MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coinitsslt Structured version   Visualization version   GIF version

Theorem coinitsslt 27889
Description: If 𝐵 is coinitial with 𝐶 and 𝐴 precedes 𝐶, then 𝐴 precedes 𝐵. (Contributed by Scott Fenton, 24-Sep-2024.)
Assertion
Ref Expression
coinitsslt ((𝐵 ∈ 𝒫 No ∧ ∀𝑥𝐵𝑦𝐶 𝑦 ≤s 𝑥𝐴 <<s 𝐶) → 𝐴 <<s 𝐵)
Distinct variable groups:   𝑥,𝐵   𝑥,𝐶,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐵(𝑦)

Proof of Theorem coinitsslt
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssltex1 27767 . . 3 (𝐴 <<s 𝐶𝐴 ∈ V)
213ad2ant3 1135 . 2 ((𝐵 ∈ 𝒫 No ∧ ∀𝑥𝐵𝑦𝐶 𝑦 ≤s 𝑥𝐴 <<s 𝐶) → 𝐴 ∈ V)
3 simp1 1136 . 2 ((𝐵 ∈ 𝒫 No ∧ ∀𝑥𝐵𝑦𝐶 𝑦 ≤s 𝑥𝐴 <<s 𝐶) → 𝐵 ∈ 𝒫 No )
4 ssltss1 27769 . . 3 (𝐴 <<s 𝐶𝐴 No )
543ad2ant3 1135 . 2 ((𝐵 ∈ 𝒫 No ∧ ∀𝑥𝐵𝑦𝐶 𝑦 ≤s 𝑥𝐴 <<s 𝐶) → 𝐴 No )
63elpwid 4589 . 2 ((𝐵 ∈ 𝒫 No ∧ ∀𝑥𝐵𝑦𝐶 𝑦 ≤s 𝑥𝐴 <<s 𝐶) → 𝐵 No )
7 breq2 5127 . . . . . 6 (𝑥 = 𝑏 → (𝑦 ≤s 𝑥𝑦 ≤s 𝑏))
87rexbidv 3166 . . . . 5 (𝑥 = 𝑏 → (∃𝑦𝐶 𝑦 ≤s 𝑥 ↔ ∃𝑦𝐶 𝑦 ≤s 𝑏))
9 simp12 1204 . . . . 5 (((𝐵 ∈ 𝒫 No ∧ ∀𝑥𝐵𝑦𝐶 𝑦 ≤s 𝑥𝐴 <<s 𝐶) ∧ 𝑎𝐴𝑏𝐵) → ∀𝑥𝐵𝑦𝐶 𝑦 ≤s 𝑥)
10 simp3 1138 . . . . 5 (((𝐵 ∈ 𝒫 No ∧ ∀𝑥𝐵𝑦𝐶 𝑦 ≤s 𝑥𝐴 <<s 𝐶) ∧ 𝑎𝐴𝑏𝐵) → 𝑏𝐵)
118, 9, 10rspcdva 3606 . . . 4 (((𝐵 ∈ 𝒫 No ∧ ∀𝑥𝐵𝑦𝐶 𝑦 ≤s 𝑥𝐴 <<s 𝐶) ∧ 𝑎𝐴𝑏𝐵) → ∃𝑦𝐶 𝑦 ≤s 𝑏)
12 breq1 5126 . . . . 5 (𝑦 = 𝑐 → (𝑦 ≤s 𝑏𝑐 ≤s 𝑏))
1312cbvrexvw 3224 . . . 4 (∃𝑦𝐶 𝑦 ≤s 𝑏 ↔ ∃𝑐𝐶 𝑐 ≤s 𝑏)
1411, 13sylib 218 . . 3 (((𝐵 ∈ 𝒫 No ∧ ∀𝑥𝐵𝑦𝐶 𝑦 ≤s 𝑥𝐴 <<s 𝐶) ∧ 𝑎𝐴𝑏𝐵) → ∃𝑐𝐶 𝑐 ≤s 𝑏)
15 simpl13 1250 . . . . . 6 ((((𝐵 ∈ 𝒫 No ∧ ∀𝑥𝐵𝑦𝐶 𝑦 ≤s 𝑥𝐴 <<s 𝐶) ∧ 𝑎𝐴𝑏𝐵) ∧ (𝑐𝐶𝑐 ≤s 𝑏)) → 𝐴 <<s 𝐶)
1615, 4syl 17 . . . . 5 ((((𝐵 ∈ 𝒫 No ∧ ∀𝑥𝐵𝑦𝐶 𝑦 ≤s 𝑥𝐴 <<s 𝐶) ∧ 𝑎𝐴𝑏𝐵) ∧ (𝑐𝐶𝑐 ≤s 𝑏)) → 𝐴 No )
17 simpl2 1192 . . . . 5 ((((𝐵 ∈ 𝒫 No ∧ ∀𝑥𝐵𝑦𝐶 𝑦 ≤s 𝑥𝐴 <<s 𝐶) ∧ 𝑎𝐴𝑏𝐵) ∧ (𝑐𝐶𝑐 ≤s 𝑏)) → 𝑎𝐴)
1816, 17sseldd 3964 . . . 4 ((((𝐵 ∈ 𝒫 No ∧ ∀𝑥𝐵𝑦𝐶 𝑦 ≤s 𝑥𝐴 <<s 𝐶) ∧ 𝑎𝐴𝑏𝐵) ∧ (𝑐𝐶𝑐 ≤s 𝑏)) → 𝑎 No )
19 ssltss2 27770 . . . . . 6 (𝐴 <<s 𝐶𝐶 No )
