| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > idnghm | Structured version Visualization version GIF version | ||
| Description: The identity operator is a normed group homomorphism. (Contributed by Mario Carneiro, 18-Oct-2015.) |
| Ref | Expression |
|---|---|
| idnghm.2 | ⊢ 𝑉 = (Base‘𝑆) |
| Ref | Expression |
|---|---|
| idnghm | ⊢ (𝑆 ∈ NrmGrp → ( I ↾ 𝑉) ∈ (𝑆 NGHom 𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2730 | . . . . 5 ⊢ (𝑆 normOp 𝑆) = (𝑆 normOp 𝑆) | |
| 2 | idnghm.2 | . . . . 5 ⊢ 𝑉 = (Base‘𝑆) | |
| 3 | eqid 2730 | . . . . 5 ⊢ (0g‘𝑆) = (0g‘𝑆) | |
| 4 | 1, 2, 3 | nmoid 24637 | . . . 4 ⊢ ((𝑆 ∈ NrmGrp ∧ {(0g‘𝑆)} ⊊ 𝑉) → ((𝑆 normOp 𝑆)‘( I ↾ 𝑉)) = 1) |
| 5 | 1re 11181 | . . . 4 ⊢ 1 ∈ ℝ | |
| 6 | 4, 5 | eqeltrdi 2837 | . . 3 ⊢ ((𝑆 ∈ NrmGrp ∧ {(0g‘𝑆)} ⊊ 𝑉) → ((𝑆 normOp 𝑆)‘( I ↾ 𝑉)) ∈ ℝ) |
| 7 | eleq2 2818 | . . . . . . . . . 10 ⊢ ({(0g‘𝑆)} = 𝑉 → (𝑥 ∈ {(0g‘𝑆)} ↔ 𝑥 ∈ 𝑉)) | |
| 8 | 7 | biimpar 477 | . . . . . . . . 9 ⊢ (({(0g‘𝑆)} = 𝑉 ∧ 𝑥 ∈ 𝑉) → 𝑥 ∈ {(0g‘𝑆)}) |
| 9 | elsni 4609 | . . . . . . . . 9 ⊢ (𝑥 ∈ {(0g‘𝑆)} → 𝑥 = (0g‘𝑆)) | |
| 10 | 8, 9 | syl 17 | . . . . . . . 8 ⊢ (({(0g‘𝑆)} = 𝑉 ∧ 𝑥 ∈ 𝑉) → 𝑥 = (0g‘𝑆)) |
| 11 | 10 | mpteq2dva 5203 | . . . . . . 7 ⊢ ({(0g‘𝑆)} = 𝑉 → (𝑥 ∈ 𝑉 ↦ 𝑥) = (𝑥 ∈ 𝑉 ↦ (0g‘𝑆))) |
| 12 | mptresid 6025 | . . . . . . 7 ⊢ ( I ↾ 𝑉) = (𝑥 ∈ 𝑉 ↦ 𝑥) | |
| 13 | fconstmpt 5703 | . . . . . . 7 ⊢ (𝑉 × {(0g‘𝑆)}) = (𝑥 ∈ 𝑉 ↦ (0g‘𝑆)) | |
| 14 | 11, 12, 13 | 3eqtr4g 2790 | . . . . . 6 ⊢ ({(0g‘𝑆)} = 𝑉 → ( I ↾ 𝑉) = (𝑉 × {(0g‘𝑆)})) |
| 15 | 14 | fveq2d 6865 | . . . . 5 ⊢ ({(0g‘𝑆)} = 𝑉 → ((𝑆 normOp 𝑆)‘( I ↾ 𝑉)) = ((𝑆 normOp 𝑆)‘(𝑉 × {(0g‘𝑆)}))) |
| 16 | 1, 2, 3 | nmo0 24630 | . . . . . 6 ⊢ ((𝑆 ∈ NrmGrp ∧ 𝑆 ∈ NrmGrp) → ((𝑆 normOp 𝑆)‘(𝑉 × {(0g‘𝑆)})) = 0) |
| 17 | 16 | anidms 566 | . . . . 5 ⊢ (𝑆 ∈ NrmGrp → ((𝑆 normOp 𝑆)‘(𝑉 × {(0g‘𝑆)})) = 0) |
| 18 | 15, 17 | sylan9eqr 2787 | . . . 4 ⊢ ((𝑆 ∈ NrmGrp ∧ {(0g‘𝑆)} = 𝑉) → ((𝑆 normOp 𝑆)‘( I ↾ 𝑉)) = 0) |
| 19 | 0re 11183 | . . . 4 ⊢ 0 ∈ ℝ | |
| 20 | 18, 19 | eqeltrdi 2837 | . . 3 ⊢ ((𝑆 ∈ NrmGrp ∧ {(0g‘𝑆)} = 𝑉) → ((𝑆 normOp 𝑆)‘( I ↾ 𝑉)) ∈ ℝ) |
| 21 | ngpgrp 24494 | . . . . . 6 ⊢ (𝑆 ∈ NrmGrp → 𝑆 ∈ Grp) | |
