MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  madecut Structured version   Visualization version   GIF version

Theorem madecut 27921
Description: Given a section that is a subset of an old set, the cut is a member of the made set. (Contributed by Scott Fenton, 7-Aug-2024.)
Assertion
Ref Expression
madecut (((𝐴 ∈ On ∧ 𝐿 <<s 𝑅) ∧ (𝐿 ⊆ ( O ‘𝐴) ∧ 𝑅 ⊆ ( O ‘𝐴))) → (𝐿 |s 𝑅) ∈ ( M ‘𝐴))

Proof of Theorem madecut
Dummy variables 𝑙 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simplr 769 . . . . 5 (((𝐴 ∈ On ∧ 𝐿 <<s 𝑅) ∧ (𝐿 ⊆ ( O ‘𝐴) ∧ 𝑅 ⊆ ( O ‘𝐴))) → 𝐿 <<s 𝑅)
2 ssltex1 27831 . . . . 5 (𝐿 <<s 𝑅𝐿 ∈ V)
31, 2syl 17 . . . 4 (((𝐴 ∈ On ∧ 𝐿 <<s 𝑅) ∧ (𝐿 ⊆ ( O ‘𝐴) ∧ 𝑅 ⊆ ( O ‘𝐴))) → 𝐿 ∈ V)
4 simprl 771 . . . 4 (((𝐴 ∈ On ∧ 𝐿 <<s 𝑅) ∧ (𝐿 ⊆ ( O ‘𝐴) ∧ 𝑅 ⊆ ( O ‘𝐴))) → 𝐿 ⊆ ( O ‘𝐴))
53, 4elpwd 4606 . . 3 (((𝐴 ∈ On ∧ 𝐿 <<s 𝑅) ∧ (𝐿 ⊆ ( O ‘𝐴) ∧ 𝑅 ⊆ ( O ‘𝐴))) → 𝐿 ∈ 𝒫 ( O ‘𝐴))
6 ssltex2 27832 . . . . 5 (𝐿 <<s 𝑅𝑅 ∈ V)
71, 6syl 17 . . . 4 (((𝐴 ∈ On ∧ 𝐿 <<s 𝑅) ∧ (𝐿 ⊆ ( O ‘𝐴) ∧ 𝑅 ⊆ ( O ‘𝐴))) → 𝑅 ∈ V)
8 simprr 773 . . . 4 (((𝐴 ∈ On ∧ 𝐿 <<s 𝑅) ∧ (𝐿 ⊆ ( O ‘𝐴) ∧ 𝑅 ⊆ ( O ‘𝐴))) → 𝑅 ⊆ ( O ‘𝐴))
97, 8elpwd 4606 . . 3 (((𝐴 ∈ On ∧ 𝐿 <<s 𝑅) ∧ (𝐿 ⊆ ( O ‘𝐴) ∧ 𝑅 ⊆ ( O ‘𝐴))) → 𝑅 ∈ 𝒫 ( O ‘𝐴))
10 eqidd 2738 . . 3 (((𝐴 ∈ On ∧ 𝐿 <<s 𝑅) ∧ (𝐿 ⊆ ( O ‘𝐴) ∧ 𝑅 ⊆ ( O ‘𝐴))) → (𝐿 |s 𝑅) = (𝐿 |s 𝑅))
11 breq1 5146 . . . . 5 (𝑙 = 𝐿 → (𝑙 <<s 𝑟𝐿 <<s 𝑟))
12 oveq1 7438 . . . . . 6 (𝑙 = 𝐿 → (𝑙 |s 𝑟) = (𝐿 |s 𝑟))
1312eqeq1d 2739 . . . . 5 (𝑙 = 𝐿 → ((𝑙 |s 𝑟) = (𝐿 |s 𝑅) ↔ (𝐿 |s 𝑟) = (𝐿 |s 𝑅)))
1411, 13anbi12d 632 . . . 4 (𝑙 = 𝐿 → ((𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = (𝐿 |s 𝑅)) ↔ (𝐿 <<s 𝑟 ∧ (𝐿 |s 𝑟) = (𝐿 |s 𝑅))))
15 breq2 5147 . . . . 5 (𝑟 = 𝑅 → (𝐿 <<s 𝑟𝐿 <<s 𝑅))
16 oveq2 7439 . . . . . 6 (𝑟 = 𝑅 → (𝐿 |s 𝑟) = (𝐿 |s 𝑅))
1716eqeq1d 2739 . . . . 5 (𝑟 = 𝑅 → ((𝐿 |s 𝑟) = (𝐿 |s 𝑅) ↔ (𝐿 |s 𝑅) = (𝐿 |s 𝑅)))
1815, 17anbi12d 632 . . . 4 (𝑟 = 𝑅 → ((𝐿 <<s 𝑟 ∧ (𝐿 |s 𝑟) = (𝐿 |s 𝑅)) ↔ (𝐿 <<s 𝑅 ∧ (𝐿 |s 𝑅) = (𝐿 |s 𝑅))))
1914, 18rspc2ev 3635 . . 3 ((𝐿 ∈ 𝒫 ( O ‘𝐴) ∧ 𝑅 ∈ 𝒫 ( O ‘𝐴) ∧ (𝐿 <<s 𝑅 ∧ (𝐿 |s 𝑅) = (𝐿 |s 𝑅))) → ∃𝑙 ∈ 𝒫 ( O ‘𝐴)∃𝑟 ∈ 𝒫 ( O ‘𝐴)(𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = (𝐿 |s 𝑅)))
205, 9, 1, 10, 19syl112anc 1376 . 2 (((𝐴 ∈ On ∧ 𝐿 <<s 𝑅) ∧ (𝐿 ⊆ ( O ‘𝐴) ∧ 𝑅 ⊆ ( O ‘𝐴))) → ∃𝑙 ∈ 𝒫 ( O ‘𝐴)∃𝑟 ∈ 𝒫 ( O ‘𝐴)(𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = (𝐿 |s 𝑅)))
21 elmade2 27907 . . 3 (𝐴 ∈ On → ((𝐿 |s 𝑅) ∈ ( M ‘𝐴) ↔ ∃𝑙 ∈ 𝒫 ( O ‘𝐴)∃𝑟 ∈ 𝒫 ( O ‘𝐴)(𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = (𝐿 |s 𝑅))))
2221ad2antrr 726 . 2 (((𝐴 ∈ On ∧ 𝐿 <<s 𝑅) ∧ (𝐿 ⊆ ( O ‘𝐴) ∧ 𝑅 ⊆ ( O ‘𝐴))) → ((𝐿 |s 𝑅) ∈ ( M ‘𝐴) ↔ ∃𝑙 ∈ 𝒫 ( O ‘𝐴)∃𝑟 ∈ 𝒫 ( O ‘𝐴)(𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = (𝐿 |s 𝑅))))
2320, 22mpbird 257 1 (((𝐴 ∈ On ∧ 𝐿 <<s 𝑅) ∧ (𝐿 ⊆ ( O ‘𝐴) ∧ 𝑅 ⊆ ( O ‘𝐴))) → (𝐿 |s 𝑅) ∈ ( M ‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wrex 3070  Vcvv 3480  wss 3951  𝒫 cpw 4600   class class class wbr 5143  Oncon0 6384  cfv 6561  (class class class)co 7431   <<s csslt 27825   |s cscut 27827   M cmade 27881   O cold 27882
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-1o 8506  df-2o 8507  df-no 27687  df-slt 27688  df-bday 27689  df-sslt 27826  df-scut 27828  df-made 27886  df-old 27887
This theorem is referenced by:  madebday  27938
  Copyright terms: Public domain W3C validator