MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abelthlem3 Structured version   Visualization version   GIF version

Theorem abelthlem3 26495
Description: Lemma for abelth 26503. (Contributed by Mario Carneiro, 31-Mar-2015.)
Hypotheses
Ref Expression
abelth.1 (𝜑𝐴:ℕ0⟶ℂ)
abelth.2 (𝜑 → seq0( + , 𝐴) ∈ dom ⇝ )
abelth.3 (𝜑𝑀 ∈ ℝ)
abelth.4 (𝜑 → 0 ≤ 𝑀)
abelth.5 𝑆 = {𝑧 ∈ ℂ ∣ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))}
Assertion
Ref Expression
abelthlem3 ((𝜑𝑋𝑆) → seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑋𝑛)))) ∈ dom ⇝ )
Distinct variable groups:   𝑧,𝑛,𝑀   𝑛,𝑋,𝑧   𝐴,𝑛,𝑧   𝜑,𝑛   𝑆,𝑛
Allowed substitution hints:   𝜑(𝑧)   𝑆(𝑧)

Proof of Theorem abelthlem3
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 abelth.1 . . . . . . 7 (𝜑𝐴:ℕ0⟶ℂ)
2 abelth.2 . . . . . . 7 (𝜑 → seq0( + , 𝐴) ∈ dom ⇝ )
3 abelth.3 . . . . . . 7 (𝜑𝑀 ∈ ℝ)
4 abelth.4 . . . . . . 7 (𝜑 → 0 ≤ 𝑀)
5 abelth.5 . . . . . . 7 𝑆 = {𝑧 ∈ ℂ ∣ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))}
61, 2, 3, 4, 5abelthlem2 26494 . . . . . 6 (𝜑 → (1 ∈ 𝑆 ∧ (𝑆 ∖ {1}) ⊆ (0(ball‘(abs ∘ − ))1)))
76simprd 495 . . . . 5 (𝜑 → (𝑆 ∖ {1}) ⊆ (0(ball‘(abs ∘ − ))1))
8 ssundif 4511 . . . . 5 (𝑆 ⊆ ({1} ∪ (0(ball‘(abs ∘ − ))1)) ↔ (𝑆 ∖ {1}) ⊆ (0(ball‘(abs ∘ − ))1))
97, 8sylibr 234 . . . 4 (𝜑𝑆 ⊆ ({1} ∪ (0(ball‘(abs ∘ − ))1)))
109sselda 4008 . . 3 ((𝜑𝑋𝑆) → 𝑋 ∈ ({1} ∪ (0(ball‘(abs ∘ − ))1)))
11 elun 4176 . . 3 (𝑋 ∈ ({1} ∪ (0(ball‘(abs ∘ − ))1)) ↔ (𝑋 ∈ {1} ∨ 𝑋 ∈ (0(ball‘(abs ∘ − ))1)))
1210, 11sylib 218 . 2 ((𝜑𝑋𝑆) → (𝑋 ∈ {1} ∨ 𝑋 ∈ (0(ball‘(abs ∘ − ))1)))
131feqmptd 6990 . . . . . . 7 (𝜑𝐴 = (𝑛 ∈ ℕ0 ↦ (𝐴𝑛)))
141ffvelcdmda 7118 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ0) → (𝐴𝑛) ∈ ℂ)
1514mulridd 11307 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ0) → ((𝐴𝑛) · 1) = (𝐴𝑛))
1615mpteq2dva 5266 . . . . . . 7 (𝜑 → (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · 1)) = (𝑛 ∈ ℕ0 ↦ (𝐴𝑛)))
1713, 16eqtr4d 2783 . . . . . 6 (𝜑𝐴 = (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · 1)))
18 elsni 4665 . . . . . . . . . . 11 (𝑋 ∈ {1} → 𝑋 = 1)
1918oveq1d 7463 . . . . . . . . . 10 (𝑋 ∈ {1} → (𝑋𝑛) = (1↑𝑛))
20 nn0z 12664 . . . . . . . . . . 11 (𝑛 ∈ ℕ0𝑛 ∈ ℤ)
21 1exp 14142 . . . . . . . . . . 11 (𝑛 ∈ ℤ → (1↑𝑛) = 1)
2220, 21syl 17 . . . . . . . . . 10 (𝑛 ∈ ℕ0 → (1↑𝑛) = 1)
2319, 22sylan9eq 2800 . . . . . . . . 9 ((𝑋 ∈ {1} ∧ 𝑛 ∈ ℕ0) → (𝑋𝑛) = 1)
2423oveq2d 7464 . . . . . . . 8 ((𝑋 ∈ {1} ∧ 𝑛 ∈ ℕ0) → ((𝐴𝑛) · (𝑋𝑛)) = ((𝐴𝑛) · 1))
2524mpteq2dva 5266 . . . . . . 7 (𝑋 ∈ {1} → (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑋𝑛))) = (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · 1)))
2625eqcomd 2746 . . . . . 6 (𝑋 ∈ {1} → (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · 1)) = (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑋𝑛))))
2717, 26sylan9eq 2800 . . . . 5 ((𝜑𝑋 ∈ {1}) → 𝐴 = (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑋𝑛))))
2827seqeq3d 14060 . . . 4 ((𝜑𝑋 ∈ {1}) → seq0( + , 𝐴) = seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑋𝑛)))))
292adantr 480 . . . 4 ((𝜑𝑋 ∈ {1}) → seq0( + , 𝐴) ∈ dom ⇝ )
3028, 29eqeltrrd 2845 . . 3 ((𝜑𝑋 ∈ {1}) → seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑋𝑛)))) ∈ dom ⇝ )
31 cnxmet 24814 . . . . . . . 8 (abs ∘ − ) ∈ (∞Met‘ℂ)
32 0cn 11282 . . . . . . . 8 0 ∈ ℂ
33 1xr 11349 . . . . . . . 8 1 ∈ ℝ*
34 blssm 24449 . . . . . . . 8 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 0 ∈ ℂ ∧ 1 ∈ ℝ*) → (0(ball‘(abs ∘ − ))1) ⊆ ℂ)
