| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > madecut | Structured version Visualization version GIF version | ||
| Description: Given a section that is a subset of an old set, the cut is a member of the made set. (Contributed by Scott Fenton, 7-Aug-2024.) |
| Ref | Expression |
|---|---|
| madecut | ⊢ (((𝐴 ∈ On ∧ 𝐿 <<s 𝑅) ∧ (𝐿 ⊆ ( O ‘𝐴) ∧ 𝑅 ⊆ ( O ‘𝐴))) → (𝐿 |s 𝑅) ∈ ( M ‘𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simplr 768 | . . . . 5 ⊢ (((𝐴 ∈ On ∧ 𝐿 <<s 𝑅) ∧ (𝐿 ⊆ ( O ‘𝐴) ∧ 𝑅 ⊆ ( O ‘𝐴))) → 𝐿 <<s 𝑅) | |
| 2 | ssltex1 27705 | . . . . 5 ⊢ (𝐿 <<s 𝑅 → 𝐿 ∈ V) | |
| 3 | 1, 2 | syl 17 | . . . 4 ⊢ (((𝐴 ∈ On ∧ 𝐿 <<s 𝑅) ∧ (𝐿 ⊆ ( O ‘𝐴) ∧ 𝑅 ⊆ ( O ‘𝐴))) → 𝐿 ∈ V) |
| 4 | simprl 770 | . . . 4 ⊢ (((𝐴 ∈ On ∧ 𝐿 <<s 𝑅) ∧ (𝐿 ⊆ ( O ‘𝐴) ∧ 𝑅 ⊆ ( O ‘𝐴))) → 𝐿 ⊆ ( O ‘𝐴)) | |
| 5 | 3, 4 | elpwd 4572 | . . 3 ⊢ (((𝐴 ∈ On ∧ 𝐿 <<s 𝑅) ∧ (𝐿 ⊆ ( O ‘𝐴) ∧ 𝑅 ⊆ ( O ‘𝐴))) → 𝐿 ∈ 𝒫 ( O ‘𝐴)) |
| 6 | ssltex2 27706 | . . . . 5 ⊢ (𝐿 <<s 𝑅 → 𝑅 ∈ V) | |
| 7 | 1, 6 | syl 17 | . . . 4 ⊢ (((𝐴 ∈ On ∧ 𝐿 <<s 𝑅) ∧ (𝐿 ⊆ ( O ‘𝐴) ∧ 𝑅 ⊆ ( O ‘𝐴))) → 𝑅 ∈ V) |
| 8 | simprr 772 | . . . 4 ⊢ (((𝐴 ∈ On ∧ 𝐿 <<s 𝑅) ∧ (𝐿 ⊆ ( O ‘𝐴) ∧ 𝑅 ⊆ ( O ‘𝐴))) → 𝑅 ⊆ ( O ‘𝐴)) | |
| 9 | 7, 8 | elpwd 4572 | . . 3 ⊢ (((𝐴 ∈ On ∧ 𝐿 <<s 𝑅) ∧ (𝐿 ⊆ ( O ‘𝐴) ∧ 𝑅 ⊆ ( O ‘𝐴))) → 𝑅 ∈ 𝒫 ( O ‘𝐴)) |
| 10 | eqidd 2731 | . . 3 ⊢ (((𝐴 ∈ On ∧ 𝐿 <<s 𝑅) ∧ (𝐿 ⊆ ( O ‘𝐴) ∧ 𝑅 ⊆ ( O ‘𝐴))) → (𝐿 |s 𝑅) = (𝐿 |s 𝑅)) | |
| 11 | breq1 5113 | . . . . 5 ⊢ (𝑙 = 𝐿 → (𝑙 <<s 𝑟 ↔ 𝐿 <<s 𝑟)) | |
| 12 | oveq1 7397 | . . . . . 6 ⊢ (𝑙 = 𝐿 → (𝑙 |s 𝑟) = (𝐿 |s 𝑟)) | |
| 13 | 12 | eqeq1d 2732 | . . . . 5 ⊢ (𝑙 = 𝐿 → ((𝑙 |s 𝑟) = (𝐿 |s 𝑅) ↔ (𝐿 |s 𝑟) = (𝐿 |s 𝑅))) |
| 14 | 11, 13 | anbi12d 632 | . . . 4 ⊢ (𝑙 = 𝐿 → ((𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = (𝐿 |s 𝑅)) ↔ (𝐿 <<s 𝑟 ∧ (𝐿 |s 𝑟) = (𝐿 |s 𝑅)))) |
| 15 | breq2 5114 | . . . . 5 ⊢ (𝑟 = 𝑅 → (𝐿 <<s 𝑟 ↔ 𝐿 <<s 𝑅)) | |
| 16 | oveq2 7398 | . . . . . 6 ⊢ (𝑟 = 𝑅 → (𝐿 |s 𝑟) = (𝐿 |s 𝑅)) | |
| 17 | 16 | eqeq1d 2732 | . . . . 5 ⊢ (𝑟 = 𝑅 → ((𝐿 |s 𝑟) = (𝐿 |s 𝑅) ↔ (𝐿 |s 𝑅) = (𝐿 |s 𝑅))) |
| 18 | 15, 17 | anbi12d 632 | . . . 4 ⊢ (𝑟 = 𝑅 → ((𝐿 <<s 𝑟 ∧ (𝐿 |s 𝑟) = (𝐿 |s 𝑅)) ↔ (𝐿 <<s 𝑅 ∧ (𝐿 |s 𝑅) = (𝐿 |s 𝑅)))) |
| 19 | 14, 18 | rspc2ev 3604 | . . 3 ⊢ ((𝐿 ∈ 𝒫 ( O ‘𝐴) ∧ 𝑅 ∈ 𝒫 ( O ‘𝐴) ∧ (𝐿 <<s 𝑅 ∧ (𝐿 |s 𝑅) = (𝐿 |s 𝑅))) → ∃𝑙 ∈ 𝒫 ( O ‘𝐴)∃𝑟 ∈ 𝒫 ( O ‘𝐴)(𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = (𝐿 |s 𝑅))) |
| 20 | 5, 9, 1, 10, 19 | syl112anc 1376 | . 2 ⊢ (((𝐴 ∈ On ∧ 𝐿 <<s 𝑅) ∧ (𝐿 ⊆ ( O ‘𝐴) ∧ 𝑅 ⊆ ( O ‘𝐴))) → ∃𝑙 ∈ 𝒫 ( O ‘𝐴)∃𝑟 ∈ 𝒫 ( O ‘𝐴)(𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = (𝐿 |s 𝑅))) |
| 21 | elmade2 27787 | . . 3 ⊢ (𝐴 ∈ On → ((𝐿 |s 𝑅) ∈ ( M ‘𝐴) ↔ ∃𝑙 ∈ 𝒫 ( O ‘𝐴)∃𝑟 ∈ 𝒫 ( O ‘𝐴)(𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = (𝐿 |s 𝑅)))) | |
| 22 | 21 | ad2antrr 726 | . 2 ⊢ (((𝐴 ∈ On ∧ 𝐿 <<s 𝑅) ∧ (𝐿 ⊆ ( O ‘𝐴) ∧ 𝑅 ⊆ ( O ‘𝐴))) → ((𝐿 |s 𝑅) ∈ ( M ‘𝐴) ↔ ∃𝑙 ∈ 𝒫 ( O ‘𝐴)∃𝑟 ∈ 𝒫 ( O ‘𝐴)(𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = (𝐿 |s 𝑅)))) |
| 23 | 20, 22 | mpbird 257 | 1 ⊢ (((𝐴 ∈ On ∧ 𝐿 <<s 𝑅) ∧ (𝐿 ⊆ ( O ‘𝐴) ∧ 𝑅 ⊆ ( O ‘𝐴))) → (𝐿 |s 𝑅) ∈ ( M ‘𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∃wrex 3054 Vcvv 3450 ⊆ wss 3917 𝒫 cpw 4566 class class class wbr 5110 Oncon0 6335 ‘cfv 6514 (class class class)co 7390 <<s csslt 27699 |s cscut 27701 M cmade 27757 O cold 27758 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-tp 4597 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-1o 8437 df-2o 8438 df-no 27561 df-slt 27562 df-bday 27563 df-sslt 27700 df-scut 27702 df-made 27762 df-old 27763 |
| This theorem is referenced by: madebday 27818 |
| Copyright terms: Public domain | W3C validator |