MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coinitsslt Structured version   Visualization version   GIF version

Theorem coinitsslt 27856
Description: If 𝐵 is coinitial with 𝐶 and 𝐴 precedes 𝐶, then 𝐴 precedes 𝐵. (Contributed by Scott Fenton, 24-Sep-2024.)
Assertion
Ref Expression
coinitsslt ((𝐵 ∈ 𝒫 No ∧ ∀𝑥𝐵𝑦𝐶 𝑦 ≤s 𝑥𝐴 <<s 𝐶) → 𝐴 <<s 𝐵)
Distinct variable groups:   𝑥,𝐵   𝑥,𝐶,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐵(𝑦)

Proof of Theorem coinitsslt
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssltex1 27719 . . 3 (𝐴 <<s 𝐶𝐴 ∈ V)
213ad2ant3 1135 . 2 ((𝐵 ∈ 𝒫 No ∧ ∀𝑥𝐵𝑦𝐶 𝑦 ≤s 𝑥𝐴 <<s 𝐶) → 𝐴 ∈ V)
3 simp1 1136 . 2 ((𝐵 ∈ 𝒫 No ∧ ∀𝑥𝐵𝑦𝐶 𝑦 ≤s 𝑥𝐴 <<s 𝐶) → 𝐵 ∈ 𝒫 No )
4 ssltss1 27721 . . 3 (𝐴 <<s 𝐶𝐴 No )
543ad2ant3 1135 . 2 ((𝐵 ∈ 𝒫 No ∧ ∀𝑥𝐵𝑦𝐶 𝑦 ≤s 𝑥𝐴 <<s 𝐶) → 𝐴 No )
63elpwid 4557 . 2 ((𝐵 ∈ 𝒫 No ∧ ∀𝑥𝐵𝑦𝐶 𝑦 ≤s 𝑥𝐴 <<s 𝐶) → 𝐵 No )
7 breq2 5093 . . . . . 6 (𝑥 = 𝑏 → (𝑦 ≤s 𝑥𝑦 ≤s 𝑏))
87rexbidv 3154 . . . . 5 (𝑥 = 𝑏 → (∃𝑦𝐶 𝑦 ≤s 𝑥 ↔ ∃𝑦𝐶 𝑦 ≤s 𝑏))
9 simp12 1205 . . . . 5 (((𝐵 ∈ 𝒫 No ∧ ∀𝑥𝐵𝑦𝐶 𝑦 ≤s 𝑥𝐴 <<s 𝐶) ∧ 𝑎𝐴𝑏𝐵) → ∀𝑥𝐵𝑦𝐶 𝑦 ≤s 𝑥)
10 simp3 1138 . . . . 5 (((𝐵 ∈ 𝒫 No ∧ ∀𝑥𝐵𝑦𝐶 𝑦 ≤s 𝑥𝐴 <<s 𝐶) ∧ 𝑎𝐴𝑏𝐵) → 𝑏𝐵)
118, 9, 10rspcdva 3576 . . . 4 (((𝐵 ∈ 𝒫 No ∧ ∀𝑥𝐵𝑦𝐶 𝑦 ≤s 𝑥𝐴 <<s 𝐶) ∧ 𝑎𝐴𝑏𝐵) → ∃𝑦𝐶 𝑦 ≤s 𝑏)
12 breq1 5092 . . . . 5 (𝑦 = 𝑐 → (𝑦 ≤s 𝑏𝑐 ≤s 𝑏))
1312cbvrexvw 3209 . . . 4 (∃𝑦𝐶 𝑦 ≤s 𝑏 ↔ ∃𝑐𝐶 𝑐 ≤s 𝑏)
1411, 13sylib 218 . . 3 (((𝐵 ∈ 𝒫 No ∧ ∀𝑥𝐵𝑦𝐶 𝑦 ≤s 𝑥𝐴 <<s 𝐶) ∧ 𝑎𝐴𝑏𝐵) → ∃𝑐𝐶 𝑐 ≤s 𝑏)
15 simpl13 1251 . . . . . 6 ((((𝐵 ∈ 𝒫 No ∧ ∀𝑥𝐵𝑦𝐶 𝑦 ≤s 𝑥𝐴 <<s 𝐶) ∧ 𝑎𝐴𝑏𝐵) ∧ (𝑐𝐶𝑐 ≤s 𝑏)) → 𝐴 <<s 𝐶)
1615, 4syl 17 . . . . 5 ((((𝐵 ∈ 𝒫 No ∧ ∀𝑥𝐵𝑦𝐶 𝑦 ≤s 𝑥𝐴 <<s 𝐶) ∧ 𝑎𝐴𝑏𝐵) ∧ (𝑐𝐶𝑐 ≤s 𝑏)) → 𝐴 No )
17 simpl2 1193 . . . . 5 ((((𝐵 ∈ 𝒫 No ∧ ∀𝑥𝐵𝑦𝐶 𝑦 ≤s 𝑥𝐴 <<s 𝐶) ∧ 𝑎𝐴𝑏𝐵) ∧ (𝑐𝐶𝑐 ≤s 𝑏)) → 𝑎𝐴)
1816, 17sseldd 3933 . . . 4 ((((𝐵 ∈ 𝒫 No ∧ ∀𝑥𝐵𝑦𝐶 𝑦 ≤s 𝑥𝐴 <<s 𝐶) ∧ 𝑎𝐴𝑏𝐵) ∧ (𝑐𝐶𝑐 ≤s 𝑏)) → 𝑎 No )
19 ssltss2 27722 . . . . . 6 (𝐴 <<s 𝐶𝐶 No )
