Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ssnnfi | Structured version Visualization version GIF version |
Description: A subset of a natural number is finite. (Contributed by NM, 24-Jun-1998.) (Proof shortened by BTernaryTau, 23-Sep-2024.) |
Ref | Expression |
---|---|
ssnnfi | ⊢ ((𝐴 ∈ ω ∧ 𝐵 ⊆ 𝐴) → 𝐵 ∈ Fin) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sspss 4034 | . 2 ⊢ (𝐵 ⊆ 𝐴 ↔ (𝐵 ⊊ 𝐴 ∨ 𝐵 = 𝐴)) | |
2 | pssnn 8951 | . . . . 5 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ⊊ 𝐴) → ∃𝑥 ∈ 𝐴 𝐵 ≈ 𝑥) | |
3 | elnn 7723 | . . . . . . . . 9 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝐴 ∈ ω) → 𝑥 ∈ ω) | |
4 | 3 | expcom 414 | . . . . . . . 8 ⊢ (𝐴 ∈ ω → (𝑥 ∈ 𝐴 → 𝑥 ∈ ω)) |
5 | 4 | anim1d 611 | . . . . . . 7 ⊢ (𝐴 ∈ ω → ((𝑥 ∈ 𝐴 ∧ 𝐵 ≈ 𝑥) → (𝑥 ∈ ω ∧ 𝐵 ≈ 𝑥))) |
6 | 5 | reximdv2 3199 | . . . . . 6 ⊢ (𝐴 ∈ ω → (∃𝑥 ∈ 𝐴 𝐵 ≈ 𝑥 → ∃𝑥 ∈ ω 𝐵 ≈ 𝑥)) |
7 | 6 | adantr 481 | . . . . 5 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ⊊ 𝐴) → (∃𝑥 ∈ 𝐴 𝐵 ≈ 𝑥 → ∃𝑥 ∈ ω 𝐵 ≈ 𝑥)) |
8 | 2, 7 | mpd 15 | . . . 4 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ⊊ 𝐴) → ∃𝑥 ∈ ω 𝐵 ≈ 𝑥) |
9 | isfi 8764 | . . . 4 ⊢ (𝐵 ∈ Fin ↔ ∃𝑥 ∈ ω 𝐵 ≈ 𝑥) | |
10 | 8, 9 | sylibr 233 | . . 3 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ⊊ 𝐴) → 𝐵 ∈ Fin) |
11 | eleq1 2826 | . . . . 5 ⊢ (𝐵 = 𝐴 → (𝐵 ∈ ω ↔ 𝐴 ∈ ω)) | |
12 | 11 | biimparc 480 | . . . 4 ⊢ ((𝐴 ∈ ω ∧ 𝐵 = 𝐴) → 𝐵 ∈ ω) |
13 | nnfi 8950 | . . . 4 ⊢ (𝐵 ∈ ω → 𝐵 ∈ Fin) | |
14 | 12, 13 | syl 17 | . . 3 ⊢ ((𝐴 ∈ ω ∧ 𝐵 = 𝐴) → 𝐵 ∈ Fin) |
15 | 10, 14 | jaodan 955 | . 2 ⊢ ((𝐴 ∈ ω ∧ (𝐵 ⊊ 𝐴 ∨ 𝐵 = 𝐴)) → 𝐵 ∈ Fin) |
16 | 1, 15 | sylan2b 594 | 1 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ⊆ 𝐴) → 𝐵 ∈ Fin) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∨ wo 844 = wceq 1539 ∈ wcel 2106 ∃wrex 3065 ⊆ wss 3887 ⊊ wpss 3888 class class class wbr 5074 ωcom 7712 ≈ cen 8730 Fincfn 8733 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-om 7713 df-en 8734 df-fin 8737 |
This theorem is referenced by: 0fin 8954 ssfiALT 8957 en1eqsn 9048 isfinite2 9072 pwfiOLD 9114 wofib 9304 infpwfien 9818 fin67 10151 hashcard 14070 rexpen 15937 |
Copyright terms: Public domain | W3C validator |