| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssnnfi | Structured version Visualization version GIF version | ||
| Description: A subset of a natural number is finite. (Contributed by NM, 24-Jun-1998.) (Proof shortened by BTernaryTau, 23-Sep-2024.) |
| Ref | Expression |
|---|---|
| ssnnfi | ⊢ ((𝐴 ∈ ω ∧ 𝐵 ⊆ 𝐴) → 𝐵 ∈ Fin) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sspss 4047 | . 2 ⊢ (𝐵 ⊆ 𝐴 ↔ (𝐵 ⊊ 𝐴 ∨ 𝐵 = 𝐴)) | |
| 2 | pssnn 9073 | . . . . 5 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ⊊ 𝐴) → ∃𝑥 ∈ 𝐴 𝐵 ≈ 𝑥) | |
| 3 | elnn 7802 | . . . . . . . . 9 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝐴 ∈ ω) → 𝑥 ∈ ω) | |
| 4 | 3 | expcom 413 | . . . . . . . 8 ⊢ (𝐴 ∈ ω → (𝑥 ∈ 𝐴 → 𝑥 ∈ ω)) |
| 5 | 4 | anim1d 611 | . . . . . . 7 ⊢ (𝐴 ∈ ω → ((𝑥 ∈ 𝐴 ∧ 𝐵 ≈ 𝑥) → (𝑥 ∈ ω ∧ 𝐵 ≈ 𝑥))) |
| 6 | 5 | reximdv2 3142 | . . . . . 6 ⊢ (𝐴 ∈ ω → (∃𝑥 ∈ 𝐴 𝐵 ≈ 𝑥 → ∃𝑥 ∈ ω 𝐵 ≈ 𝑥)) |
| 7 | 6 | adantr 480 | . . . . 5 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ⊊ 𝐴) → (∃𝑥 ∈ 𝐴 𝐵 ≈ 𝑥 → ∃𝑥 ∈ ω 𝐵 ≈ 𝑥)) |
| 8 | 2, 7 | mpd 15 | . . . 4 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ⊊ 𝐴) → ∃𝑥 ∈ ω 𝐵 ≈ 𝑥) |
| 9 | isfi 8893 | . . . 4 ⊢ (𝐵 ∈ Fin ↔ ∃𝑥 ∈ ω 𝐵 ≈ 𝑥) | |
| 10 | 8, 9 | sylibr 234 | . . 3 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ⊊ 𝐴) → 𝐵 ∈ Fin) |
| 11 | eleq1 2819 | . . . . 5 ⊢ (𝐵 = 𝐴 → (𝐵 ∈ ω ↔ 𝐴 ∈ ω)) | |
| 12 | 11 | biimparc 479 | . . . 4 ⊢ ((𝐴 ∈ ω ∧ 𝐵 = 𝐴) → 𝐵 ∈ ω) |
| 13 | nnfi 9072 | . . . 4 ⊢ (𝐵 ∈ ω → 𝐵 ∈ Fin) | |
| 14 | 12, 13 | syl 17 | . . 3 ⊢ ((𝐴 ∈ ω ∧ 𝐵 = 𝐴) → 𝐵 ∈ Fin) |
| 15 | 10, 14 | jaodan 959 | . 2 ⊢ ((𝐴 ∈ ω ∧ (𝐵 ⊊ 𝐴 ∨ 𝐵 = 𝐴)) → 𝐵 ∈ Fin) |
| 16 | 1, 15 | sylan2b 594 | 1 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ⊆ 𝐴) → 𝐵 ∈ Fin) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 = wceq 1541 ∈ wcel 2111 ∃wrex 3056 ⊆ wss 3897 ⊊ wpss 3898 class class class wbr 5086 ωcom 7791 ≈ cen 8861 Fincfn 8864 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pr 5365 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-opab 5149 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-om 7792 df-en 8865 df-fin 8868 |
| This theorem is referenced by: ssfiALT 9078 isfinite2 9177 wofib 9426 infpwfien 9948 fin67 10281 hashcard 14257 rexpen 16132 |
| Copyright terms: Public domain | W3C validator |