2015, 19syl 17 . . . . 5 ((((𝐵 ∈ 𝒫 No ∧ ∀𝑥𝐵𝑦𝐶 𝑦 ≤s 𝑥𝐴 <<s 𝐶) ∧ 𝑎𝐴𝑏𝐵) ∧ (𝑐𝐶𝑐 ≤s 𝑏)) → 𝐶 No )
21 simprl 770 . . . . 5 ((((𝐵 ∈ 𝒫 No ∧ ∀𝑥𝐵𝑦𝐶 𝑦 ≤s 𝑥𝐴 <<s 𝐶) ∧ 𝑎𝐴𝑏𝐵) ∧ (𝑐𝐶𝑐 ≤s 𝑏)) → 𝑐𝐶)
2220, 21sseldd 3933 . . . 4 ((((𝐵 ∈ 𝒫 No ∧ ∀𝑥𝐵𝑦𝐶 𝑦 ≤s 𝑥𝐴 <<s 𝐶) ∧ 𝑎𝐴𝑏𝐵) ∧ (𝑐𝐶𝑐 ≤s 𝑏)) → 𝑐 No )
23 simpl1 1192 . . . . . 6 ((((𝐵 ∈ 𝒫 No ∧ ∀𝑥𝐵𝑦𝐶 𝑦 ≤s 𝑥𝐴 <<s 𝐶) ∧ 𝑎𝐴𝑏𝐵) ∧ (𝑐𝐶𝑐 ≤s 𝑏)) → (𝐵 ∈ 𝒫 No ∧ ∀𝑥𝐵𝑦𝐶 𝑦 ≤s 𝑥𝐴 <<s 𝐶))
2423, 6syl 17 . . . . 5 ((((𝐵 ∈ 𝒫 No ∧ ∀𝑥𝐵𝑦𝐶 𝑦 ≤s 𝑥𝐴 <<s 𝐶) ∧ 𝑎𝐴𝑏𝐵) ∧ (𝑐𝐶𝑐 ≤s 𝑏)) → 𝐵 No )
25 simpl3 1194 . . . . 5 ((((𝐵 ∈ 𝒫 No ∧ ∀𝑥𝐵𝑦𝐶 𝑦 ≤s 𝑥𝐴 <<s 𝐶) ∧ 𝑎𝐴𝑏𝐵) ∧ (𝑐𝐶𝑐 ≤s 𝑏)) → 𝑏𝐵)
2624, 25sseldd 3933 . . . 4 ((((𝐵 ∈ 𝒫 No ∧ ∀𝑥𝐵𝑦𝐶 𝑦 ≤s 𝑥𝐴 <<s 𝐶) ∧ 𝑎𝐴𝑏𝐵) ∧ (𝑐𝐶𝑐 ≤s 𝑏)) → 𝑏 No )
2715, 17, 21ssltsepcd 27728 . . . 4 ((((𝐵 ∈ 𝒫 No ∧ ∀𝑥𝐵𝑦𝐶 𝑦 ≤s 𝑥𝐴 <<s 𝐶) ∧ 𝑎𝐴𝑏𝐵) ∧ (𝑐𝐶𝑐 ≤s 𝑏)) → 𝑎 <s 𝑐)
28 simprr 772 . . . 4 ((((𝐵 ∈ 𝒫 No ∧ ∀𝑥𝐵𝑦𝐶 𝑦 ≤s 𝑥𝐴 <<s 𝐶) ∧ 𝑎𝐴𝑏𝐵) ∧ (𝑐𝐶𝑐 ≤s 𝑏)) → 𝑐 ≤s 𝑏)
2918, 22, 26, 27, 28sltletrd 27692 . . 3 ((((𝐵 ∈ 𝒫 No ∧ ∀𝑥𝐵𝑦𝐶 𝑦 ≤s 𝑥𝐴 <<s 𝐶) ∧ 𝑎𝐴𝑏𝐵) ∧ (𝑐𝐶𝑐 ≤s 𝑏)) → 𝑎 <s 𝑏)
3014, 29rexlimddv 3137 . 2 (((𝐵 ∈ 𝒫 No ∧ ∀𝑥𝐵𝑦𝐶 𝑦 ≤s 𝑥𝐴 <<s 𝐶) ∧ 𝑎𝐴𝑏𝐵) → 𝑎 <s 𝑏)
312, 3, 5, 6, 30ssltd 27724 1 ((𝐵 ∈ 𝒫 No ∧ ∀𝑥𝐵𝑦𝐶 𝑦 ≤s 𝑥𝐴 <<s 𝐶) → 𝐴 <<s 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086  wcel 2110  wral 3045  wrex 3054  Vcvv 3434  wss 3900  𝒫 cpw 4548   class class class wbr 5089   No csur 27571   <s cslt 27572   ≤s csle 27676   <<s csslt 27713
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-pss 3920  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-tp 4579  df-op 4581  df-uni 4858  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-ord 6305  df-on 6306  df-suc 6308  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-fv 6485  df-1o 8380  df-2o 8381  df-no 27574  df-slt 27575  df-sle 27677  df-sslt 27714
This theorem is referenced by:  cofcut1  27857  cofcut2  27859
  Copyright terms: Public domain W3C validator