| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lkrss2N | Structured version Visualization version GIF version | ||
| Description: Two functionals with kernels in a subset relationship. (Contributed by NM, 17-Feb-2015.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| lkrss2.s | ⊢ 𝑆 = (Scalar‘𝑊) |
| lkrss2.r | ⊢ 𝑅 = (Base‘𝑆) |
| lkrss2.f | ⊢ 𝐹 = (LFnl‘𝑊) |
| lkrss2.k | ⊢ 𝐾 = (LKer‘𝑊) |
| lkrss2.d | ⊢ 𝐷 = (LDual‘𝑊) |
| lkrss2.t | ⊢ · = ( ·𝑠 ‘𝐷) |
| lkrss2.w | ⊢ (𝜑 → 𝑊 ∈ LVec) |
| lkrss2.g | ⊢ (𝜑 → 𝐺 ∈ 𝐹) |
| lkrss2.h | ⊢ (𝜑 → 𝐻 ∈ 𝐹) |
| Ref | Expression |
|---|---|
| lkrss2N | ⊢ (𝜑 → ((𝐾‘𝐺) ⊆ (𝐾‘𝐻) ↔ ∃𝑟 ∈ 𝑅 𝐻 = (𝑟 · 𝐺))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sspss 4053 | . . 3 ⊢ ((𝐾‘𝐺) ⊆ (𝐾‘𝐻) ↔ ((𝐾‘𝐺) ⊊ (𝐾‘𝐻) ∨ (𝐾‘𝐺) = (𝐾‘𝐻))) | |
| 2 | lkrss2.f | . . . . . . 7 ⊢ 𝐹 = (LFnl‘𝑊) | |
| 3 | lkrss2.k | . . . . . . 7 ⊢ 𝐾 = (LKer‘𝑊) | |
| 4 | lkrss2.d | . . . . . . 7 ⊢ 𝐷 = (LDual‘𝑊) | |
| 5 | eqid 2729 | . . . . . . 7 ⊢ (0g‘𝐷) = (0g‘𝐷) | |
| 6 | lkrss2.w | . . . . . . 7 ⊢ (𝜑 → 𝑊 ∈ LVec) | |
| 7 | lkrss2.g | . . . . . . 7 ⊢ (𝜑 → 𝐺 ∈ 𝐹) | |
| 8 | lkrss2.h | . . . . . . 7 ⊢ (𝜑 → 𝐻 ∈ 𝐹) | |
| 9 | 2, 3, 4, 5, 6, 7, 8 | lkrpssN 39142 | . . . . . 6 ⊢ (𝜑 → ((𝐾‘𝐺) ⊊ (𝐾‘𝐻) ↔ (𝐺 ≠ (0g‘𝐷) ∧ 𝐻 = (0g‘𝐷)))) |
| 10 | lveclmod 21010 | . . . . . . . . . . . 12 ⊢ (𝑊 ∈ LVec → 𝑊 ∈ LMod) | |
| 11 | 6, 10 | syl 17 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝑊 ∈ LMod) |
| 12 | lkrss2.s | . . . . . . . . . . . 12 ⊢ 𝑆 = (Scalar‘𝑊) | |
| 13 | lkrss2.r | . . . . . . . . . . . 12 ⊢ 𝑅 = (Base‘𝑆) | |
| 14 | eqid 2729 | . . . . . . . . . . . 12 ⊢ (0g‘𝑆) = (0g‘𝑆) | |
| 15 | 12, 13, 14 | lmod0cl 20791 | . . . . . . . . . . 11 ⊢ (𝑊 ∈ LMod → (0g‘𝑆) ∈ 𝑅) |
| 16 | 11, 15 | syl 17 | . . . . . . . . . 10 ⊢ (𝜑 → (0g‘𝑆) ∈ 𝑅) |
| 17 | 16 | adantr 480 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝐻 = (0g‘𝐷)) → (0g‘𝑆) ∈ 𝑅) |
| 18 | simpr 484 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝐻 = (0g‘𝐷)) → 𝐻 = (0g‘𝐷)) | |
| 19 | lkrss2.t | . . . . . . . . . . . 12 ⊢ · = ( ·𝑠 ‘𝐷) | |
