| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lkrss2N | Structured version Visualization version GIF version | ||
| Description: Two functionals with kernels in a subset relationship. (Contributed by NM, 17-Feb-2015.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| lkrss2.s | ⊢ 𝑆 = (Scalar‘𝑊) |
| lkrss2.r | ⊢ 𝑅 = (Base‘𝑆) |
| lkrss2.f | ⊢ 𝐹 = (LFnl‘𝑊) |
| lkrss2.k | ⊢ 𝐾 = (LKer‘𝑊) |
| lkrss2.d | ⊢ 𝐷 = (LDual‘𝑊) |
| lkrss2.t | ⊢ · = ( ·𝑠 ‘𝐷) |
| lkrss2.w | ⊢ (𝜑 → 𝑊 ∈ LVec) |
| lkrss2.g | ⊢ (𝜑 → 𝐺 ∈ 𝐹) |
| lkrss2.h | ⊢ (𝜑 → 𝐻 ∈ 𝐹) |
| Ref | Expression |
|---|---|
| lkrss2N | ⊢ (𝜑 → ((𝐾‘𝐺) ⊆ (𝐾‘𝐻) ↔ ∃𝑟 ∈ 𝑅 𝐻 = (𝑟 · 𝐺))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sspss 4065 | . . 3 ⊢ ((𝐾‘𝐺) ⊆ (𝐾‘𝐻) ↔ ((𝐾‘𝐺) ⊊ (𝐾‘𝐻) ∨ (𝐾‘𝐺) = (𝐾‘𝐻))) | |
| 2 | lkrss2.f | . . . . . . 7 ⊢ 𝐹 = (LFnl‘𝑊) | |
| 3 | lkrss2.k | . . . . . . 7 ⊢ 𝐾 = (LKer‘𝑊) | |
| 4 | lkrss2.d | . . . . . . 7 ⊢ 𝐷 = (LDual‘𝑊) | |
| 5 | eqid 2729 | . . . . . . 7 ⊢ (0g‘𝐷) = (0g‘𝐷) | |
| 6 | lkrss2.w | . . . . . . 7 ⊢ (𝜑 → 𝑊 ∈ LVec) | |
| 7 | lkrss2.g | . . . . . . 7 ⊢ (𝜑 → 𝐺 ∈ 𝐹) | |
| 8 | lkrss2.h | . . . . . . 7 ⊢ (𝜑 → 𝐻 ∈ 𝐹) | |
| 9 | 2, 3, 4, 5, 6, 7, 8 | lkrpssN 39156 | . . . . . 6 ⊢ (𝜑 → ((𝐾‘𝐺) ⊊ (𝐾‘𝐻) ↔ (𝐺 ≠ (0g‘𝐷) ∧ 𝐻 = (0g‘𝐷)))) |
| 10 | lveclmod 21013 | . . . . . . . . . . . 12 ⊢ (𝑊 ∈ LVec → 𝑊 ∈ LMod) | |
| 11 | 6, 10 | syl 17 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝑊 ∈ LMod) |
| 12 | lkrss2.s | . . . . . . . . . . . 12 ⊢ 𝑆 = (Scalar‘𝑊) | |
| 13 | lkrss2.r | . . . . . . . . . . . 12 ⊢ 𝑅 = (Base‘𝑆) | |
| 14 | eqid 2729 | . . . . . . . . . . . 12 ⊢ (0g‘𝑆) = (0g‘𝑆) | |
| 15 | 12, 13, 14 | lmod0cl 20794 | . . . . . . . . . . 11 ⊢ (𝑊 ∈ LMod → (0g‘𝑆) ∈ 𝑅) |
| 16 | 11, 15 | syl 17 | . . . . . . . . . 10 ⊢ (𝜑 → (0g‘𝑆) ∈ 𝑅) |
| 17 | 16 | adantr 480 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝐻 = (0g‘𝐷)) → (0g‘𝑆) ∈ 𝑅) |
| 18 | simpr 484 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝐻 = (0g‘𝐷)) → 𝐻 = (0g‘𝐷)) | |
| 19 | lkrss2.t | . . . . . . . . . . . 12 ⊢ · = ( ·𝑠 ‘𝐷) | |
