MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  idnghm Structured version   Visualization version   GIF version

Theorem idnghm 24785
Description: The identity operator is a normed group homomorphism. (Contributed by Mario Carneiro, 18-Oct-2015.)
Hypothesis
Ref Expression
idnghm.2 𝑉 = (Base‘𝑆)
Assertion
Ref Expression
idnghm (𝑆 ∈ NrmGrp → ( I ↾ 𝑉) ∈ (𝑆 NGHom 𝑆))

Proof of Theorem idnghm
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqid 2740 . . . . 5 (𝑆 normOp 𝑆) = (𝑆 normOp 𝑆)
2 idnghm.2 . . . . 5 𝑉 = (Base‘𝑆)
3 eqid 2740 . . . . 5 (0g𝑆) = (0g𝑆)
41, 2, 3nmoid 24784 . . . 4 ((𝑆 ∈ NrmGrp ∧ {(0g𝑆)} ⊊ 𝑉) → ((𝑆 normOp 𝑆)‘( I ↾ 𝑉)) = 1)
5 1re 11290 . . . 4 1 ∈ ℝ
64, 5eqeltrdi 2852 . . 3 ((𝑆 ∈ NrmGrp ∧ {(0g𝑆)} ⊊ 𝑉) → ((𝑆 normOp 𝑆)‘( I ↾ 𝑉)) ∈ ℝ)
7 eleq2 2833 . . . . . . . . . 10 ({(0g𝑆)} = 𝑉 → (𝑥 ∈ {(0g𝑆)} ↔ 𝑥𝑉))
87biimpar 477 . . . . . . . . 9 (({(0g𝑆)} = 𝑉𝑥𝑉) → 𝑥 ∈ {(0g𝑆)})
9 elsni 4665 . . . . . . . . 9 (𝑥 ∈ {(0g𝑆)} → 𝑥 = (0g𝑆))
108, 9syl 17 . . . . . . . 8 (({(0g𝑆)} = 𝑉𝑥𝑉) → 𝑥 = (0g𝑆))
1110mpteq2dva 5266 . . . . . . 7 ({(0g𝑆)} = 𝑉 → (𝑥𝑉𝑥) = (𝑥𝑉 ↦ (0g𝑆)))
12 mptresid 6080 . . . . . . 7 ( I ↾ 𝑉) = (𝑥𝑉𝑥)
13 fconstmpt 5762 . . . . . . 7 (𝑉 × {(0g𝑆)}) = (𝑥𝑉 ↦ (0g𝑆))
1411, 12, 133eqtr4g 2805 . . . . . 6 ({(0g𝑆)} = 𝑉 → ( I ↾ 𝑉) = (𝑉 × {(0g𝑆)}))
1514fveq2d 6924 . . . . 5 ({(0g𝑆)} = 𝑉 → ((𝑆 normOp 𝑆)‘( I ↾ 𝑉)) = ((𝑆 normOp 𝑆)‘(𝑉 × {(0g𝑆)})))
161, 2, 3nmo0 24777 . . . . . 6 ((𝑆 ∈ NrmGrp ∧ 𝑆 ∈ NrmGrp) → ((𝑆 normOp 𝑆)‘(𝑉 × {(0g𝑆)})) = 0)
1716anidms 566 . . . . 5 (𝑆 ∈ NrmGrp → ((𝑆 normOp 𝑆)‘(𝑉 × {(0g𝑆)})) = 0)
1815, 17sylan9eqr 2802 . . . 4 ((𝑆 ∈ NrmGrp ∧ {(0g𝑆)} = 𝑉) → ((𝑆 normOp 𝑆)‘( I ↾ 𝑉)) = 0)
19 0re 11292 . . . 4 0 ∈ ℝ
2018, 19eqeltrdi 2852 . . 3 ((𝑆 ∈ NrmGrp ∧ {(0g𝑆)} = 𝑉) → ((𝑆 normOp 𝑆)‘( I ↾ 𝑉)) ∈ ℝ)
21 ngpgrp 24633 . . . . . 6 (𝑆 ∈ NrmGrp → 𝑆 ∈ Grp)
222, 3grpidcl 19005 . . . . . 6 (𝑆 ∈ Grp → (0g𝑆) ∈ 𝑉)
2321, 22syl 17 . . . . 5 (𝑆 ∈ NrmGrp → (0g𝑆) ∈ 𝑉)
2423snssd 4834 . . . 4 (𝑆 ∈ NrmGrp → {(0g𝑆)} ⊆ 𝑉)
25 sspss 4125 . . . 4 ({(0g𝑆)} ⊆ 𝑉 ↔ ({(0g𝑆)} ⊊ 𝑉 ∨ {(0g𝑆)} = 𝑉))
2624, 25sylib 218 . . 3 (𝑆 ∈ NrmGrp → ({(0g𝑆)} ⊊ 𝑉 ∨ {(0g𝑆)} = 𝑉))
276, 20, 26mpjaodan 959 . 2 (𝑆 ∈ NrmGrp → ((𝑆 normOp 𝑆)‘( I ↾ 𝑉)) ∈ ℝ)
28 id 22 . . 3 (𝑆 ∈ NrmGrp → 𝑆 ∈ NrmGrp)
292idghm 19271 . . . 4 (𝑆 ∈ Grp → ( I ↾ 𝑉) ∈ (𝑆 GrpHom 𝑆))
3021, 29syl 17 . . 3 (𝑆 ∈ NrmGrp → ( I ↾ 𝑉) ∈ (𝑆 GrpHom 𝑆))
311isnghm2 24766 . . 3 ((𝑆 ∈ NrmGrp ∧ 𝑆 ∈ NrmGrp ∧ ( I ↾ 𝑉) ∈ (𝑆 GrpHom 𝑆)) → (( I ↾ 𝑉) ∈ (𝑆 NGHom 𝑆) ↔ ((𝑆 normOp 𝑆)‘( I ↾ 𝑉)) ∈ ℝ))
3228, 30, 31mpd3an23 1463 . 2 (𝑆 ∈ NrmGrp → (( I ↾ 𝑉) ∈ (𝑆 NGHom 𝑆) ↔ ((𝑆 normOp 𝑆)‘( I ↾ 𝑉)) ∈ ℝ))
3327, 32mpbird 257 1 (𝑆 ∈ NrmGrp → ( I ↾ 𝑉) ∈ (𝑆 NGHom 𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 846   = wceq 1537  wcel 2108  wss 3976  wpss 3977  {csn 4648  cmpt 5249   I cid 5592   × cxp 5698  cres 5702  cfv 6573  (class class class)co 7448  cr 11183  0cc0 11184  1c1 11185  Basecbs 17258  0gc0g 17499  Grpcgrp 18973   GrpHom cghm 19252  NrmGrpcngp 24611   normOp cnmo 24747   NGHom cnghm 24748
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-sup 9511  df-inf 9512  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-n0 12554  df-z 12640  df-uz 12904  df-q 13014  df-rp 13058  df-xneg 13175  df-xadd 13176  df-xmul 13177  df-ico 13413  df-0g 17501  df-topgen 17503  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-mhm 18818  df-grp 18976  df-ghm 19253  df-psmet 21379  df-xmet 21380  df-met 21381  df-bl 21382  df-mopn 21383  df-top 22921  df-topon 22938  df-topsp 22960  df-bases 22974  df-xms 24351  df-ms 24352  df-nm 24616  df-ngp 24617  df-nmo 24750  df-nghm 24751
This theorem is referenced by:  idnmhm  24796
  Copyright terms: Public domain W3C validator