| 20 | 2, 12, 14, 4, 19, 5, 11, 7 | ldual0vs 39139 | . . . . . . . . . . 11 ⊢ (𝜑 → ((0g‘𝑆) · 𝐺) = (0g‘𝐷)) |
| 21 | 20 | adantr 480 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝐻 = (0g‘𝐷)) → ((0g‘𝑆) · 𝐺) = (0g‘𝐷)) |
| 22 | 18, 21 | eqtr4d 2767 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝐻 = (0g‘𝐷)) → 𝐻 = ((0g‘𝑆) · 𝐺)) |
| 23 | oveq1 7356 | . . . . . . . . . 10 ⊢ (𝑟 = (0g‘𝑆) → (𝑟 · 𝐺) = ((0g‘𝑆) · 𝐺)) | |
| 24 | 23 | rspceeqv 3600 | . . . . . . . . 9 ⊢ (((0g‘𝑆) ∈ 𝑅 ∧ 𝐻 = ((0g‘𝑆) · 𝐺)) → ∃𝑟 ∈ 𝑅 𝐻 = (𝑟 · 𝐺)) |
| 25 | 17, 22, 24 | syl2anc 584 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝐻 = (0g‘𝐷)) → ∃𝑟 ∈ 𝑅 𝐻 = (𝑟 · 𝐺)) |
| 26 | 25 | ex 412 | . . . . . . 7 ⊢ (𝜑 → (𝐻 = (0g‘𝐷) → ∃𝑟 ∈ 𝑅 𝐻 = (𝑟 · 𝐺))) |
| 27 | 26 | adantld 490 | . . . . . 6 ⊢ (𝜑 → ((𝐺 ≠ (0g‘𝐷) ∧ 𝐻 = (0g‘𝐷)) → ∃𝑟 ∈ 𝑅 𝐻 = (𝑟 · 𝐺))) |
| 28 | 9, 27 | sylbid 240 | . . . . 5 ⊢ (𝜑 → ((𝐾‘𝐺) ⊊ (𝐾‘𝐻) → ∃𝑟 ∈ 𝑅 𝐻 = (𝑟 · 𝐺))) |
| 29 | 28 | imp 406 | . . . 4 ⊢ ((𝜑 ∧ (𝐾‘𝐺) ⊊ (𝐾‘𝐻)) → ∃𝑟 ∈ 𝑅 𝐻 = (𝑟 · 𝐺)) |
| 30 | 6 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ (𝐾‘𝐺) = (𝐾‘𝐻)) → 𝑊 ∈ LVec) |
| 31 | 7 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ (𝐾‘𝐺) = (𝐾‘𝐻)) → 𝐺 ∈ 𝐹) |
| 32 | 8 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ (𝐾‘𝐺) = (𝐾‘𝐻)) → 𝐻 ∈ 𝐹) |
| 33 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ (𝐾‘𝐺) = (𝐾‘𝐻)) → (𝐾‘𝐺) = (𝐾‘𝐻)) | |
| 34 | 12, 13, 2, 3, 4, 19, 30, 31, 32, 33 | eqlkr4 39144 | . . . 4 ⊢ ((𝜑 ∧ (𝐾‘𝐺) = (𝐾‘𝐻)) → ∃𝑟 ∈ 𝑅 𝐻 = (𝑟 · 𝐺)) |
| 35 | 29, 34 | jaodan 959 | . . 3 ⊢ ((𝜑 ∧ ((𝐾‘𝐺) ⊊ (𝐾‘𝐻) ∨ (𝐾‘𝐺) = (𝐾‘𝐻))) → ∃𝑟 ∈ 𝑅 𝐻 = (𝑟 · 𝐺)) |
| 36 | 1, 35 | sylan2b 594 | . 2 ⊢ ((𝜑 ∧ (𝐾‘𝐺) ⊆ (𝐾‘𝐻)) → ∃𝑟 ∈ 𝑅 𝐻 = (𝑟 · 𝐺)) |
| 37 | 6 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑟 ∈ 𝑅) → 𝑊 ∈ LVec) |
| 38 | 7 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑟 ∈ 𝑅) → 𝐺 ∈ 𝐹) |
| 39 | simpr 484 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑟 ∈ 𝑅) → 𝑟 ∈ 𝑅) | |
| 40 | 12, 13, 2, 3, 4, 19, 37, 38, 39 | lkrss 39147 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑟 ∈ 𝑅) → (𝐾‘𝐺) ⊆ (𝐾‘(𝑟 · 𝐺))) |
