Step | Hyp | Ref
| Expression |
1 | | abelth.1 |
. . . . . . 7
⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) |
2 | | abelth.2 |
. . . . . . 7
⊢ (𝜑 → seq0( + , 𝐴) ∈ dom ⇝
) |
3 | | abelth.3 |
. . . . . . 7
⊢ (𝜑 → 𝑀 ∈ ℝ) |
4 | | abelth.4 |
. . . . . . 7
⊢ (𝜑 → 0 ≤ 𝑀) |
5 | | abelth.5 |
. . . . . . 7
⊢ 𝑆 = {𝑧 ∈ ℂ ∣ (abs‘(1 −
𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))} |
6 | 1, 2, 3, 4, 5 | abelthlem2 25496 |
. . . . . 6
⊢ (𝜑 → (1 ∈ 𝑆 ∧ (𝑆 ∖ {1}) ⊆ (0(ball‘(abs
∘ − ))1))) |
7 | 6 | simprd 495 |
. . . . 5
⊢ (𝜑 → (𝑆 ∖ {1}) ⊆ (0(ball‘(abs
∘ − ))1)) |
8 | | ssundif 4415 |
. . . . 5
⊢ (𝑆 ⊆ ({1} ∪
(0(ball‘(abs ∘ − ))1)) ↔ (𝑆 ∖ {1}) ⊆ (0(ball‘(abs
∘ − ))1)) |
9 | 7, 8 | sylibr 233 |
. . . 4
⊢ (𝜑 → 𝑆 ⊆ ({1} ∪ (0(ball‘(abs
∘ − ))1))) |
10 | 9 | sselda 3917 |
. . 3
⊢ ((𝜑 ∧ 𝑋 ∈ 𝑆) → 𝑋 ∈ ({1} ∪ (0(ball‘(abs
∘ − ))1))) |
11 | | elun 4079 |
. . 3
⊢ (𝑋 ∈ ({1} ∪
(0(ball‘(abs ∘ − ))1)) ↔ (𝑋 ∈ {1} ∨ 𝑋 ∈ (0(ball‘(abs ∘ −
))1))) |
12 | 10, 11 | sylib 217 |
. 2
⊢ ((𝜑 ∧ 𝑋 ∈ 𝑆) → (𝑋 ∈ {1} ∨ 𝑋 ∈ (0(ball‘(abs ∘ −
))1))) |
13 | 1 | feqmptd 6819 |
. . . . . . 7
⊢ (𝜑 → 𝐴 = (𝑛 ∈ ℕ0 ↦ (𝐴‘𝑛))) |
14 | 1 | ffvelrnda 6943 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → (𝐴‘𝑛) ∈ ℂ) |
15 | 14 | mulid1d 10923 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → ((𝐴‘𝑛) · 1) = (𝐴‘𝑛)) |
16 | 15 | mpteq2dva 5170 |
. . . . . . 7
⊢ (𝜑 → (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · 1)) = (𝑛 ∈ ℕ0 ↦ (𝐴‘𝑛))) |
17 | 13, 16 | eqtr4d 2781 |
. . . . . 6
⊢ (𝜑 → 𝐴 = (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · 1))) |
18 | | elsni 4575 |
. . . . . . . . . . 11
⊢ (𝑋 ∈ {1} → 𝑋 = 1) |
19 | 18 | oveq1d 7270 |
. . . . . . . . . 10
⊢ (𝑋 ∈ {1} → (𝑋↑𝑛) = (1↑𝑛)) |
20 | | nn0z 12273 |
. . . . . . . . . . 11
⊢ (𝑛 ∈ ℕ0
→ 𝑛 ∈
ℤ) |
21 | | 1exp 13740 |
. . . . . . . . . . 11
⊢ (𝑛 ∈ ℤ →
(1↑𝑛) =
1) |
22 | 20, 21 | syl 17 |
. . . . . . . . . 10
⊢ (𝑛 ∈ ℕ0
→ (1↑𝑛) =
1) |
23 | 19, 22 | sylan9eq 2799 |
. . . . . . . . 9
⊢ ((𝑋 ∈ {1} ∧ 𝑛 ∈ ℕ0)
→ (𝑋↑𝑛) = 1) |
24 | 23 | oveq2d 7271 |
. . . . . . . 8
⊢ ((𝑋 ∈ {1} ∧ 𝑛 ∈ ℕ0)
→ ((𝐴‘𝑛) · (𝑋↑𝑛)) = ((𝐴‘𝑛) · 1)) |
25 | 24 | mpteq2dva 5170 |
. . . . . . 7
⊢ (𝑋 ∈ {1} → (𝑛 ∈ ℕ0