3531, 32, 33, 34mp3an 1461 . . . . . . 7 (0(ball‘(abs ∘ − ))1) ⊆ ℂ
36 simpr 484 . . . . . . 7 ((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) → 𝑋 ∈ (0(ball‘(abs ∘ − ))1))
3735, 36sselid 4006 . . . . . 6 ((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) → 𝑋 ∈ ℂ)
38 oveq1 7455 . . . . . . . . 9 (𝑧 = 𝑋 → (𝑧𝑛) = (𝑋𝑛))
3938oveq2d 7464 . . . . . . . 8 (𝑧 = 𝑋 → ((𝐴𝑛) · (𝑧𝑛)) = ((𝐴𝑛) · (𝑋𝑛)))
4039mpteq2dv 5268 . . . . . . 7 (𝑧 = 𝑋 → (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑧𝑛))) = (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑋𝑛))))
41 eqid 2740 . . . . . . 7 (𝑧 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑧𝑛)))) = (𝑧 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑧𝑛))))
42 nn0ex 12559 . . . . . . . 8 0 ∈ V
4342mptex 7260 . . . . . . 7 (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑋𝑛))) ∈ V
4440, 41, 43fvmpt 7029 . . . . . 6 (𝑋 ∈ ℂ → ((𝑧 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑧𝑛))))‘𝑋) = (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑋𝑛))))
4537, 44syl 17 . . . . 5 ((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) → ((𝑧 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑧𝑛))))‘𝑋) = (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑋𝑛))))
4645seqeq3d 14060 . . . 4 ((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) → seq0( + , ((𝑧 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑧𝑛))))‘𝑋)) = seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑋𝑛)))))
471adantr 480 . . . . 5 ((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) → 𝐴:ℕ0⟶ℂ)
48 eqid 2740 . . . . 5 sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑧 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑧𝑛))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < ) = sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑧 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑧𝑛))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < )
4937abscld 15485 . . . . . . 7 ((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) → (abs‘𝑋) ∈ ℝ)
5049rexrd 11340 . . . . . 6 ((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) → (abs‘𝑋) ∈ ℝ*)
51 1re 11290 . . . . . . 7 1 ∈ ℝ
52 rexr 11336 . . . . . . 7 (1 ∈ ℝ → 1 ∈ ℝ*)
5351, 52mp1i 13 . . . . . 6 ((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) → 1 ∈ ℝ*)
54 iccssxr 13490 . . . . . . 7 (0[,]+∞) ⊆ ℝ*
5541, 47, 48radcnvcl 26478 . . . . . . 7 ((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) → sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑧 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑧𝑛))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < ) ∈ (0[,]+∞))
5654, 55sselid 4006 . . . . . 6 ((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) → sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑧 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑧𝑛))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < ) ∈ ℝ*)
57 eqid 2740 . . . . . . . . . 10 (abs ∘ − ) = (abs ∘ − )
5857cnmetdval 24812 . . . . . . . . 9 ((𝑋 ∈ ℂ ∧ 0 ∈ ℂ) → (𝑋(abs ∘ − )0) = (abs‘(𝑋 − 0)))
5937, 32, 58sylancl 585 . . . . . . . 8 ((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) → (𝑋(abs ∘ − )0) = (abs‘(𝑋 − 0)))
6037subid1d 11636 . . . . . . . . 9 ((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) → (𝑋 − 0) = 𝑋)