| 41 | 40 | ex 412 | . . . . 5 ⊢ (𝜑 → (𝑟 ∈ 𝑅 → (𝐾‘𝐺) ⊆ (𝐾‘(𝑟 · 𝐺)))) |
| 42 | fveq2 6822 | . . . . . . 7 ⊢ (𝐻 = (𝑟 · 𝐺) → (𝐾‘𝐻) = (𝐾‘(𝑟 · 𝐺))) | |
| 43 | 42 | sseq2d 3968 | . . . . . 6 ⊢ (𝐻 = (𝑟 · 𝐺) → ((𝐾‘𝐺) ⊆ (𝐾‘𝐻) ↔ (𝐾‘𝐺) ⊆ (𝐾‘(𝑟 · 𝐺)))) |
| 44 | 43 | biimprcd 250 | . . . . 5 ⊢ ((𝐾‘𝐺) ⊆ (𝐾‘(𝑟 · 𝐺)) → (𝐻 = (𝑟 · 𝐺) → (𝐾‘𝐺) ⊆ (𝐾‘𝐻))) |
| 45 | 41, 44 | syl6 35 | . . . 4 ⊢ (𝜑 → (𝑟 ∈ 𝑅 → (𝐻 = (𝑟 · 𝐺) → (𝐾‘𝐺) ⊆ (𝐾‘𝐻)))) |
| 46 | 45 | rexlimdv 3128 | . . 3 ⊢ (𝜑 → (∃𝑟 ∈ 𝑅 𝐻 = (𝑟 · 𝐺) → (𝐾‘𝐺) ⊆ (𝐾‘𝐻))) |
| 47 | 46 | imp 406 | . 2 ⊢ ((𝜑 ∧ ∃𝑟 ∈ 𝑅 𝐻 = (𝑟 · 𝐺)) → (𝐾‘𝐺) ⊆ (𝐾‘𝐻)) |
| 48 | 36, 47 | impbida 800 | 1 ⊢ (𝜑 → ((𝐾‘𝐺) ⊆ (𝐾‘𝐻) ↔ ∃𝑟 ∈ 𝑅 𝐻 = (𝑟 · 𝐺))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∃wrex 3053 ⊆ wss 3903 ⊊ wpss 3904 ‘cfv 6482 (class class class)co 7349 Basecbs 17120 Scalarcsca 17164 ·𝑠 cvsca 17165 0gc0g 17343 LModclmod 20763 LVecclvec 21006 LFnlclfn 39036 LKerclk 39064 LDualcld 39102 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4859 df-int 4897 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-of 7613 df-om 7800 df-1st 7924 df-2nd 7925 df-tpos 8159 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-er 8625 df-map 8755 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-nn 12129 df-2 12191 df-3 12192 df-4 12193 df-5 12194 df-6 12195 df-n0 12385 df-z 12472 df-uz 12736 df-fz 13411 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-sca 17177 df-vsca 17178 df-0g 17345 df-mgm 18514 df-sgrp 18593 df-mnd 18609 df-submnd 18658 df-grp 18815 df-minusg 18816 df-sbg 18817 df-subg 19002 df-cntz 19196 df-lsm 19515 df-cmn 19661 df-abl 19662 df-mgp 20026 df-rng 20038 df-ur 20067 df-ring 20120 df-oppr 20222 df-dvdsr 20242 df-unit 20243 df-invr 20273 df-nzr 20398 df-rlreg 20579 df-domn 20580 df-drng 20616 df-lmod 20765 df-lss 20835 df-lsp 20875 df-lvec 21007 df-lshyp 38956 df-lfl 39037 df-lkr 39065 df-ldual 39103 |
| This theorem is referenced by: lcfrvalsnN 41520 |
| Copyright terms: Public domain | W3C validator |