↦ ((𝐴‘𝑛) · (𝑋↑𝑛))) = (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · 1))) |
26 | 25 | eqcomd 2744 |
. . . . . 6
⊢ (𝑋 ∈ {1} → (𝑛 ∈ ℕ0
↦ ((𝐴‘𝑛) · 1)) = (𝑛 ∈ ℕ0
↦ ((𝐴‘𝑛) · (𝑋↑𝑛)))) |
27 | 17, 26 | sylan9eq 2799 |
. . . . 5
⊢ ((𝜑 ∧ 𝑋 ∈ {1}) → 𝐴 = (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑋↑𝑛)))) |
28 | 27 | seqeq3d 13657 |
. . . 4
⊢ ((𝜑 ∧ 𝑋 ∈ {1}) → seq0( + , 𝐴) = seq0( + , (𝑛 ∈ ℕ0
↦ ((𝐴‘𝑛) · (𝑋↑𝑛))))) |
29 | 2 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝑋 ∈ {1}) → seq0( + , 𝐴) ∈ dom ⇝
) |
30 | 28, 29 | eqeltrrd 2840 |
. . 3
⊢ ((𝜑 ∧ 𝑋 ∈ {1}) → seq0( + , (𝑛 ∈ ℕ0
↦ ((𝐴‘𝑛) · (𝑋↑𝑛)))) ∈ dom ⇝ ) |
31 | | cnxmet 23842 |
. . . . . . . 8
⊢ (abs
∘ − ) ∈ (∞Met‘ℂ) |
32 | | 0cn 10898 |
. . . . . . . 8
⊢ 0 ∈
ℂ |
33 | | 1xr 10965 |
. . . . . . . 8
⊢ 1 ∈
ℝ* |
34 | | blssm 23479 |
. . . . . . . 8
⊢ (((abs
∘ − ) ∈ (∞Met‘ℂ) ∧ 0 ∈ ℂ
∧ 1 ∈ ℝ*) → (0(ball‘(abs ∘ −
))1) ⊆ ℂ) |
35 | 31, 32, 33, 34 | mp3an 1459 |
. . . . . . 7
⊢
(0(ball‘(abs ∘ − ))1) ⊆ ℂ |
36 | | simpr 484 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑋 ∈ (0(ball‘(abs ∘ −
))1)) → 𝑋 ∈
(0(ball‘(abs ∘ − ))1)) |
37 | 35, 36 | sselid 3915 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑋 ∈ (0(ball‘(abs ∘ −
))1)) → 𝑋 ∈
ℂ) |
38 | | oveq1 7262 |
. . . . . . . . 9
⊢ (𝑧 = 𝑋 → (𝑧↑𝑛) = (𝑋↑𝑛)) |
39 | 38 | oveq2d 7271 |
. . . . . . . 8
⊢ (𝑧 = 𝑋 → ((𝐴‘𝑛) · (𝑧↑𝑛)) = ((𝐴‘𝑛) · (𝑋↑𝑛))) |
40 | 39 | mpteq2dv 5172 |
. . . . . . 7
⊢ (𝑧 = 𝑋 → (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑧↑𝑛))) = (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑋↑𝑛)))) |
41 | | eqid 2738 |
. . . . . . 7
⊢ (𝑧 ∈ ℂ ↦ (𝑛 ∈ ℕ0
↦ ((𝐴‘𝑛) · (𝑧↑𝑛)))) = (𝑧 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑧↑𝑛)))) |
42 | | nn0ex 12169 |
. . . . . . . 8
⊢
ℕ0 ∈ V |
43 | 42 | mptex 7081 |
. . . . . . 7
⊢ (𝑛 ∈ ℕ0
↦ ((𝐴‘𝑛) · (𝑋↑𝑛))) ∈ V |
44 | 40, 41, 43 | fvmpt 6857 |
. . . . . 6
⊢ (𝑋 ∈ ℂ → ((𝑧 ∈ ℂ ↦ (𝑛 ∈ ℕ0
↦ ((𝐴‘𝑛) · (𝑧↑𝑛))))‘𝑋) = (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑋↑𝑛)))) |
45 | 37, 44 | syl 17 |
. . . . 5
⊢ ((𝜑 ∧ 𝑋 ∈ (0(ball‘(abs ∘ −
))1)) → ((𝑧 ∈
ℂ ↦ (𝑛 ∈
ℕ0 ↦ ((𝐴‘𝑛) · (𝑧↑𝑛))))‘𝑋) = (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑋↑𝑛)))) |