| 22 | 2, 3 | grpidcl 18904 | . . . . . 6 ⊢ (𝑆 ∈ Grp → (0g‘𝑆) ∈ 𝑉) |
| 23 | 21, 22 | syl 17 | . . . . 5 ⊢ (𝑆 ∈ NrmGrp → (0g‘𝑆) ∈ 𝑉) |
| 24 | 23 | snssd 4776 | . . . 4 ⊢ (𝑆 ∈ NrmGrp → {(0g‘𝑆)} ⊆ 𝑉) |
| 25 | sspss 4068 | . . . 4 ⊢ ({(0g‘𝑆)} ⊆ 𝑉 ↔ ({(0g‘𝑆)} ⊊ 𝑉 ∨ {(0g‘𝑆)} = 𝑉)) | |
| 26 | 24, 25 | sylib 218 | . . 3 ⊢ (𝑆 ∈ NrmGrp → ({(0g‘𝑆)} ⊊ 𝑉 ∨ {(0g‘𝑆)} = 𝑉)) |
| 27 | 6, 20, 26 | mpjaodan 960 | . 2 ⊢ (𝑆 ∈ NrmGrp → ((𝑆 normOp 𝑆)‘( I ↾ 𝑉)) ∈ ℝ) |
| 28 | id 22 | . . 3 ⊢ (𝑆 ∈ NrmGrp → 𝑆 ∈ NrmGrp) | |
| 29 | 2 | idghm 19170 | . . . 4 ⊢ (𝑆 ∈ Grp → ( I ↾ 𝑉) ∈ (𝑆 GrpHom 𝑆)) |
| 30 | 21, 29 | syl 17 | . . 3 ⊢ (𝑆 ∈ NrmGrp → ( I ↾ 𝑉) ∈ (𝑆 GrpHom 𝑆)) |
| 31 | 1 | isnghm2 24619 | . . 3 ⊢ ((𝑆 ∈ NrmGrp ∧ 𝑆 ∈ NrmGrp ∧ ( I ↾ 𝑉) ∈ (𝑆 GrpHom 𝑆)) → (( I ↾ 𝑉) ∈ (𝑆 NGHom 𝑆) ↔ ((𝑆 normOp 𝑆)‘( I ↾ 𝑉)) ∈ ℝ)) |
| 32 | 28, 30, 31 | mpd3an23 1465 | . 2 ⊢ (𝑆 ∈ NrmGrp → (( I ↾ 𝑉) ∈ (𝑆 NGHom 𝑆) ↔ ((𝑆 normOp 𝑆)‘( I ↾ 𝑉)) ∈ ℝ)) |
| 33 | 27, 32 | mpbird 257 | 1 ⊢ (𝑆 ∈ NrmGrp → ( I ↾ 𝑉) ∈ (𝑆 NGHom 𝑆)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2109 ⊆ wss 3917 ⊊ wpss 3918 {csn 4592 ↦ cmpt 5191 I cid 5535 × cxp 5639 ↾ cres 5643 ‘cfv 6514 (class class class)co 7390 ℝcr 11074 0cc0 11075 1c1 11076 Basecbs 17186 0gc0g 17409 Grpcgrp 18872 GrpHom cghm 19151 NrmGrpcngp 24472 normOp cnmo 24600 NGHom cnghm 24601 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-pre-sup 11153 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-er 8674 df-map 8804 df-en 8922 df-dom 8923 df-sdom 8924 df-sup 9400 df-inf 9401 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-2 12256 df-n0 12450 df-z 12537 df-uz 12801 df-q 12915 df-rp 12959 df-xneg 13079 df-xadd 13080 df-xmul 13081 df-ico 13319 df-0g 17411 df-topgen 17413 df-mgm 18574 df-sgrp 18653 df-mnd 18669 df-mhm 18717 df-grp 18875 df-ghm 19152 df-psmet 21263 df-xmet 21264 df-met 21265 df-bl 21266 df-mopn 21267 df-top 22788 df-topon 22805 df-topsp 22827 df-bases 22840 df-xms 24215 df-ms 24216 df-nm 24477 df-ngp 24478 df-nmo 24603 df-nghm 24604 |
| This theorem is referenced by: idnmhm 24649 |
| Copyright terms: Public domain | W3C validator |