MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  idnghm Structured version   Visualization version   GIF version

Theorem idnghm 24482
Description: The identity operator is a normed group homomorphism. (Contributed by Mario Carneiro, 18-Oct-2015.)
Hypothesis
Ref Expression
idnghm.2 𝑉 = (Base‘𝑆)
Assertion
Ref Expression
idnghm (𝑆 ∈ NrmGrp → ( I ↾ 𝑉) ∈ (𝑆 NGHom 𝑆))

Proof of Theorem idnghm
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqid 2730 . . . . 5 (𝑆 normOp 𝑆) = (𝑆 normOp 𝑆)
2 idnghm.2 . . . . 5 𝑉 = (Base‘𝑆)
3 eqid 2730 . . . . 5 (0g𝑆) = (0g𝑆)
41, 2, 3nmoid 24481 . . . 4 ((𝑆 ∈ NrmGrp ∧ {(0g𝑆)} ⊊ 𝑉) → ((𝑆 normOp 𝑆)‘( I ↾ 𝑉)) = 1)
5 1re 11220 . . . 4 1 ∈ ℝ
64, 5eqeltrdi 2839 . . 3 ((𝑆 ∈ NrmGrp ∧ {(0g𝑆)} ⊊ 𝑉) → ((𝑆 normOp 𝑆)‘( I ↾ 𝑉)) ∈ ℝ)
7 eleq2 2820 . . . . . . . . . 10 ({(0g𝑆)} = 𝑉 → (𝑥 ∈ {(0g𝑆)} ↔ 𝑥𝑉))
87biimpar 476 . . . . . . . . 9 (({(0g𝑆)} = 𝑉𝑥𝑉) → 𝑥 ∈ {(0g𝑆)})
9 elsni 4646 . . . . . . . . 9 (𝑥 ∈ {(0g𝑆)} → 𝑥 = (0g𝑆))
108, 9syl 17 . . . . . . . 8 (({(0g𝑆)} = 𝑉𝑥𝑉) → 𝑥 = (0g𝑆))
1110mpteq2dva 5249 . . . . . . 7 ({(0g𝑆)} = 𝑉 → (𝑥𝑉𝑥) = (𝑥𝑉 ↦ (0g𝑆)))
12 mptresid 6051 . . . . . . 7 ( I ↾ 𝑉) = (𝑥𝑉𝑥)
13 fconstmpt 5739 . . . . . . 7 (𝑉 × {(0g𝑆)}) = (𝑥𝑉 ↦ (0g𝑆))
1411, 12, 133eqtr4g 2795 . . . . . 6 ({(0g𝑆)} = 𝑉 → ( I ↾ 𝑉) = (𝑉 × {(0g𝑆)}))
1514fveq2d 6896 . . . . 5 ({(0g𝑆)} = 𝑉 → ((𝑆 normOp 𝑆)‘( I ↾ 𝑉)) = ((𝑆 normOp 𝑆)‘(𝑉 × {(0g𝑆)})))
161, 2, 3nmo0 24474 . . . . . 6 ((𝑆 ∈ NrmGrp ∧ 𝑆 ∈ NrmGrp) → ((𝑆 normOp 𝑆)‘(𝑉 × {(0g𝑆)})) = 0)
1716anidms 565 . . . . 5 (𝑆 ∈ NrmGrp → ((𝑆 normOp 𝑆)‘(𝑉 × {(0g𝑆)})) = 0)
1815, 17sylan9eqr 2792 . . . 4 ((𝑆 ∈ NrmGrp ∧ {(0g𝑆)} = 𝑉) → ((𝑆 normOp 𝑆)‘( I ↾ 𝑉)) = 0)
19 0re 11222 . . . 4 0 ∈ ℝ
2018, 19eqeltrdi 2839 . . 3 ((𝑆 ∈ NrmGrp ∧ {(0g𝑆)} = 𝑉) → ((𝑆 normOp 𝑆)‘( I ↾ 𝑉)) ∈ ℝ)
21 ngpgrp 24330 . . . . . 6 (𝑆 ∈ NrmGrp → 𝑆 ∈ Grp)
222, 3grpidcl 18888 . . . . . 6 (𝑆 ∈ Grp → (0g𝑆) ∈ 𝑉)
2321, 22syl 17 . . . . 5 (𝑆 ∈ NrmGrp → (0g𝑆) ∈ 𝑉)
2423snssd 4813 . . . 4 (𝑆 ∈ NrmGrp → {(0g𝑆)} ⊆ 𝑉)
25 sspss 4100 . . . 4 ({(0g𝑆)} ⊆ 𝑉 ↔ ({(0g𝑆)} ⊊ 𝑉 ∨ {(0g𝑆)} = 𝑉))
2624, 25sylib 217 . . 3 (𝑆 ∈ NrmGrp → ({(0g𝑆)} ⊊ 𝑉 ∨ {(0g𝑆)} = 𝑉))
276, 20, 26mpjaodan 955 . 2 (𝑆 ∈ NrmGrp → ((𝑆 normOp 𝑆)‘( I ↾ 𝑉)) ∈ ℝ)
28 id 22 . . 3 (𝑆 ∈ NrmGrp → 𝑆 ∈ NrmGrp)
292idghm 19147 . . . 4 (𝑆 ∈ Grp → ( I ↾ 𝑉) ∈ (𝑆 GrpHom 𝑆))
3021, 29syl 17 . . 3 (𝑆 ∈ NrmGrp → ( I ↾ 𝑉) ∈ (𝑆 GrpHom 𝑆))
311isnghm2 24463 . . 3 ((𝑆 ∈ NrmGrp ∧ 𝑆 ∈ NrmGrp ∧ ( I ↾ 𝑉) ∈ (𝑆 GrpHom 𝑆)) → (( I ↾ 𝑉) ∈ (𝑆 NGHom 𝑆) ↔ ((𝑆 normOp 𝑆)‘( I ↾ 𝑉)) ∈ ℝ))
3228, 30, 31mpd3an23 1461 . 2 (𝑆 ∈ NrmGrp → (( I ↾ 𝑉) ∈ (𝑆 NGHom 𝑆) ↔ ((𝑆 normOp 𝑆)‘( I ↾ 𝑉)) ∈ ℝ))
3327, 32mpbird 256 1 (𝑆 ∈ NrmGrp → ( I ↾ 𝑉) ∈ (𝑆 NGHom 𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  wo 843   = wceq 1539  wcel 2104  wss 3949  wpss 3950  {csn 4629  cmpt 5232   I cid 5574   × cxp 5675  cres 5679  cfv 6544  (class class class)co 7413  cr 11113  0cc0 11114  1c1 11115  Basecbs 17150  0gc0g 17391  Grpcgrp 18857   GrpHom cghm 19129  NrmGrpcngp 24308   normOp cnmo 24444   NGHom cnghm 24445
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7729  ax-cnex 11170  ax-resscn 11171  ax-1cn 11172  ax-icn 11173  ax-addcl 11174  ax-addrcl 11175  ax-mulcl 11176  ax-mulrcl 11177  ax-mulcom 11178  ax-addass 11179  ax-mulass 11180  ax-distr 11181  ax-i2m1 11182  ax-1ne0 11183  ax-1rid 11184  ax-rnegex 11185  ax-rrecex 11186  ax-cnre 11187  ax-pre-lttri 11188  ax-pre-lttrn 11189  ax-pre-ltadd 11190  ax-pre-mulgt0 11191  ax-pre-sup 11192
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7369  df-ov 7416  df-oprab 7417  df-mpo 7418  df-om 7860  df-1st 7979  df-2nd 7980  df-frecs 8270  df-wrecs 8301  df-recs 8375  df-rdg 8414  df-er 8707  df-map 8826  df-en 8944  df-dom 8945  df-sdom 8946  df-sup 9441  df-inf 9442  df-pnf 11256  df-mnf 11257  df-xr 11258  df-ltxr 11259  df-le 11260  df-sub 11452  df-neg 11453  df-div 11878  df-nn 12219  df-2 12281  df-n0 12479  df-z 12565  df-uz 12829  df-q 12939  df-rp 12981  df-xneg 13098  df-xadd 13099  df-xmul 13100  df-ico 13336  df-0g 17393  df-topgen 17395  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-mhm 18707  df-grp 18860  df-ghm 19130  df-psmet 21138  df-xmet 21139  df-met 21140  df-bl 21141  df-mopn 21142  df-top 22618  df-topon 22635  df-topsp 22657  df-bases 22671  df-xms 24048  df-ms 24049  df-nm 24313  df-ngp 24314  df-nmo 24447  df-nghm 24448
This theorem is referenced by:  idnmhm  24493
  Copyright terms: Public domain W3C validator