46 | 45 | seqeq3d 13657 |
. . . 4
⊢ ((𝜑 ∧ 𝑋 ∈ (0(ball‘(abs ∘ −
))1)) → seq0( + , ((𝑧
∈ ℂ ↦ (𝑛
∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑧↑𝑛))))‘𝑋)) = seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑋↑𝑛))))) |
47 | 1 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑋 ∈ (0(ball‘(abs ∘ −
))1)) → 𝐴:ℕ0⟶ℂ) |
48 | | eqid 2738 |
. . . . 5
⊢
sup({𝑟 ∈
ℝ ∣ seq0( + , ((𝑧 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑧↑𝑛))))‘𝑟)) ∈ dom ⇝ }, ℝ*,
< ) = sup({𝑟 ∈
ℝ ∣ seq0( + , ((𝑧 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑧↑𝑛))))‘𝑟)) ∈ dom ⇝ }, ℝ*,
< ) |
49 | 37 | abscld 15076 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑋 ∈ (0(ball‘(abs ∘ −
))1)) → (abs‘𝑋)
∈ ℝ) |
50 | 49 | rexrd 10956 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑋 ∈ (0(ball‘(abs ∘ −
))1)) → (abs‘𝑋)
∈ ℝ*) |
51 | | 1re 10906 |
. . . . . . 7
⊢ 1 ∈
ℝ |
52 | | rexr 10952 |
. . . . . . 7
⊢ (1 ∈
ℝ → 1 ∈ ℝ*) |
53 | 51, 52 | mp1i 13 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑋 ∈ (0(ball‘(abs ∘ −
))1)) → 1 ∈ ℝ*) |
54 | | iccssxr 13091 |
. . . . . . 7
⊢
(0[,]+∞) ⊆ ℝ* |
55 | 41, 47, 48 | radcnvcl 25481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑋 ∈ (0(ball‘(abs ∘ −
))1)) → sup({𝑟 ∈
ℝ ∣ seq0( + , ((𝑧 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑧↑𝑛))))‘𝑟)) ∈ dom ⇝ }, ℝ*,
< ) ∈ (0[,]+∞)) |
56 | 54, 55 | sselid 3915 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑋 ∈ (0(ball‘(abs ∘ −
))1)) → sup({𝑟 ∈
ℝ ∣ seq0( + , ((𝑧 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑧↑𝑛))))‘𝑟)) ∈ dom ⇝ }, ℝ*,
< ) ∈ ℝ*) |
57 | | eqid 2738 |
. . . . . . . . . 10
⊢ (abs
∘ − ) = (abs ∘ − ) |
58 | 57 | cnmetdval 23840 |
. . . . . . . . 9
⊢ ((𝑋 ∈ ℂ ∧ 0 ∈
ℂ) → (𝑋(abs
∘ − )0) = (abs‘(𝑋 − 0))) |
59 | 37, 32, 58 | sylancl 585 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑋 ∈ (0(ball‘(abs ∘ −
))1)) → (𝑋(abs ∘
− )0) = (abs‘(𝑋
− 0))) |
60 | 37 | subid1d 11251 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑋 ∈ (0(ball‘(abs ∘ −
))1)) → (𝑋 − 0)
= 𝑋) |
61 | 60 | fveq2d 6760 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑋 ∈ (0(ball‘(abs ∘ −
