MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfacfin7 Structured version   Visualization version   GIF version

Theorem dfacfin7 10086
Description: Axiom of Choice equivalent: the VII-finite sets are the same as I-finite sets. (Contributed by Mario Carneiro, 18-May-2015.)
Assertion
Ref Expression
dfacfin7 (CHOICE ↔ FinVII = Fin)

Proof of Theorem dfacfin7
StepHypRef Expression
1 ssequn2 4113 . 2 ((V ∖ dom card) ⊆ Fin ↔ (Fin ∪ (V ∖ dom card)) = Fin)
2 dfac10 9824 . . . 4 (CHOICE ↔ dom card = V)
3 finnum 9637 . . . . . . 7 (𝑥 ∈ Fin → 𝑥 ∈ dom card)
43ssriv 3921 . . . . . 6 Fin ⊆ dom card
5 ssequn2 4113 . . . . . 6 (Fin ⊆ dom card ↔ (dom card ∪ Fin) = dom card)
64, 5mpbi 229 . . . . 5 (dom card ∪ Fin) = dom card
76eqeq1i 2743 . . . 4 ((dom card ∪ Fin) = V ↔ dom card = V)
82, 7bitr4i 277 . . 3 (CHOICE ↔ (dom card ∪ Fin) = V)
9 ssv 3941 . . . 4 (dom card ∪ Fin) ⊆ V
10 eqss 3932 . . . 4 ((dom card ∪ Fin) = V ↔ ((dom card ∪ Fin) ⊆ V ∧ V ⊆ (dom card ∪ Fin)))
119, 10mpbiran 705 . . 3 ((dom card ∪ Fin) = V ↔ V ⊆ (dom card ∪ Fin))
12 ssundif 4415 . . 3 (V ⊆ (dom card ∪ Fin) ↔ (V ∖ dom card) ⊆ Fin)
138, 11, 123bitri 296 . 2 (CHOICE ↔ (V ∖ dom card) ⊆ Fin)
14 dffin7-2 10085 . . 3 FinVII = (Fin ∪ (V ∖ dom card))
1514eqeq1i 2743 . 2 (FinVII = Fin ↔ (Fin ∪ (V ∖ dom card)) = Fin)
161, 13, 153bitr4i 302 1 (CHOICE ↔ FinVII = Fin)
Colors of variables: wff setvar class
Syntax hints:  wb 205   = wceq 1539  Vcvv 3422  cdif 3880  cun 3881  wss 3883  dom cdm 5580  Fincfn 8691  cardccrd 9624  CHOICEwac 9802  FinVIIcfin7 9971
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-1o 8267  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-card 9628  df-ac 9803  df-fin7 9978
This theorem is referenced by:  fin71ac  10220
  Copyright terms: Public domain W3C validator