| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > madecut | Structured version Visualization version GIF version | ||
| Description: Given a section that is a subset of an old set, the cut is a member of the made set. (Contributed by Scott Fenton, 7-Aug-2024.) |
| Ref | Expression |
|---|---|
| madecut | ⊢ (((𝐴 ∈ On ∧ 𝐿 <<s 𝑅) ∧ (𝐿 ⊆ ( O ‘𝐴) ∧ 𝑅 ⊆ ( O ‘𝐴))) → (𝐿 |s 𝑅) ∈ ( M ‘𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simplr 768 | . . . . 5 ⊢ (((𝐴 ∈ On ∧ 𝐿 <<s 𝑅) ∧ (𝐿 ⊆ ( O ‘𝐴) ∧ 𝑅 ⊆ ( O ‘𝐴))) → 𝐿 <<s 𝑅) | |
| 2 | ssltex1 27736 | . . . . 5 ⊢ (𝐿 <<s 𝑅 → 𝐿 ∈ V) | |
| 3 | 1, 2 | syl 17 | . . . 4 ⊢ (((𝐴 ∈ On ∧ 𝐿 <<s 𝑅) ∧ (𝐿 ⊆ ( O ‘𝐴) ∧ 𝑅 ⊆ ( O ‘𝐴))) → 𝐿 ∈ V) |
| 4 | simprl 770 | . . . 4 ⊢ (((𝐴 ∈ On ∧ 𝐿 <<s 𝑅) ∧ (𝐿 ⊆ ( O ‘𝐴) ∧ 𝑅 ⊆ ( O ‘𝐴))) → 𝐿 ⊆ ( O ‘𝐴)) | |
| 5 | 3, 4 | elpwd 4557 | . . 3 ⊢ (((𝐴 ∈ On ∧ 𝐿 <<s 𝑅) ∧ (𝐿 ⊆ ( O ‘𝐴) ∧ 𝑅 ⊆ ( O ‘𝐴))) → 𝐿 ∈ 𝒫 ( O ‘𝐴)) |
| 6 | ssltex2 27737 | . . . . 5 ⊢ (𝐿 <<s 𝑅 → 𝑅 ∈ V) | |
| 7 | 1, 6 | syl 17 | . . . 4 ⊢ (((𝐴 ∈ On ∧ 𝐿 <<s 𝑅) ∧ (𝐿 ⊆ ( O ‘𝐴) ∧ 𝑅 ⊆ ( O ‘𝐴))) → 𝑅 ∈ V) |
| 8 | simprr 772 | . . . 4 ⊢ (((𝐴 ∈ On ∧ 𝐿 <<s 𝑅) ∧ (𝐿 ⊆ ( O ‘𝐴) ∧ 𝑅 ⊆ ( O ‘𝐴))) → 𝑅 ⊆ ( O ‘𝐴)) | |
| 9 | 7, 8 | elpwd 4557 | . . 3 ⊢ (((𝐴 ∈ On ∧ 𝐿 <<s 𝑅) ∧ (𝐿 ⊆ ( O ‘𝐴) ∧ 𝑅 ⊆ ( O ‘𝐴))) → 𝑅 ∈ 𝒫 ( O ‘𝐴)) |
| 10 | eqidd 2734 | . . 3 ⊢ (((𝐴 ∈ On ∧ 𝐿 <<s 𝑅) ∧ (𝐿 ⊆ ( O ‘𝐴) ∧ 𝑅 ⊆ ( O ‘𝐴))) → (𝐿 |s 𝑅) = (𝐿 |s 𝑅)) | |
| 11 | breq1 5098 | . . . . 5 ⊢ (𝑙 = 𝐿 → (𝑙 <<s 𝑟 ↔ 𝐿 <<s 𝑟)) | |
| 12 | oveq1 7362 | . . . . . 6 ⊢ (𝑙 = 𝐿 → (𝑙 |s 𝑟) = (𝐿 |s 𝑟)) | |
| 13 | 12 | eqeq1d 2735 | . . . . 5 ⊢ (𝑙 = 𝐿 → ((𝑙 |s 𝑟) = (𝐿 |s 𝑅) ↔ (𝐿 |s 𝑟) = (𝐿 |s 𝑅))) |
| 14 | 11, 13 | anbi12d 632 | . . . 4 ⊢ (𝑙 = 𝐿 → ((𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = (𝐿 |s 𝑅)) ↔ (𝐿 <<s 𝑟 ∧ (𝐿 |s 𝑟) = (𝐿 |s 𝑅)))) |
| 15 | breq2 5099 | . . . . 5 ⊢ (𝑟 = 𝑅 → (𝐿 <<s 𝑟 ↔ 𝐿 <<s 𝑅)) | |
| 16 | oveq2 7363 | . . . . . 6 ⊢ (𝑟 = 𝑅 → (𝐿 |s 𝑟) = (𝐿 |s 𝑅)) | |
