| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssnnfi | Structured version Visualization version GIF version | ||
| Description: A subset of a natural number is finite. (Contributed by NM, 24-Jun-1998.) (Proof shortened by BTernaryTau, 23-Sep-2024.) |
| Ref | Expression |
|---|---|
| ssnnfi | ⊢ ((𝐴 ∈ ω ∧ 𝐵 ⊆ 𝐴) → 𝐵 ∈ Fin) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sspss 4082 | . 2 ⊢ (𝐵 ⊆ 𝐴 ↔ (𝐵 ⊊ 𝐴 ∨ 𝐵 = 𝐴)) | |
| 2 | pssnn 9190 | . . . . 5 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ⊊ 𝐴) → ∃𝑥 ∈ 𝐴 𝐵 ≈ 𝑥) | |
| 3 | elnn 7880 | . . . . . . . . 9 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝐴 ∈ ω) → 𝑥 ∈ ω) | |
| 4 | 3 | expcom 413 | . . . . . . . 8 ⊢ (𝐴 ∈ ω → (𝑥 ∈ 𝐴 → 𝑥 ∈ ω)) |
| 5 | 4 | anim1d 611 | . . . . . . 7 ⊢ (𝐴 ∈ ω → ((𝑥 ∈ 𝐴 ∧ 𝐵 ≈ 𝑥) → (𝑥 ∈ ω ∧ 𝐵 ≈ 𝑥))) |
| 6 | 5 | reximdv2 3151 | . . . . . 6 ⊢ (𝐴 ∈ ω → (∃𝑥 ∈ 𝐴 𝐵 ≈ 𝑥 → ∃𝑥 ∈ ω 𝐵 ≈ 𝑥)) |
| 7 | 6 | adantr 480 | . . . . 5 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ⊊ 𝐴) → (∃𝑥 ∈ 𝐴 𝐵 ≈ 𝑥 → ∃𝑥 ∈ ω 𝐵 ≈ 𝑥)) |
| 8 | 2, 7 | mpd 15 | . . . 4 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ⊊ 𝐴) → ∃𝑥 ∈ ω 𝐵 ≈ 𝑥) |
| 9 | isfi 8998 | . . . 4 ⊢ (𝐵 ∈ Fin ↔ ∃𝑥 ∈ ω 𝐵 ≈ 𝑥) | |
| 10 | 8, 9 | sylibr 234 | . . 3 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ⊊ 𝐴) → 𝐵 ∈ Fin) |
| 11 | eleq1 2821 | . . . . 5 ⊢ (𝐵 = 𝐴 → (𝐵 ∈ ω ↔ 𝐴 ∈ ω)) | |
| 12 | 11 | biimparc 479 | . . . 4 ⊢ ((𝐴 ∈ ω ∧ 𝐵 = 𝐴) → 𝐵 ∈ ω) |
| 13 | nnfi 9189 | . . . 4 ⊢ (𝐵 ∈ ω → 𝐵 ∈ Fin) | |
| 14 | 12, 13 | syl 17 | . . 3 ⊢ ((𝐴 ∈ ω ∧ 𝐵 = 𝐴) → 𝐵 ∈ Fin) |
| 15 | 10, 14 | jaodan 959 | . 2 ⊢ ((𝐴 ∈ ω ∧ (𝐵 ⊊ 𝐴 ∨ 𝐵 = 𝐴)) → 𝐵 ∈ Fin) |
| 16 | 1, 15 | sylan2b 594 | 1 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ⊆ 𝐴) → 𝐵 ∈ Fin) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 = wceq 1539 ∈ wcel 2107 ∃wrex 3059 ⊆ wss 3931 ⊊ wpss 3932 class class class wbr 5123 ωcom 7869 ≈ cen 8964 Fincfn 8967 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pr 5412 ax-un 7737 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-clab 2713 df-cleq 2726 df-clel 2808 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-br 5124 df-opab 5186 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-om 7870 df-en 8968 df-fin 8971 |
| This theorem is referenced by: 0finOLD 9192 ssfiALT 9196 en1eqsnOLD 9291 isfinite2 9316 wofib 9567 infpwfien 10084 fin67 10417 hashcard 14377 rexpen 16247 |
| Copyright terms: Public domain | W3C validator |