MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssnnfi Structured version   Visualization version   GIF version

Theorem ssnnfi 8385
Description: A subset of a natural number is finite. (Contributed by NM, 24-Jun-1998.)
Assertion
Ref Expression
ssnnfi ((𝐴 ∈ ω ∧ 𝐵𝐴) → 𝐵 ∈ Fin)

Proof of Theorem ssnnfi
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 sspss 3866 . . 3 (𝐵𝐴 ↔ (𝐵𝐴𝐵 = 𝐴))
2 pssnn 8384 . . . . 5 ((𝐴 ∈ ω ∧ 𝐵𝐴) → ∃𝑥𝐴 𝐵𝑥)
3 elnn 7272 . . . . . . . . 9 ((𝑥𝐴𝐴 ∈ ω) → 𝑥 ∈ ω)
43expcom 402 . . . . . . . 8 (𝐴 ∈ ω → (𝑥𝐴𝑥 ∈ ω))
54anim1d 604 . . . . . . 7 (𝐴 ∈ ω → ((𝑥𝐴𝐵𝑥) → (𝑥 ∈ ω ∧ 𝐵𝑥)))
65reximdv2 3159 . . . . . 6 (𝐴 ∈ ω → (∃𝑥𝐴 𝐵𝑥 → ∃𝑥 ∈ ω 𝐵𝑥))
76adantr 472 . . . . 5 ((𝐴 ∈ ω ∧ 𝐵𝐴) → (∃𝑥𝐴 𝐵𝑥 → ∃𝑥 ∈ ω 𝐵𝑥))
82, 7mpd 15 . . . 4 ((𝐴 ∈ ω ∧ 𝐵𝐴) → ∃𝑥 ∈ ω 𝐵𝑥)
9 eleq1 2831 . . . . . 6 (𝐵 = 𝐴 → (𝐵 ∈ ω ↔ 𝐴 ∈ ω))
109biimparc 471 . . . . 5 ((𝐴 ∈ ω ∧ 𝐵 = 𝐴) → 𝐵 ∈ ω)
11 enrefg 8191 . . . . . 6 (𝐵 ∈ ω → 𝐵𝐵)
1211ancli 544 . . . . 5 (𝐵 ∈ ω → (𝐵 ∈ ω ∧ 𝐵𝐵))
13 breq2 4812 . . . . . 6 (𝑥 = 𝐵 → (𝐵𝑥𝐵𝐵))
1413rspcev 3460 . . . . 5 ((𝐵 ∈ ω ∧ 𝐵𝐵) → ∃𝑥 ∈ ω 𝐵𝑥)
1510, 12, 143syl 18 . . . 4 ((𝐴 ∈ ω ∧ 𝐵 = 𝐴) → ∃𝑥 ∈ ω 𝐵𝑥)
168, 15jaodan 980 . . 3 ((𝐴 ∈ ω ∧ (𝐵𝐴𝐵 = 𝐴)) → ∃𝑥 ∈ ω 𝐵𝑥)
171, 16sylan2b 587 . 2 ((𝐴 ∈ ω ∧ 𝐵𝐴) → ∃𝑥 ∈ ω 𝐵𝑥)
18 isfi 8183 . 2 (𝐵 ∈ Fin ↔ ∃𝑥 ∈ ω 𝐵𝑥)
1917, 18sylibr 225 1 ((𝐴 ∈ ω ∧ 𝐵𝐴) → 𝐵 ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  wo 873   = wceq 1652  wcel 2155  wrex 3055  wss 3731  wpss 3732   class class class wbr 4808  ωcom 7262  cen 8156  Fincfn 8159
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2069  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2349  ax-ext 2742  ax-sep 4940  ax-nul 4948  ax-pow 5000  ax-pr 5061  ax-un 7146
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2062  df-mo 2564  df-eu 2581  df-clab 2751  df-cleq 2757  df-clel 2760  df-nfc 2895  df-ne 2937  df-ral 3059  df-rex 3060  df-rab 3063  df-v 3351  df-sbc 3596  df-dif 3734  df-un 3736  df-in 3738  df-ss 3745  df-pss 3747  df-nul 4079  df-if 4243  df-pw 4316  df-sn 4334  df-pr 4336  df-tp 4338  df-op 4340  df-uni 4594  df-br 4809  df-opab 4871  df-tr 4911  df-id 5184  df-eprel 5189  df-po 5197  df-so 5198  df-fr 5235  df-we 5237  df-xp 5282  df-rel 5283  df-cnv 5284  df-co 5285  df-dm 5286  df-rn 5287  df-res 5288  df-ima 5289  df-ord 5910  df-on 5911  df-lim 5912  df-suc 5913  df-fun 6069  df-fn 6070  df-f 6071  df-f1 6072  df-fo 6073  df-f1o 6074  df-om 7263  df-en 8160  df-fin 8163
This theorem is referenced by:  ssfi  8386  0fin  8394  en1eqsn  8396  isfinite2  8424  pwfi  8467  wofib  8656  infpwfien  9135  fin67  9469  hashcard  13347  rexpen  15240
  Copyright terms: Public domain W3C validator