2015, 19syl 17 . . . . 5 ((((𝐵 ∈ 𝒫 No ∧ ∀𝑥𝐵𝑦𝐶 𝑦 ≤s 𝑥𝐴 <<s 𝐶) ∧ 𝑎𝐴𝑏𝐵) ∧ (𝑐𝐶𝑐 ≤s 𝑏)) → 𝐶 No )
21 simprl 770 . . . . 5 ((((𝐵 ∈ 𝒫 No ∧ ∀𝑥𝐵𝑦𝐶 𝑦 ≤s 𝑥𝐴 <<s 𝐶) ∧ 𝑎𝐴𝑏𝐵) ∧ (𝑐𝐶𝑐 ≤s 𝑏)) → 𝑐𝐶)
2220, 21sseldd 3964 . . . 4 ((((𝐵 ∈ 𝒫 No ∧ ∀𝑥𝐵𝑦𝐶 𝑦 ≤s 𝑥𝐴 <<s 𝐶) ∧ 𝑎𝐴𝑏𝐵) ∧ (𝑐𝐶𝑐 ≤s 𝑏)) → 𝑐 No )
23 simpl1 1191 . . . . . 6 ((((𝐵 ∈ 𝒫 No ∧ ∀𝑥𝐵𝑦𝐶 𝑦 ≤s 𝑥𝐴 <<s 𝐶) ∧ 𝑎𝐴𝑏𝐵) ∧ (𝑐𝐶𝑐 ≤s 𝑏)) → (𝐵 ∈ 𝒫 No ∧ ∀𝑥𝐵𝑦𝐶 𝑦 ≤s 𝑥𝐴 <<s 𝐶))
2423, 6syl 17 . . . . 5 ((((𝐵 ∈ 𝒫 No ∧ ∀𝑥𝐵𝑦𝐶 𝑦 ≤s 𝑥𝐴 <<s 𝐶) ∧ 𝑎𝐴𝑏𝐵) ∧ (𝑐𝐶𝑐 ≤s 𝑏)) → 𝐵 No )
25 simpl3 1193 . . . . 5 ((((𝐵 ∈ 𝒫 No ∧ ∀𝑥𝐵𝑦𝐶 𝑦 ≤s 𝑥𝐴 <<s 𝐶) ∧ 𝑎𝐴𝑏𝐵) ∧ (𝑐𝐶𝑐 ≤s 𝑏)) → 𝑏𝐵)
2624, 25sseldd 3964 . . . 4 ((((𝐵 ∈ 𝒫 No ∧ ∀𝑥𝐵𝑦𝐶 𝑦 ≤s 𝑥𝐴 <<s 𝐶) ∧ 𝑎𝐴𝑏𝐵) ∧ (𝑐𝐶𝑐 ≤s 𝑏)) → 𝑏 No )
2715, 17, 21ssltsepcd 27775 . . . 4 ((((𝐵 ∈ 𝒫 No ∧ ∀𝑥𝐵𝑦𝐶 𝑦 ≤s 𝑥𝐴 <<s 𝐶) ∧ 𝑎𝐴𝑏𝐵) ∧ (𝑐𝐶𝑐 ≤s 𝑏)) → 𝑎 <s 𝑐)
28 simprr 772 . . . 4 ((((𝐵 ∈ 𝒫 No ∧ ∀𝑥𝐵𝑦𝐶 𝑦 ≤s 𝑥𝐴 <<s 𝐶) ∧ 𝑎𝐴𝑏𝐵) ∧ (𝑐𝐶𝑐 ≤s 𝑏)) → 𝑐 ≤s 𝑏)
2918, 22, 26, 27, 28sltletrd 27741 . . 3 ((((𝐵 ∈ 𝒫 No ∧ ∀𝑥𝐵𝑦𝐶 𝑦 ≤s 𝑥𝐴 <<s 𝐶) ∧ 𝑎𝐴𝑏𝐵) ∧ (𝑐𝐶𝑐 ≤s 𝑏)) → 𝑎 <s 𝑏)
3014, 29rexlimddv 3148 . 2 (((𝐵 ∈ 𝒫 No ∧ ∀𝑥𝐵𝑦𝐶 𝑦 ≤s 𝑥𝐴 <<s 𝐶) ∧ 𝑎𝐴𝑏𝐵) → 𝑎 <s 𝑏)
312, 3, 5, 6, 30ssltd 27772 1 ((𝐵 ∈ 𝒫 No ∧ ∀𝑥𝐵𝑦𝐶 𝑦 ≤s 𝑥𝐴 <<s 𝐶) → 𝐴 <<s 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086  wcel 2107  wral 3050  wrex 3059  Vcvv 3463  wss 3931  𝒫 cpw 4580   class class class wbr 5123   No csur 27620   <s cslt 27621   ≤s csle 27725   <<s csslt 27761
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pr 5412
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4888  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-ord 6366  df-on 6367  df-suc 6369  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-fv 6549  df-1o 8488  df-2o 8489  df-no 27623  df-slt 27624  df-sle 27726  df-sslt 27762
This theorem is referenced by:  cofcut1  27890  cofcut2  27892
  Copyright terms: Public domain W3C validator