| 17 | 16 | eqeq1d 2735 | . . . . 5 ⊢ (𝑟 = 𝑅 → ((𝐿 |s 𝑟) = (𝐿 |s 𝑅) ↔ (𝐿 |s 𝑅) = (𝐿 |s 𝑅))) |
| 18 | 15, 17 | anbi12d 632 | . . . 4 ⊢ (𝑟 = 𝑅 → ((𝐿 <<s 𝑟 ∧ (𝐿 |s 𝑟) = (𝐿 |s 𝑅)) ↔ (𝐿 <<s 𝑅 ∧ (𝐿 |s 𝑅) = (𝐿 |s 𝑅)))) |
| 19 | 14, 18 | rspc2ev 3587 | . . 3 ⊢ ((𝐿 ∈ 𝒫 ( O ‘𝐴) ∧ 𝑅 ∈ 𝒫 ( O ‘𝐴) ∧ (𝐿 <<s 𝑅 ∧ (𝐿 |s 𝑅) = (𝐿 |s 𝑅))) → ∃𝑙 ∈ 𝒫 ( O ‘𝐴)∃𝑟 ∈ 𝒫 ( O ‘𝐴)(𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = (𝐿 |s 𝑅))) |
| 20 | 5, 9, 1, 10, 19 | syl112anc 1376 | . 2 ⊢ (((𝐴 ∈ On ∧ 𝐿 <<s 𝑅) ∧ (𝐿 ⊆ ( O ‘𝐴) ∧ 𝑅 ⊆ ( O ‘𝐴))) → ∃𝑙 ∈ 𝒫 ( O ‘𝐴)∃𝑟 ∈ 𝒫 ( O ‘𝐴)(𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = (𝐿 |s 𝑅))) |
| 21 | elmade2 27823 | . . 3 ⊢ (𝐴 ∈ On → ((𝐿 |s 𝑅) ∈ ( M ‘𝐴) ↔ ∃𝑙 ∈ 𝒫 ( O ‘𝐴)∃𝑟 ∈ 𝒫 ( O ‘𝐴)(𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = (𝐿 |s 𝑅)))) | |
| 22 | 21 | ad2antrr 726 | . 2 ⊢ (((𝐴 ∈ On ∧ 𝐿 <<s 𝑅) ∧ (𝐿 ⊆ ( O ‘𝐴) ∧ 𝑅 ⊆ ( O ‘𝐴))) → ((𝐿 |s 𝑅) ∈ ( M ‘𝐴) ↔ ∃𝑙 ∈ 𝒫 ( O ‘𝐴)∃𝑟 ∈ 𝒫 ( O ‘𝐴)(𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = (𝐿 |s 𝑅)))) |
| 23 | 20, 22 | mpbird 257 | 1 ⊢ (((𝐴 ∈ On ∧ 𝐿 <<s 𝑅) ∧ (𝐿 ⊆ ( O ‘𝐴) ∧ 𝑅 ⊆ ( O ‘𝐴))) → (𝐿 |s 𝑅) ∈ ( M ‘𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ∃wrex 3058 Vcvv 3438 ⊆ wss 3899 𝒫 cpw 4551 class class class wbr 5095 Oncon0 6314 ‘cfv 6489 (class class class)co 7355 <<s csslt 27730 |s cscut 27732 M cmade 27793 O cold 27794 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2883 df-ne 2931 df-ral 3050 df-rex 3059 df-rmo 3348 df-reu 3349 df-rab 3398 df-v 3440 df-sbc 3739 df-csb 3848 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-pss 3919 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-2nd 7931 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-1o 8394 df-2o 8395 df-no 27591 df-slt 27592 df-bday 27593 df-sslt 27731 df-scut 27733 df-made 27798 df-old 27799 |
| This theorem is referenced by: madebday 27855 |
| Copyright terms: Public domain | W3C validator |