MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  idnghm Structured version   Visualization version   GIF version

Theorem idnghm 24680
Description: The identity operator is a normed group homomorphism. (Contributed by Mario Carneiro, 18-Oct-2015.)
Hypothesis
Ref Expression
idnghm.2 𝑉 = (Base‘𝑆)
Assertion
Ref Expression
idnghm (𝑆 ∈ NrmGrp → ( I ↾ 𝑉) ∈ (𝑆 NGHom 𝑆))

Proof of Theorem idnghm
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqid 2735 . . . . 5 (𝑆 normOp 𝑆) = (𝑆 normOp 𝑆)
2 idnghm.2 . . . . 5 𝑉 = (Base‘𝑆)
3 eqid 2735 . . . . 5 (0g𝑆) = (0g𝑆)
41, 2, 3nmoid 24679 . . . 4 ((𝑆 ∈ NrmGrp ∧ {(0g𝑆)} ⊊ 𝑉) → ((𝑆 normOp 𝑆)‘( I ↾ 𝑉)) = 1)
5 1re 11233 . . . 4 1 ∈ ℝ
64, 5eqeltrdi 2842 . . 3 ((𝑆 ∈ NrmGrp ∧ {(0g𝑆)} ⊊ 𝑉) → ((𝑆 normOp 𝑆)‘( I ↾ 𝑉)) ∈ ℝ)
7 eleq2 2823 . . . . . . . . . 10 ({(0g𝑆)} = 𝑉 → (𝑥 ∈ {(0g𝑆)} ↔ 𝑥𝑉))
87biimpar 477 . . . . . . . . 9 (({(0g𝑆)} = 𝑉𝑥𝑉) → 𝑥 ∈ {(0g𝑆)})
9 elsni 4618 . . . . . . . . 9 (𝑥 ∈ {(0g𝑆)} → 𝑥 = (0g𝑆))
108, 9syl 17 . . . . . . . 8 (({(0g𝑆)} = 𝑉𝑥𝑉) → 𝑥 = (0g𝑆))
1110mpteq2dva 5214 . . . . . . 7 ({(0g𝑆)} = 𝑉 → (𝑥𝑉𝑥) = (𝑥𝑉 ↦ (0g𝑆)))
12 mptresid 6038 . . . . . . 7 ( I ↾ 𝑉) = (𝑥𝑉𝑥)
13 fconstmpt 5716 . . . . . . 7 (𝑉 × {(0g𝑆)}) = (𝑥𝑉 ↦ (0g𝑆))
1411, 12, 133eqtr4g 2795 . . . . . 6 ({(0g𝑆)} = 𝑉 → ( I ↾ 𝑉) = (𝑉 × {(0g𝑆)}))
1514fveq2d 6879 . . . . 5 ({(0g𝑆)} = 𝑉 → ((𝑆 normOp 𝑆)‘( I ↾ 𝑉)) = ((𝑆 normOp 𝑆)‘(𝑉 × {(0g𝑆)})))
161, 2, 3nmo0 24672 . . . . . 6 ((𝑆 ∈ NrmGrp ∧ 𝑆 ∈ NrmGrp) → ((𝑆 normOp 𝑆)‘(𝑉 × {(0g𝑆)})) = 0)
1716anidms 566 . . . . 5 (𝑆 ∈ NrmGrp → ((𝑆 normOp 𝑆)‘(𝑉 × {(0g𝑆)})) = 0)
1815, 17sylan9eqr 2792 . . . 4 ((𝑆 ∈ NrmGrp ∧ {(0g𝑆)} = 𝑉) → ((𝑆 normOp 𝑆)‘( I ↾ 𝑉)) = 0)
19 0re 11235 . . . 4 0 ∈ ℝ
2018, 19eqeltrdi 2842 . . 3 ((𝑆 ∈ NrmGrp ∧ {(0g𝑆)} = 𝑉) → ((𝑆 normOp 𝑆)‘( I ↾ 𝑉)) ∈ ℝ)
21 ngpgrp 24536 . . . . . 6 (𝑆 ∈ NrmGrp → 𝑆 ∈ Grp)
222, 3grpidcl 18946 . . . . . 6 (𝑆 ∈ Grp → (0g𝑆) ∈ 𝑉)
2321, 22syl 17 . . . . 5 (𝑆 ∈ NrmGrp → (0g𝑆) ∈ 𝑉)
2423snssd 4785 . . . 4 (𝑆 ∈ NrmGrp → {(0g𝑆)} ⊆ 𝑉)
25 sspss 4077 . . . 4 ({(0g𝑆)} ⊆ 𝑉 ↔ ({(0g𝑆)} ⊊ 𝑉 ∨ {(0g𝑆)} = 𝑉))
2624, 25sylib 218 . . 3 (𝑆 ∈ NrmGrp → ({(0g𝑆)} ⊊ 𝑉 ∨ {(0g𝑆)} = 𝑉))
276, 20, 26mpjaodan 960 . 2 (𝑆 ∈ NrmGrp → ((𝑆 normOp 𝑆)‘( I ↾ 𝑉)) ∈ ℝ)
