Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dfacfin7 | Structured version Visualization version GIF version |
Description: Axiom of Choice equivalent: the VII-finite sets are the same as I-finite sets. (Contributed by Mario Carneiro, 18-May-2015.) |
Ref | Expression |
---|---|
dfacfin7 | ⊢ (CHOICE ↔ FinVII = Fin) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssequn2 4129 | . 2 ⊢ ((V ∖ dom card) ⊆ Fin ↔ (Fin ∪ (V ∖ dom card)) = Fin) | |
2 | dfac10 9986 | . . . 4 ⊢ (CHOICE ↔ dom card = V) | |
3 | finnum 9797 | . . . . . . 7 ⊢ (𝑥 ∈ Fin → 𝑥 ∈ dom card) | |
4 | 3 | ssriv 3935 | . . . . . 6 ⊢ Fin ⊆ dom card |
5 | ssequn2 4129 | . . . . . 6 ⊢ (Fin ⊆ dom card ↔ (dom card ∪ Fin) = dom card) | |
6 | 4, 5 | mpbi 229 | . . . . 5 ⊢ (dom card ∪ Fin) = dom card |
7 | 6 | eqeq1i 2741 | . . . 4 ⊢ ((dom card ∪ Fin) = V ↔ dom card = V) |
8 | 2, 7 | bitr4i 277 | . . 3 ⊢ (CHOICE ↔ (dom card ∪ Fin) = V) |
9 | ssv 3955 | . . . 4 ⊢ (dom card ∪ Fin) ⊆ V | |
10 | eqss 3946 | . . . 4 ⊢ ((dom card ∪ Fin) = V ↔ ((dom card ∪ Fin) ⊆ V ∧ V ⊆ (dom card ∪ Fin))) | |
11 | 9, 10 | mpbiran 706 | . . 3 ⊢ ((dom card ∪ Fin) = V ↔ V ⊆ (dom card ∪ Fin)) |
12 | ssundif 4431 | . . 3 ⊢ (V ⊆ (dom card ∪ Fin) ↔ (V ∖ dom card) ⊆ Fin) | |
13 | 8, 11, 12 | 3bitri 296 | . 2 ⊢ (CHOICE ↔ (V ∖ dom card) ⊆ Fin) |
14 | dffin7-2 10247 | . . 3 ⊢ FinVII = (Fin ∪ (V ∖ dom card)) | |
15 | 14 | eqeq1i 2741 | . 2 ⊢ (FinVII = Fin ↔ (Fin ∪ (V ∖ dom card)) = Fin) |
16 | 1, 13, 15 | 3bitr4i 302 | 1 ⊢ (CHOICE ↔ FinVII = Fin) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1540 Vcvv 3441 ∖ cdif 3894 ∪ cun 3895 ⊆ wss 3897 dom cdm 5614 Fincfn 8796 cardccrd 9784 CHOICEwac 9964 FinVIIcfin7 10133 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5226 ax-sep 5240 ax-nul 5247 ax-pow 5305 ax-pr 5369 ax-un 7642 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3349 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3916 df-nul 4269 df-if 4473 df-pw 4548 df-sn 4573 df-pr 4575 df-op 4579 df-uni 4852 df-int 4894 df-iun 4940 df-br 5090 df-opab 5152 df-mpt 5173 df-tr 5207 df-id 5512 df-eprel 5518 df-po 5526 df-so 5527 df-fr 5569 df-se 5570 df-we 5571 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6232 df-ord 6299 df-on 6300 df-lim 6301 df-suc 6302 df-iota 6425 df-fun 6475 df-fn 6476 df-f 6477 df-f1 6478 df-fo 6479 df-f1o 6480 df-fv 6481 df-isom 6482 df-riota 7286 df-ov 7332 df-om 7773 df-2nd 7892 df-frecs 8159 df-wrecs 8190 df-recs 8264 df-1o 8359 df-er 8561 df-en 8797 df-dom 8798 df-sdom 8799 df-fin 8800 df-card 9788 df-ac 9965 df-fin7 10140 |
This theorem is referenced by: fin71ac 10382 |
Copyright terms: Public domain | W3C validator |