| 20 | 2, 12, 14, 4, 19, 5, 11, 7 | ldual0vs 39153 | . . . . . . . . . . 11 ⊢ (𝜑 → ((0g‘𝑆) · 𝐺) = (0g‘𝐷)) |
| 21 | 20 | adantr 480 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝐻 = (0g‘𝐷)) → ((0g‘𝑆) · 𝐺) = (0g‘𝐷)) |
| 22 | 18, 21 | eqtr4d 2767 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝐻 = (0g‘𝐷)) → 𝐻 = ((0g‘𝑆) · 𝐺)) |
| 23 | oveq1 7394 | . . . . . . . . . 10 ⊢ (𝑟 = (0g‘𝑆) → (𝑟 · 𝐺) = ((0g‘𝑆) · 𝐺)) | |
| 24 | 23 | rspceeqv 3611 | . . . . . . . . 9 ⊢ (((0g‘𝑆) ∈ 𝑅 ∧ 𝐻 = ((0g‘𝑆) · 𝐺)) → ∃𝑟 ∈ 𝑅 𝐻 = (𝑟 · 𝐺)) |
| 25 | 17, 22, 24 | syl2anc 584 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝐻 = (0g‘𝐷)) → ∃𝑟 ∈ 𝑅 𝐻 = (𝑟 · 𝐺)) |
| 26 | 25 | ex 412 | . . . . . . 7 ⊢ (𝜑 → (𝐻 = (0g‘𝐷) → ∃𝑟 ∈ 𝑅 𝐻 = (𝑟 · 𝐺))) |
| 27 | 26 | adantld 490 | . . . . . 6 ⊢ (𝜑 → ((𝐺 ≠ (0g‘𝐷) ∧ 𝐻 = (0g‘𝐷)) → ∃𝑟 ∈ 𝑅 𝐻 = (𝑟 · 𝐺))) |
| 28 | 9, 27 | sylbid 240 | . . . . 5 ⊢ (𝜑 → ((𝐾‘𝐺) ⊊ (𝐾‘𝐻) → ∃𝑟 ∈ 𝑅 𝐻 = (𝑟 · 𝐺))) |
| 29 | 28 | imp 406 | . . . 4 ⊢ ((𝜑 ∧ (𝐾‘𝐺) ⊊ (𝐾‘𝐻)) → ∃𝑟 ∈ 𝑅 𝐻 = (𝑟 · 𝐺)) |
| 30 | 6 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ (𝐾‘𝐺) = (𝐾‘𝐻)) → 𝑊 ∈ LVec) |
| 31 | 7 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ (𝐾‘𝐺) = (𝐾‘𝐻)) → 𝐺 ∈ 𝐹) |
| 32 | 8 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ (𝐾‘𝐺) = (𝐾‘𝐻)) → 𝐻 ∈ 𝐹) |
| 33 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ (𝐾‘𝐺) = (𝐾‘𝐻)) → (𝐾‘𝐺) = (𝐾‘𝐻)) | |
| 34 | 12, 13, 2, 3, 4, 19, 30, 31, 32, 33 | eqlkr4 39158 | . . . 4 ⊢ ((𝜑 ∧ (𝐾‘𝐺) = (𝐾‘𝐻)) → ∃𝑟 ∈ 𝑅 𝐻 = (𝑟 · 𝐺)) |
| 35 | 29, 34 | jaodan 959 | . . 3 ⊢ ((𝜑 ∧ ((𝐾‘𝐺) ⊊ (𝐾‘𝐻) ∨ (𝐾‘𝐺) = (𝐾‘𝐻))) → ∃𝑟 ∈ 𝑅 𝐻 = (𝑟 · 𝐺)) |
| 36 | 1, 35 | sylan2b 594 | . 2 ⊢ ((𝜑 ∧ (𝐾‘𝐺) ⊆ (𝐾‘𝐻)) → ∃𝑟 ∈ 𝑅 𝐻 = (𝑟 · 𝐺)) |
| 37 | 6 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑟 ∈ 𝑅) → 𝑊 ∈ LVec) |
| 38 | 7 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑟 ∈ 𝑅) → 𝐺 ∈ 𝐹) |
| 39 | simpr 484 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑟 ∈ 𝑅) → 𝑟 ∈ 𝑅) | |
