![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ssnnfi | Structured version Visualization version GIF version |
Description: A subset of a natural number is finite. (Contributed by NM, 24-Jun-1998.) |
Ref | Expression |
---|---|
ssnnfi | ⊢ ((𝐴 ∈ ω ∧ 𝐵 ⊆ 𝐴) → 𝐵 ∈ Fin) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sspss 3934 | . . 3 ⊢ (𝐵 ⊆ 𝐴 ↔ (𝐵 ⊊ 𝐴 ∨ 𝐵 = 𝐴)) | |
2 | pssnn 8453 | . . . . 5 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ⊊ 𝐴) → ∃𝑥 ∈ 𝐴 𝐵 ≈ 𝑥) | |
3 | elnn 7341 | . . . . . . . . 9 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝐴 ∈ ω) → 𝑥 ∈ ω) | |
4 | 3 | expcom 404 | . . . . . . . 8 ⊢ (𝐴 ∈ ω → (𝑥 ∈ 𝐴 → 𝑥 ∈ ω)) |
5 | 4 | anim1d 604 | . . . . . . 7 ⊢ (𝐴 ∈ ω → ((𝑥 ∈ 𝐴 ∧ 𝐵 ≈ 𝑥) → (𝑥 ∈ ω ∧ 𝐵 ≈ 𝑥))) |
6 | 5 | reximdv2 3222 | . . . . . 6 ⊢ (𝐴 ∈ ω → (∃𝑥 ∈ 𝐴 𝐵 ≈ 𝑥 → ∃𝑥 ∈ ω 𝐵 ≈ 𝑥)) |
7 | 6 | adantr 474 | . . . . 5 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ⊊ 𝐴) → (∃𝑥 ∈ 𝐴 𝐵 ≈ 𝑥 → ∃𝑥 ∈ ω 𝐵 ≈ 𝑥)) |
8 | 2, 7 | mpd 15 | . . . 4 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ⊊ 𝐴) → ∃𝑥 ∈ ω 𝐵 ≈ 𝑥) |
9 | eleq1 2894 | . . . . . 6 ⊢ (𝐵 = 𝐴 → (𝐵 ∈ ω ↔ 𝐴 ∈ ω)) | |
10 | 9 | biimparc 473 | . . . . 5 ⊢ ((𝐴 ∈ ω ∧ 𝐵 = 𝐴) → 𝐵 ∈ ω) |
11 | enrefg 8260 | . . . . . 6 ⊢ (𝐵 ∈ ω → 𝐵 ≈ 𝐵) | |
12 | 11 | ancli 544 | . . . . 5 ⊢ (𝐵 ∈ ω → (𝐵 ∈ ω ∧ 𝐵 ≈ 𝐵)) |
13 | breq2 4879 | . . . . . 6 ⊢ (𝑥 = 𝐵 → (𝐵 ≈ 𝑥 ↔ 𝐵 ≈ 𝐵)) | |
14 | 13 | rspcev 3526 | . . . . 5 ⊢ ((𝐵 ∈ ω ∧ 𝐵 ≈ 𝐵) → ∃𝑥 ∈ ω 𝐵 ≈ 𝑥) |
15 | 10, 12, 14 | 3syl 18 | . . . 4 ⊢ ((𝐴 ∈ ω ∧ 𝐵 = 𝐴) → ∃𝑥 ∈ ω 𝐵 ≈ 𝑥) |
16 | 8, 15 | jaodan 985 | . . 3 ⊢ ((𝐴 ∈ ω ∧ (𝐵 ⊊ 𝐴 ∨ 𝐵 = 𝐴)) → ∃𝑥 ∈ ω 𝐵 ≈ 𝑥) |
17 | 1, 16 | sylan2b 587 | . 2 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ⊆ 𝐴) → ∃𝑥 ∈ ω 𝐵 ≈ 𝑥) |
18 | isfi 8252 | . 2 ⊢ (𝐵 ∈ Fin ↔ ∃𝑥 ∈ ω 𝐵 ≈ 𝑥) | |
19 | 17, 18 | sylibr 226 | 1 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ⊆ 𝐴) → 𝐵 ∈ Fin) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 ∨ wo 878 = wceq 1656 ∈ wcel 2164 ∃wrex 3118 ⊆ wss 3798 ⊊ wpss 3799 class class class wbr 4875 ωcom 7331 ≈ cen 8225 Fincfn 8228 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-8 2166 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-13 2389 ax-ext 2803 ax-sep 5007 ax-nul 5015 ax-pow 5067 ax-pr 5129 ax-un 7214 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-3or 1112 df-3an 1113 df-tru 1660 df-ex 1879 df-nf 1883 df-sb 2068 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-ral 3122 df-rex 3123 df-rab 3126 df-v 3416 df-sbc 3663 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-pss 3814 df-nul 4147 df-if 4309 df-pw 4382 df-sn 4400 df-pr 4402 df-tp 4404 df-op 4406 df-uni 4661 df-br 4876 df-opab 4938 df-tr 4978 df-id 5252 df-eprel 5257 df-po 5265 df-so 5266 df-fr 5305 df-we 5307 df-xp 5352 df-rel 5353 df-cnv 5354 df-co 5355 df-dm 5356 df-rn 5357 df-res 5358 df-ima 5359 df-ord 5970 df-on 5971 df-lim 5972 df-suc 5973 df-fun 6129 df-fn 6130 df-f 6131 df-f1 6132 df-fo 6133 df-f1o 6134 df-om 7332 df-en 8229 df-fin 8232 |
This theorem is referenced by: ssfi 8455 0fin 8463 en1eqsn 8465 isfinite2 8493 pwfi 8536 wofib 8726 infpwfien 9205 fin67 9539 hashcard 13443 rexpen 15338 |
Copyright terms: Public domain | W3C validator |