28 id 22 . . 3 (𝑆 ∈ NrmGrp → 𝑆 ∈ NrmGrp)
292idghm 19212 . . . 4 (𝑆 ∈ Grp → ( I ↾ 𝑉) ∈ (𝑆 GrpHom 𝑆))
3021, 29syl 17 . . 3 (𝑆 ∈ NrmGrp → ( I ↾ 𝑉) ∈ (𝑆 GrpHom 𝑆))
311isnghm2 24661 . . 3 ((𝑆 ∈ NrmGrp ∧ 𝑆 ∈ NrmGrp ∧ ( I ↾ 𝑉) ∈ (𝑆 GrpHom 𝑆)) → (( I ↾ 𝑉) ∈ (𝑆 NGHom 𝑆) ↔ ((𝑆 normOp 𝑆)‘( I ↾ 𝑉)) ∈ ℝ))
3228, 30, 31mpd3an23 1465 . 2 (𝑆 ∈ NrmGrp → (( I ↾ 𝑉) ∈ (𝑆 NGHom 𝑆) ↔ ((𝑆 normOp 𝑆)‘( I ↾ 𝑉)) ∈ ℝ))
3327, 32mpbird 257 1 (𝑆 ∈ NrmGrp → ( I ↾ 𝑉) ∈ (𝑆 NGHom 𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2108  wss 3926  wpss 3927  {csn 4601  cmpt 5201   I cid 5547   × cxp 5652  cres 5656  cfv 6530  (class class class)co 7403  cr 11126  0cc0 11127  1c1 11128  Basecbs 17226  0gc0g 17451  Grpcgrp 18914   GrpHom cghm 19193  NrmGrpcngp 24514   normOp cnmo 24642   NGHom cnghm 24643
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727  ax-cnex 11183  ax-resscn 11184  ax-1cn 11185  ax-icn 11186  ax-addcl 11187  ax-addrcl 11188  ax-mulcl 11189  ax-mulrcl 11190  ax-mulcom 11191  ax-addass 11192  ax-mulass 11193  ax-distr 11194  ax-i2m1 11195  ax-1ne0 11196  ax-1rid 11197  ax-rnegex 11198  ax-rrecex 11199  ax-cnre 11200  ax-pre-lttri 11201  ax-pre-lttrn 11202  ax-pre-ltadd 11203  ax-pre-mulgt0 11204  ax-pre-sup 11205
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-riota 7360  df-ov 7406  df-oprab 7407  df-mpo 7408  df-om 7860  df-1st 7986  df-2nd 7987  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-er 8717  df-map 8840  df-en 8958  df-dom 8959  df-sdom 8960  df-sup 9452  df-inf 9453  df-pnf 11269  df-mnf 11270  df-xr 11271  df-ltxr 11272  df-le 11273  df-sub 11466  df-neg 11467  df-div 11893  df-nn 12239  df-2 12301  df-n0 12500  df-z 12587  df-uz 12851  df-q 12963  df-rp 13007  df-xneg 13126  df-xadd 13127  df-xmul 13128  df-ico 13366  df-0g 17453  df-topgen 17455  df-mgm 18616  df-sgrp 18695  df-mnd 18711  df-mhm 18759  df-grp 18917  df-ghm 19194  df-psmet 21305  df-xmet 21306  df-met 21307  df-bl 21308  df-mopn 21309  df-top 22830  df-topon 22847  df-topsp 22869  df-bases 22882  df-xms 24257  df-ms 24258  df-nm 24519  df-ngp 24520  df-nmo 24645  df-nghm 24646
This theorem is referenced by:  idnmhm  24691
  Copyright terms: Public domain W3C validator