| 40 | 12, 13, 2, 3, 4, 19, 37, 38, 39 | lkrss 39161 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑟 ∈ 𝑅) → (𝐾‘𝐺) ⊆ (𝐾‘(𝑟 · 𝐺))) |
| 41 | 40 | ex 412 | . . . . 5 ⊢ (𝜑 → (𝑟 ∈ 𝑅 → (𝐾‘𝐺) ⊆ (𝐾‘(𝑟 · 𝐺)))) |
| 42 | fveq2 6858 | . . . . . . 7 ⊢ (𝐻 = (𝑟 · 𝐺) → (𝐾‘𝐻) = (𝐾‘(𝑟 · 𝐺))) | |
| 43 | 42 | sseq2d 3979 | . . . . . 6 ⊢ (𝐻 = (𝑟 · 𝐺) → ((𝐾‘𝐺) ⊆ (𝐾‘𝐻) ↔ (𝐾‘𝐺) ⊆ (𝐾‘(𝑟 · 𝐺)))) |
| 44 | 43 | biimprcd 250 | . . . . 5 ⊢ ((𝐾‘𝐺) ⊆ (𝐾‘(𝑟 · 𝐺)) → (𝐻 = (𝑟 · 𝐺) → (𝐾‘𝐺) ⊆ (𝐾‘𝐻))) |
| 45 | 41, 44 | syl6 35 | . . . 4 ⊢ (𝜑 → (𝑟 ∈ 𝑅 → (𝐻 = (𝑟 · 𝐺) → (𝐾‘𝐺) ⊆ (𝐾‘𝐻)))) |
| 46 | 45 | rexlimdv 3132 | . . 3 ⊢ (𝜑 → (∃𝑟 ∈ 𝑅 𝐻 = (𝑟 · 𝐺) → (𝐾‘𝐺) ⊆ (𝐾‘𝐻))) |
| 47 | 46 | imp 406 | . 2 ⊢ ((𝜑 ∧ ∃𝑟 ∈ 𝑅 𝐻 = (𝑟 · 𝐺)) → (𝐾‘𝐺) ⊆ (𝐾‘𝐻)) |
| 48 | 36, 47 | impbida 800 | 1 ⊢ (𝜑 → ((𝐾‘𝐺) ⊆ (𝐾‘𝐻) ↔ ∃𝑟 ∈ 𝑅 𝐻 = (𝑟 · 𝐺))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∃wrex 3053 ⊆ wss 3914 ⊊ wpss 3915 ‘cfv 6511 (class class class)co 7387 Basecbs 17179 Scalarcsca 17223 ·𝑠 cvsca 17224 0gc0g 17402 LModclmod 20766 LVecclvec 21009 LFnlclfn 39050 LKerclk 39078 LDualcld 39116 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-of 7653 df-om 7843 df-1st 7968 df-2nd 7969 df-tpos 8205 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-er 8671 df-map 8801 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-n0 12443 df-z 12530 df-uz 12794 df-fz 13469 df-struct 17117 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-ress 17201 df-plusg 17233 df-mulr 17234 df-sca 17236 df-vsca 17237 df-0g 17404 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-submnd 18711 df-grp 18868 df-minusg 18869 df-sbg 18870 df-subg 19055 df-cntz 19249 df-lsm 19566 df-cmn 19712 df-abl 19713 df-mgp 20050 df-rng 20062 df-ur 20091 df-ring 20144 df-oppr 20246 df-dvdsr 20266 df-unit 20267 df-invr 20297 df-nzr 20422 df-rlreg 20603 df-domn 20604 df-drng 20640 df-lmod 20768 df-lss 20838 df-lsp 20878 df-lvec 21010 df-lshyp 38970 df-lfl 39051 df-lkr 39079 df-ldual 39117 |
| This theorem is referenced by: lcfrvalsnN 41535 |
| Copyright terms: Public domain | W3C validator |