MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfacfin7 Structured version   Visualization version   GIF version

Theorem dfacfin7 10352
Description: Axiom of Choice equivalent: the VII-finite sets are the same as I-finite sets. (Contributed by Mario Carneiro, 18-May-2015.)
Assertion
Ref Expression
dfacfin7 (CHOICE ↔ FinVII = Fin)

Proof of Theorem dfacfin7
StepHypRef Expression
1 ssequn2 4152 . 2 ((V ∖ dom card) ⊆ Fin ↔ (Fin ∪ (V ∖ dom card)) = Fin)
2 dfac10 10091 . . . 4 (CHOICE ↔ dom card = V)
3 finnum 9901 . . . . . . 7 (𝑥 ∈ Fin → 𝑥 ∈ dom card)
43ssriv 3950 . . . . . 6 Fin ⊆ dom card
5 ssequn2 4152 . . . . . 6 (Fin ⊆ dom card ↔ (dom card ∪ Fin) = dom card)
64, 5mpbi 230 . . . . 5 (dom card ∪ Fin) = dom card
76eqeq1i 2734 . . . 4 ((dom card ∪ Fin) = V ↔ dom card = V)
82, 7bitr4i 278 . . 3 (CHOICE ↔ (dom card ∪ Fin) = V)
9 ssv 3971 . . . 4 (dom card ∪ Fin) ⊆ V
10 eqss 3962 . . . 4 ((dom card ∪ Fin) = V ↔ ((dom card ∪ Fin) ⊆ V ∧ V ⊆ (dom card ∪ Fin)))
119, 10mpbiran 709 . . 3 ((dom card ∪ Fin) = V ↔ V ⊆ (dom card ∪ Fin))
12 ssundif 4451 . . 3 (V ⊆ (dom card ∪ Fin) ↔ (V ∖ dom card) ⊆ Fin)
138, 11, 123bitri 297 . 2 (CHOICE ↔ (V ∖ dom card) ⊆ Fin)
14 dffin7-2 10351 . . 3 FinVII = (Fin ∪ (V ∖ dom card))
1514eqeq1i 2734 . 2 (FinVII = Fin ↔ (Fin ∪ (V ∖ dom card)) = Fin)
161, 13, 153bitr4i 303 1 (CHOICE ↔ FinVII = Fin)
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1540  Vcvv 3447  cdif 3911  cun 3912  wss 3914  dom cdm 5638  Fincfn 8918  cardccrd 9888  CHOICEwac 10068  FinVIIcfin7 10237
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-om 7843  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-1o 8434  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-card 9892  df-ac 10069  df-fin7 10244
This theorem is referenced by:  fin71ac  10486
  Copyright terms: Public domain W3C validator