MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssnnfi Structured version   Visualization version   GIF version

Theorem ssnnfi 8914
Description: A subset of a natural number is finite. (Contributed by NM, 24-Jun-1998.) (Proof shortened by BTernaryTau, 23-Sep-2024.)
Assertion
Ref Expression
ssnnfi ((𝐴 ∈ ω ∧ 𝐵𝐴) → 𝐵 ∈ Fin)

Proof of Theorem ssnnfi
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 sspss 4030 . 2 (𝐵𝐴 ↔ (𝐵𝐴𝐵 = 𝐴))
2 pssnn 8913 . . . . 5 ((𝐴 ∈ ω ∧ 𝐵𝐴) → ∃𝑥𝐴 𝐵𝑥)
3 elnn 7698 . . . . . . . . 9 ((𝑥𝐴𝐴 ∈ ω) → 𝑥 ∈ ω)
43expcom 413 . . . . . . . 8 (𝐴 ∈ ω → (𝑥𝐴𝑥 ∈ ω))
54anim1d 610 . . . . . . 7 (𝐴 ∈ ω → ((𝑥𝐴𝐵𝑥) → (𝑥 ∈ ω ∧ 𝐵𝑥)))
65reximdv2 3198 . . . . . 6 (𝐴 ∈ ω → (∃𝑥𝐴 𝐵𝑥 → ∃𝑥 ∈ ω 𝐵𝑥))
76adantr 480 . . . . 5 ((𝐴 ∈ ω ∧ 𝐵𝐴) → (∃𝑥𝐴 𝐵𝑥 → ∃𝑥 ∈ ω 𝐵𝑥))
82, 7mpd 15 . . . 4 ((𝐴 ∈ ω ∧ 𝐵𝐴) → ∃𝑥 ∈ ω 𝐵𝑥)
9 isfi 8719 . . . 4 (𝐵 ∈ Fin ↔ ∃𝑥 ∈ ω 𝐵𝑥)
108, 9sylibr 233 . . 3 ((𝐴 ∈ ω ∧ 𝐵𝐴) → 𝐵 ∈ Fin)
11 eleq1 2826 . . . . 5 (𝐵 = 𝐴 → (𝐵 ∈ ω ↔ 𝐴 ∈ ω))
1211biimparc 479 . . . 4 ((𝐴 ∈ ω ∧ 𝐵 = 𝐴) → 𝐵 ∈ ω)
13 nnfi 8912 . . . 4 (𝐵 ∈ ω → 𝐵 ∈ Fin)
1412, 13syl 17 . . 3 ((𝐴 ∈ ω ∧ 𝐵 = 𝐴) → 𝐵 ∈ Fin)
1510, 14jaodan 954 . 2 ((𝐴 ∈ ω ∧ (𝐵𝐴𝐵 = 𝐴)) → 𝐵 ∈ Fin)
161, 15sylan2b 593 1 ((𝐴 ∈ ω ∧ 𝐵𝐴) → 𝐵 ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 843   = wceq 1539  wcel 2108  wrex 3064  wss 3883  wpss 3884   class class class wbr 5070  ωcom 7687  cen 8688  Fincfn 8691
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-om 7688  df-en 8692  df-fin 8695
This theorem is referenced by:  0fin  8916  ssfiALT  8919  en1eqsn  8977  isfinite2  9002  pwfiOLD  9044  wofib  9234  infpwfien  9749  fin67  10082  hashcard  13998  rexpen  15865
  Copyright terms: Public domain W3C validator