))1)) → (abs‘(𝑋
− 0)) = (abs‘𝑋)) |
62 | 59, 61 | eqtrd 2778 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑋 ∈ (0(ball‘(abs ∘ −
))1)) → (𝑋(abs ∘
− )0) = (abs‘𝑋)) |
63 | | elbl3 23453 |
. . . . . . . . . 10
⊢ ((((abs
∘ − ) ∈ (∞Met‘ℂ) ∧ 1 ∈
ℝ*) ∧ (0 ∈ ℂ ∧ 𝑋 ∈ ℂ)) → (𝑋 ∈ (0(ball‘(abs ∘ −
))1) ↔ (𝑋(abs ∘
− )0) < 1)) |
64 | 31, 33, 63 | mpanl12 698 |
. . . . . . . . 9
⊢ ((0
∈ ℂ ∧ 𝑋
∈ ℂ) → (𝑋
∈ (0(ball‘(abs ∘ − ))1) ↔ (𝑋(abs ∘ − )0) <
1)) |
65 | 32, 37, 64 | sylancr 586 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑋 ∈ (0(ball‘(abs ∘ −
))1)) → (𝑋 ∈
(0(ball‘(abs ∘ − ))1) ↔ (𝑋(abs ∘ − )0) <
1)) |
66 | 36, 65 | mpbid 231 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑋 ∈ (0(ball‘(abs ∘ −
))1)) → (𝑋(abs ∘
− )0) < 1) |
67 | 62, 66 | eqbrtrrd 5094 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑋 ∈ (0(ball‘(abs ∘ −
))1)) → (abs‘𝑋)
< 1) |
68 | 1, 2 | abelthlem1 25495 |
. . . . . . 7
⊢ (𝜑 → 1 ≤ sup({𝑟 ∈ ℝ ∣ seq0( +
, ((𝑧 ∈ ℂ
↦ (𝑛 ∈
ℕ0 ↦ ((𝐴‘𝑛) · (𝑧↑𝑛))))‘𝑟)) ∈ dom ⇝ }, ℝ*,
< )) |
69 | 68 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑋 ∈ (0(ball‘(abs ∘ −
))1)) → 1 ≤ sup({𝑟
∈ ℝ ∣ seq0( + , ((𝑧 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑧↑𝑛))))‘𝑟)) ∈ dom ⇝ }, ℝ*,
< )) |
70 | 50, 53, 56, 67, 69 | xrltletrd 12824 |
. . . . 5
⊢ ((𝜑 ∧ 𝑋 ∈ (0(ball‘(abs ∘ −
))1)) → (abs‘𝑋)
< sup({𝑟 ∈ ℝ
∣ seq0( + , ((𝑧
∈ ℂ ↦ (𝑛
∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑧↑𝑛))))‘𝑟)) ∈ dom ⇝ }, ℝ*,
< )) |
71 | 41, 47, 48, 37, 70 | radcnvlt2 25483 |
. . . 4
⊢ ((𝜑 ∧ 𝑋 ∈ (0(ball‘(abs ∘ −
))1)) → seq0( + , ((𝑧
∈ ℂ ↦ (𝑛
∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑧↑𝑛))))‘𝑋)) ∈ dom ⇝ ) |
72 | 46, 71 | eqeltrrd 2840 |
. . 3
⊢ ((𝜑 ∧ 𝑋 ∈ (0(ball‘(abs ∘ −
))1)) → seq0( + , (𝑛
∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑋↑𝑛)))) ∈ dom ⇝ ) |
73 | 30, 72 | jaodan 954 |
. 2
⊢ ((𝜑 ∧ (𝑋 ∈ {1} ∨ 𝑋 ∈ (0(ball‘(abs ∘ −
))1))) → seq0( + , (𝑛
∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑋↑𝑛)))) ∈ dom ⇝ ) |
74 | 12, 73 | syldan 590 |
1
⊢ ((𝜑 ∧ 𝑋 ∈ 𝑆) → seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑋↑𝑛)))) ∈ dom ⇝ ) |