6160fveq2d 6924 . . . . . . . 8 ((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) → (abs‘(𝑋 − 0)) = (abs‘𝑋))
6259, 61eqtrd 2780 . . . . . . 7 ((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) → (𝑋(abs ∘ − )0) = (abs‘𝑋))
63 elbl3 24423 . . . . . . . . . 10 ((((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 1 ∈ ℝ*) ∧ (0 ∈ ℂ ∧ 𝑋 ∈ ℂ)) → (𝑋 ∈ (0(ball‘(abs ∘ − ))1) ↔ (𝑋(abs ∘ − )0) < 1))
6431, 33, 63mpanl12 701 . . . . . . . . 9 ((0 ∈ ℂ ∧ 𝑋 ∈ ℂ) → (𝑋 ∈ (0(ball‘(abs ∘ − ))1) ↔ (𝑋(abs ∘ − )0) < 1))
6532, 37, 64sylancr 586 . . . . . . . 8 ((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) → (𝑋 ∈ (0(ball‘(abs ∘ − ))1) ↔ (𝑋(abs ∘ − )0) < 1))
6636, 65mpbid 232 . . . . . . 7 ((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) → (𝑋(abs ∘ − )0) < 1)
6762, 66eqbrtrrd 5190 . . . . . 6 ((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) → (abs‘𝑋) < 1)
681, 2abelthlem1 26493 . . . . . . 7 (𝜑 → 1 ≤ sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑧 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑧𝑛))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < ))
6968adantr 480 . . . . . 6 ((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) → 1 ≤ sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑧 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑧𝑛))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < ))
7050, 53, 56, 67, 69xrltletrd 13223 . . . . 5 ((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) → (abs‘𝑋) < sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑧 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑧𝑛))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < ))
7141, 47, 48, 37, 70radcnvlt2 26480 . . . 4 ((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) → seq0( + , ((𝑧 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑧𝑛))))‘𝑋)) ∈ dom ⇝ )
7246, 71eqeltrrd 2845 . . 3 ((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) → seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑋𝑛)))) ∈ dom ⇝ )
7330, 72jaodan 958 . 2 ((𝜑 ∧ (𝑋 ∈ {1} ∨ 𝑋 ∈ (0(ball‘(abs ∘ − ))1))) → seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑋𝑛)))) ∈ dom ⇝ )
7412, 73syldan 590 1 ((𝜑𝑋𝑆) → seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑋𝑛)))) ∈ dom ⇝ )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 846   = wceq 1537  wcel 2108  {crab 3443  cdif 3973  cun 3974  wss 3976  {csn 4648   class class class wbr 5166  cmpt 5249  dom cdm 5700  ccom 5704  wf 6569  cfv 6573  (class class class)co 7448  supcsup 9509  cc 11182  cr 11183  0cc0 11184  1c1 11185   + caddc 11187   · cmul 11189  +∞cpnf 11321  *cxr 11323   < clt 11324  cle 11325  cmin 11520  0cn0 12553  cz 12639  [,]cicc 13410  seqcseq 14052  cexp 14112  abscabs 15283  cli 15530  ∞Metcxmet 21372  ballcbl 21374
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-map 8886  df-pm 8887  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-sup 9511  df-inf 9512  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-z 12640  df-uz 12904  df-rp 13058  df-xadd 13176  df-ico 13413  df-icc 13414  df-fz 13568  df-fzo 13712  df-fl 13843  df-seq 14053  df-exp 14113  df-hash 14380  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-limsup 15517  df-clim 15534  df-rlim 15535  df-sum 15735  df-psmet 21379  df-xmet 21380  df-met 21381  df-bl 21382
This theorem is referenced by:  abelthlem4  26496  abelthlem9  26502
  Copyright terms: Public domain W3C validator