MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssnnfiOLD Structured version   Visualization version   GIF version

Theorem ssnnfiOLD 9172
Description: Obsolete version of ssnnfi 9171 as of 23-Sep-2024. (Contributed by NM, 24-Jun-1998.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
ssnnfiOLD ((𝐴 ∈ ω ∧ 𝐵𝐴) → 𝐵 ∈ Fin)

Proof of Theorem ssnnfiOLD
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 sspss 4094 . . 3 (𝐵𝐴 ↔ (𝐵𝐴𝐵 = 𝐴))
2 pssnn 9170 . . . . 5 ((𝐴 ∈ ω ∧ 𝐵𝐴) → ∃𝑥𝐴 𝐵𝑥)
3 elnn 7863 . . . . . . . . 9 ((𝑥𝐴𝐴 ∈ ω) → 𝑥 ∈ ω)
43expcom 413 . . . . . . . 8 (𝐴 ∈ ω → (𝑥𝐴𝑥 ∈ ω))
54anim1d 610 . . . . . . 7 (𝐴 ∈ ω → ((𝑥𝐴𝐵𝑥) → (𝑥 ∈ ω ∧ 𝐵𝑥)))
65reximdv2 3158 . . . . . 6 (𝐴 ∈ ω → (∃𝑥𝐴 𝐵𝑥 → ∃𝑥 ∈ ω 𝐵𝑥))
76adantr 480 . . . . 5 ((𝐴 ∈ ω ∧ 𝐵𝐴) → (∃𝑥𝐴 𝐵𝑥 → ∃𝑥 ∈ ω 𝐵𝑥))
82, 7mpd 15 . . . 4 ((𝐴 ∈ ω ∧ 𝐵𝐴) → ∃𝑥 ∈ ω 𝐵𝑥)
9 eleq1 2815 . . . . . 6 (𝐵 = 𝐴 → (𝐵 ∈ ω ↔ 𝐴 ∈ ω))
109biimparc 479 . . . . 5 ((𝐴 ∈ ω ∧ 𝐵 = 𝐴) → 𝐵 ∈ ω)
11 enrefnn 9049 . . . . 5 (𝐵 ∈ ω → 𝐵𝐵)
12 breq2 5145 . . . . . 6 (𝑥 = 𝐵 → (𝐵𝑥𝐵𝐵))
1312rspcev 3606 . . . . 5 ((𝐵 ∈ ω ∧ 𝐵𝐵) → ∃𝑥 ∈ ω 𝐵𝑥)
1410, 11, 13syl2anc2 584 . . . 4 ((𝐴 ∈ ω ∧ 𝐵 = 𝐴) → ∃𝑥 ∈ ω 𝐵𝑥)
158, 14jaodan 954 . . 3 ((𝐴 ∈ ω ∧ (𝐵𝐴𝐵 = 𝐴)) → ∃𝑥 ∈ ω 𝐵𝑥)
161, 15sylan2b 593 . 2 ((𝐴 ∈ ω ∧ 𝐵𝐴) → ∃𝑥 ∈ ω 𝐵𝑥)
17 isfi 8974 . 2 (𝐵 ∈ Fin ↔ ∃𝑥 ∈ ω 𝐵𝑥)
1816, 17sylibr 233 1 ((𝐴 ∈ ω ∧ 𝐵𝐴) → 𝐵 ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 844   = wceq 1533  wcel 2098  wrex 3064  wss 3943  wpss 3944   class class class wbr 5141  ωcom 7852  cen 8938  Fincfn 8941
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pr 5420  ax-un 7722
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-clab 2704  df-cleq 2718  df-clel 2804  df-ne 2935  df-ral 3056  df-rex 3065  df-rab 3427  df-v 3470  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-pss 3962  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-br 5142  df-opab 5204  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-ord 6361  df-on 6362  df-lim 6363  df-suc 6364  df-fun 6539  df-fn 6540  df-f 6541  df-f1 6542  df-fo 6543  df-f1o 6544  df-om 7853  df-en 8942  df-fin 8945
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator