| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dfacfin7 | Structured version Visualization version GIF version | ||
| Description: Axiom of Choice equivalent: the VII-finite sets are the same as I-finite sets. (Contributed by Mario Carneiro, 18-May-2015.) |
| Ref | Expression |
|---|---|
| dfacfin7 | ⊢ (CHOICE ↔ FinVII = Fin) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssequn2 4155 | . 2 ⊢ ((V ∖ dom card) ⊆ Fin ↔ (Fin ∪ (V ∖ dom card)) = Fin) | |
| 2 | dfac10 10098 | . . . 4 ⊢ (CHOICE ↔ dom card = V) | |
| 3 | finnum 9908 | . . . . . . 7 ⊢ (𝑥 ∈ Fin → 𝑥 ∈ dom card) | |
| 4 | 3 | ssriv 3953 | . . . . . 6 ⊢ Fin ⊆ dom card |
| 5 | ssequn2 4155 | . . . . . 6 ⊢ (Fin ⊆ dom card ↔ (dom card ∪ Fin) = dom card) | |
| 6 | 4, 5 | mpbi 230 | . . . . 5 ⊢ (dom card ∪ Fin) = dom card |
| 7 | 6 | eqeq1i 2735 | . . . 4 ⊢ ((dom card ∪ Fin) = V ↔ dom card = V) |
| 8 | 2, 7 | bitr4i 278 | . . 3 ⊢ (CHOICE ↔ (dom card ∪ Fin) = V) |
| 9 | ssv 3974 | . . . 4 ⊢ (dom card ∪ Fin) ⊆ V | |
| 10 | eqss 3965 | . . . 4 ⊢ ((dom card ∪ Fin) = V ↔ ((dom card ∪ Fin) ⊆ V ∧ V ⊆ (dom card ∪ Fin))) | |
| 11 | 9, 10 | mpbiran 709 | . . 3 ⊢ ((dom card ∪ Fin) = V ↔ V ⊆ (dom card ∪ Fin)) |
| 12 | ssundif 4454 | . . 3 ⊢ (V ⊆ (dom card ∪ Fin) ↔ (V ∖ dom card) ⊆ Fin) | |
| 13 | 8, 11, 12 | 3bitri 297 | . 2 ⊢ (CHOICE ↔ (V ∖ dom card) ⊆ Fin) |
| 14 | dffin7-2 10358 | . . 3 ⊢ FinVII = (Fin ∪ (V ∖ dom card)) | |
| 15 | 14 | eqeq1i 2735 | . 2 ⊢ (FinVII = Fin ↔ (Fin ∪ (V ∖ dom card)) = Fin) |
| 16 | 1, 13, 15 | 3bitr4i 303 | 1 ⊢ (CHOICE ↔ FinVII = Fin) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 Vcvv 3450 ∖ cdif 3914 ∪ cun 3915 ⊆ wss 3917 dom cdm 5641 Fincfn 8921 cardccrd 9895 CHOICEwac 10075 FinVIIcfin7 10244 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-se 5595 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-isom 6523 df-riota 7347 df-ov 7393 df-om 7846 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-1o 8437 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-card 9899 df-ac 10076 df-fin7 10251 |
| This theorem is referenced by: fin71ac 10493 |
| Copyright terms: Public domain | W3C validator |