![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ssnnfiOLD | Structured version Visualization version GIF version |
Description: Obsolete version of ssnnfi 9207 as of 23-Sep-2024. (Contributed by NM, 24-Jun-1998.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ssnnfiOLD | ⊢ ((𝐴 ∈ ω ∧ 𝐵 ⊆ 𝐴) → 𝐵 ∈ Fin) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sspss 4098 | . . 3 ⊢ (𝐵 ⊆ 𝐴 ↔ (𝐵 ⊊ 𝐴 ∨ 𝐵 = 𝐴)) | |
2 | pssnn 9206 | . . . . 5 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ⊊ 𝐴) → ∃𝑥 ∈ 𝐴 𝐵 ≈ 𝑥) | |
3 | elnn 7887 | . . . . . . . . 9 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝐴 ∈ ω) → 𝑥 ∈ ω) | |
4 | 3 | expcom 412 | . . . . . . . 8 ⊢ (𝐴 ∈ ω → (𝑥 ∈ 𝐴 → 𝑥 ∈ ω)) |
5 | 4 | anim1d 609 | . . . . . . 7 ⊢ (𝐴 ∈ ω → ((𝑥 ∈ 𝐴 ∧ 𝐵 ≈ 𝑥) → (𝑥 ∈ ω ∧ 𝐵 ≈ 𝑥))) |
6 | 5 | reximdv2 3154 | . . . . . 6 ⊢ (𝐴 ∈ ω → (∃𝑥 ∈ 𝐴 𝐵 ≈ 𝑥 → ∃𝑥 ∈ ω 𝐵 ≈ 𝑥)) |
7 | 6 | adantr 479 | . . . . 5 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ⊊ 𝐴) → (∃𝑥 ∈ 𝐴 𝐵 ≈ 𝑥 → ∃𝑥 ∈ ω 𝐵 ≈ 𝑥)) |
8 | 2, 7 | mpd 15 | . . . 4 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ⊊ 𝐴) → ∃𝑥 ∈ ω 𝐵 ≈ 𝑥) |
9 | eleq1 2814 | . . . . . 6 ⊢ (𝐵 = 𝐴 → (𝐵 ∈ ω ↔ 𝐴 ∈ ω)) | |
10 | 9 | biimparc 478 | . . . . 5 ⊢ ((𝐴 ∈ ω ∧ 𝐵 = 𝐴) → 𝐵 ∈ ω) |
11 | enrefnn 9085 | . . . . 5 ⊢ (𝐵 ∈ ω → 𝐵 ≈ 𝐵) | |
12 | breq2 5157 | . . . . . 6 ⊢ (𝑥 = 𝐵 → (𝐵 ≈ 𝑥 ↔ 𝐵 ≈ 𝐵)) | |
13 | 12 | rspcev 3608 | . . . . 5 ⊢ ((𝐵 ∈ ω ∧ 𝐵 ≈ 𝐵) → ∃𝑥 ∈ ω 𝐵 ≈ 𝑥) |
14 | 10, 11, 13 | syl2anc2 583 | . . . 4 ⊢ ((𝐴 ∈ ω ∧ 𝐵 = 𝐴) → ∃𝑥 ∈ ω 𝐵 ≈ 𝑥) |
15 | 8, 14 | jaodan 955 | . . 3 ⊢ ((𝐴 ∈ ω ∧ (𝐵 ⊊ 𝐴 ∨ 𝐵 = 𝐴)) → ∃𝑥 ∈ ω 𝐵 ≈ 𝑥) |
16 | 1, 15 | sylan2b 592 | . 2 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ⊆ 𝐴) → ∃𝑥 ∈ ω 𝐵 ≈ 𝑥) |
17 | isfi 9007 | . 2 ⊢ (𝐵 ∈ Fin ↔ ∃𝑥 ∈ ω 𝐵 ≈ 𝑥) | |
18 | 16, 17 | sylibr 233 | 1 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ⊆ 𝐴) → 𝐵 ∈ Fin) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∨ wo 845 = wceq 1534 ∈ wcel 2099 ∃wrex 3060 ⊆ wss 3947 ⊊ wpss 3948 class class class wbr 5153 ωcom 7876 ≈ cen 8971 Fincfn 8974 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-12 2167 ax-ext 2697 ax-sep 5304 ax-nul 5311 ax-pr 5433 ax-un 7746 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-clab 2704 df-cleq 2718 df-clel 2803 df-ne 2931 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3464 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3967 df-nul 4326 df-if 4534 df-pw 4609 df-sn 4634 df-pr 4636 df-op 4640 df-uni 4914 df-br 5154 df-opab 5216 df-tr 5271 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-ord 6379 df-on 6380 df-lim 6381 df-suc 6382 df-fun 6556 df-fn 6557 df-f 6558 df-f1 6559 df-fo 6560 df-f1o 6561 df-om 7877 df-en 8975 df-fin 8978 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |