MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  madecut Structured version   Visualization version   GIF version

Theorem madecut 27939
Description: Given a section that is a subset of an old set, the cut is a member of the made set. (Contributed by Scott Fenton, 7-Aug-2024.)
Assertion
Ref Expression
madecut (((𝐴 ∈ On ∧ 𝐿 <<s 𝑅) ∧ (𝐿 ⊆ ( O ‘𝐴) ∧ 𝑅 ⊆ ( O ‘𝐴))) → (𝐿 |s 𝑅) ∈ ( M ‘𝐴))

Proof of Theorem madecut
Dummy variables 𝑙 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simplr 768 . . . . 5 (((𝐴 ∈ On ∧ 𝐿 <<s 𝑅) ∧ (𝐿 ⊆ ( O ‘𝐴) ∧ 𝑅 ⊆ ( O ‘𝐴))) → 𝐿 <<s 𝑅)
2 ssltex1 27849 . . . . 5 (𝐿 <<s 𝑅𝐿 ∈ V)
31, 2syl 17 . . . 4 (((𝐴 ∈ On ∧ 𝐿 <<s 𝑅) ∧ (𝐿 ⊆ ( O ‘𝐴) ∧ 𝑅 ⊆ ( O ‘𝐴))) → 𝐿 ∈ V)
4 simprl 770 . . . 4 (((𝐴 ∈ On ∧ 𝐿 <<s 𝑅) ∧ (𝐿 ⊆ ( O ‘𝐴) ∧ 𝑅 ⊆ ( O ‘𝐴))) → 𝐿 ⊆ ( O ‘𝐴))
53, 4elpwd 4628 . . 3 (((𝐴 ∈ On ∧ 𝐿 <<s 𝑅) ∧ (𝐿 ⊆ ( O ‘𝐴) ∧ 𝑅 ⊆ ( O ‘𝐴))) → 𝐿 ∈ 𝒫 ( O ‘𝐴))
6 ssltex2 27850 . . . . 5 (𝐿 <<s 𝑅𝑅 ∈ V)
71, 6syl 17 . . . 4 (((𝐴 ∈ On ∧ 𝐿 <<s 𝑅) ∧ (𝐿 ⊆ ( O ‘𝐴) ∧ 𝑅 ⊆ ( O ‘𝐴))) → 𝑅 ∈ V)
8 simprr 772 . . . 4 (((𝐴 ∈ On ∧ 𝐿 <<s 𝑅) ∧ (𝐿 ⊆ ( O ‘𝐴) ∧ 𝑅 ⊆ ( O ‘𝐴))) → 𝑅 ⊆ ( O ‘𝐴))
97, 8elpwd 4628 . . 3 (((𝐴 ∈ On ∧ 𝐿 <<s 𝑅) ∧ (𝐿 ⊆ ( O ‘𝐴) ∧ 𝑅 ⊆ ( O ‘𝐴))) → 𝑅 ∈ 𝒫 ( O ‘𝐴))
10 eqidd 2741 . . 3 (((𝐴 ∈ On ∧ 𝐿 <<s 𝑅) ∧ (𝐿 ⊆ ( O ‘𝐴) ∧ 𝑅 ⊆ ( O ‘𝐴))) → (𝐿 |s 𝑅) = (𝐿 |s 𝑅))
11 breq1 5169 . . . . 5 (𝑙 = 𝐿 → (𝑙 <<s 𝑟𝐿 <<s 𝑟))
12 oveq1 7455 . . . . . 6 (𝑙 = 𝐿 → (𝑙 |s 𝑟) = (𝐿 |s 𝑟))
1312eqeq1d 2742 . . . . 5 (𝑙 = 𝐿 → ((𝑙 |s 𝑟) = (𝐿 |s 𝑅) ↔ (𝐿 |s 𝑟) = (𝐿 |s 𝑅)))
1411, 13anbi12d 631 . . . 4 (𝑙 = 𝐿 → ((𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = (𝐿 |s 𝑅)) ↔ (𝐿 <<s 𝑟 ∧ (𝐿 |s 𝑟) = (𝐿 |s 𝑅))))
15 breq2 5170 . . . . 5 (𝑟 = 𝑅 → (𝐿 <<s 𝑟𝐿 <<s 𝑅))
16 oveq2 7456 . . . . . 6 (𝑟 = 𝑅 → (𝐿 |s 𝑟) = (𝐿 |s 𝑅))
1716eqeq1d 2742 . . . . 5 (𝑟 = 𝑅 → ((𝐿 |s 𝑟) = (𝐿 |s 𝑅) ↔ (𝐿 |s 𝑅) = (𝐿 |s 𝑅)))
1815, 17anbi12d 631 . . . 4 (𝑟 = 𝑅 → ((𝐿 <<s 𝑟 ∧ (𝐿 |s 𝑟) = (𝐿 |s 𝑅)) ↔ (𝐿 <<s 𝑅 ∧ (𝐿 |s 𝑅) = (𝐿 |s 𝑅))))
1914, 18rspc2ev 3648 . . 3 ((𝐿 ∈ 𝒫 ( O ‘𝐴) ∧ 𝑅 ∈ 𝒫 ( O ‘𝐴) ∧ (𝐿 <<s 𝑅 ∧ (𝐿 |s 𝑅) = (𝐿 |s 𝑅))) → ∃𝑙 ∈ 𝒫 ( O ‘𝐴)∃𝑟 ∈ 𝒫 ( O ‘𝐴)(𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = (𝐿 |s 𝑅)))
205, 9, 1, 10, 19syl112anc 1374 . 2 (((𝐴 ∈ On ∧ 𝐿 <<s 𝑅) ∧ (𝐿 ⊆ ( O ‘𝐴) ∧ 𝑅 ⊆ ( O ‘𝐴))) → ∃𝑙 ∈ 𝒫 ( O ‘𝐴)∃𝑟 ∈ 𝒫 ( O ‘𝐴)(𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = (𝐿 |s 𝑅)))
21 elmade2 27925 . . 3 (𝐴 ∈ On → ((𝐿 |s 𝑅) ∈ ( M ‘𝐴) ↔ ∃𝑙 ∈ 𝒫 ( O ‘𝐴)∃𝑟 ∈ 𝒫 ( O ‘𝐴)(𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = (𝐿 |s 𝑅))))
2221ad2antrr 725 . 2 (((𝐴 ∈ On ∧ 𝐿 <<s 𝑅) ∧ (𝐿 ⊆ ( O ‘𝐴) ∧ 𝑅 ⊆ ( O ‘𝐴))) → ((𝐿 |s 𝑅) ∈ ( M ‘𝐴) ↔ ∃𝑙 ∈ 𝒫 ( O ‘𝐴)∃𝑟 ∈ 𝒫 ( O ‘𝐴)(𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = (𝐿 |s 𝑅))))
2320, 22mpbird 257 1 (((𝐴 ∈ On ∧ 𝐿 <<s 𝑅) ∧ (𝐿 ⊆ ( O ‘𝐴) ∧ 𝑅 ⊆ ( O ‘𝐴))) → (𝐿 |s 𝑅) ∈ ( M ‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wrex 3076  Vcvv 3488  wss 3976  𝒫 cpw 4622   class class class wbr 5166  Oncon0 6395  cfv 6573  (class class class)co 7448   <<s csslt 27843   |s cscut 27845   M cmade 27899   O cold 27900
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-1o 8522  df-2o 8523  df-no 27705  df-slt 27706  df-bday 27707  df-sslt 27844  df-scut 27846  df-made 27904  df-old 27905
This theorem is referenced by:  madebday  27956
  Copyright terms: Public domain W3C validator