MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssnnfiOLD Structured version   Visualization version   GIF version

Theorem ssnnfiOLD 9169
Description: Obsolete version of ssnnfi 9168 as of 23-Sep-2024. (Contributed by NM, 24-Jun-1998.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
ssnnfiOLD ((𝐴 ∈ ω ∧ 𝐵𝐴) → 𝐵 ∈ Fin)

Proof of Theorem ssnnfiOLD
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 sspss 4099 . . 3 (𝐵𝐴 ↔ (𝐵𝐴𝐵 = 𝐴))
2 pssnn 9167 . . . . 5 ((𝐴 ∈ ω ∧ 𝐵𝐴) → ∃𝑥𝐴 𝐵𝑥)
3 elnn 7865 . . . . . . . . 9 ((𝑥𝐴𝐴 ∈ ω) → 𝑥 ∈ ω)
43expcom 414 . . . . . . . 8 (𝐴 ∈ ω → (𝑥𝐴𝑥 ∈ ω))
54anim1d 611 . . . . . . 7 (𝐴 ∈ ω → ((𝑥𝐴𝐵𝑥) → (𝑥 ∈ ω ∧ 𝐵𝑥)))
65reximdv2 3164 . . . . . 6 (𝐴 ∈ ω → (∃𝑥𝐴 𝐵𝑥 → ∃𝑥 ∈ ω 𝐵𝑥))
76adantr 481 . . . . 5 ((𝐴 ∈ ω ∧ 𝐵𝐴) → (∃𝑥𝐴 𝐵𝑥 → ∃𝑥 ∈ ω 𝐵𝑥))
82, 7mpd 15 . . . 4 ((𝐴 ∈ ω ∧ 𝐵𝐴) → ∃𝑥 ∈ ω 𝐵𝑥)
9 eleq1 2821 . . . . . 6 (𝐵 = 𝐴 → (𝐵 ∈ ω ↔ 𝐴 ∈ ω))
109biimparc 480 . . . . 5 ((𝐴 ∈ ω ∧ 𝐵 = 𝐴) → 𝐵 ∈ ω)
11 enrefnn 9046 . . . . 5 (𝐵 ∈ ω → 𝐵𝐵)
12 breq2 5152 . . . . . 6 (𝑥 = 𝐵 → (𝐵𝑥𝐵𝐵))
1312rspcev 3612 . . . . 5 ((𝐵 ∈ ω ∧ 𝐵𝐵) → ∃𝑥 ∈ ω 𝐵𝑥)
1410, 11, 13syl2anc2 585 . . . 4 ((𝐴 ∈ ω ∧ 𝐵 = 𝐴) → ∃𝑥 ∈ ω 𝐵𝑥)
158, 14jaodan 956 . . 3 ((𝐴 ∈ ω ∧ (𝐵𝐴𝐵 = 𝐴)) → ∃𝑥 ∈ ω 𝐵𝑥)
161, 15sylan2b 594 . 2 ((𝐴 ∈ ω ∧ 𝐵𝐴) → ∃𝑥 ∈ ω 𝐵𝑥)
17 isfi 8971 . 2 (𝐵 ∈ Fin ↔ ∃𝑥 ∈ ω 𝐵𝑥)
1816, 17sylibr 233 1 ((𝐴 ∈ ω ∧ 𝐵𝐴) → 𝐵 ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wo 845   = wceq 1541  wcel 2106  wrex 3070  wss 3948  wpss 3949   class class class wbr 5148  ωcom 7854  cen 8935  Fincfn 8938
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pr 5427  ax-un 7724
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-clab 2710  df-cleq 2724  df-clel 2810  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-om 7855  df-en 8939  df-fin 8942
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator