ax-pr 5302  ax-un 7465
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3699  df-csb 3808  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-pss 3879  df-nul 4228  df-if 4424  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-int 4842  df-iun 4888  df-br 5037  df-opab 5099  df-mpt 5117  df-tr 5143  df-id 5434  df-eprel 5439  df-po 5447  df-so 5448  df-fr 5487  df-we 5489  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-pred 6131  df-ord 6177  df-on 6178  df-suc 6180  df-iota 6299  df-fun 6342  df-fn 6343  df-f 6344  df-f1 6345  df-fo 6346  df-f1o 6347  df-fv 6348  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-wrecs 7963  df-recs 8024  df-1o 8118  df-2o 8119  df-no 33443  df-slt 33444  df-bday 33445  df-sslt 33573  df-scut 33575  df-made 33625  df-old 33626
This theorem is referenced by:  madebday  33671
  Copyright terms: Public domain W3C validator