![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dfacfin7 | Structured version Visualization version GIF version |
Description: Axiom of Choice equivalent: the VII-finite sets are the same as I-finite sets. (Contributed by Mario Carneiro, 18-May-2015.) |
Ref | Expression |
---|---|
dfacfin7 | ⊢ (CHOICE ↔ FinVII = Fin) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssequn2 4014 | . 2 ⊢ ((V ∖ dom card) ⊆ Fin ↔ (Fin ∪ (V ∖ dom card)) = Fin) | |
2 | dfac10 9275 | . . . 4 ⊢ (CHOICE ↔ dom card = V) | |
3 | finnum 9088 | . . . . . . 7 ⊢ (𝑥 ∈ Fin → 𝑥 ∈ dom card) | |
4 | 3 | ssriv 3832 | . . . . . 6 ⊢ Fin ⊆ dom card |
5 | ssequn2 4014 | . . . . . 6 ⊢ (Fin ⊆ dom card ↔ (dom card ∪ Fin) = dom card) | |
6 | 4, 5 | mpbi 222 | . . . . 5 ⊢ (dom card ∪ Fin) = dom card |
7 | 6 | eqeq1i 2831 | . . . 4 ⊢ ((dom card ∪ Fin) = V ↔ dom card = V) |
8 | 2, 7 | bitr4i 270 | . . 3 ⊢ (CHOICE ↔ (dom card ∪ Fin) = V) |
9 | ssv 3851 | . . . 4 ⊢ (dom card ∪ Fin) ⊆ V | |
10 | eqss 3843 | . . . 4 ⊢ ((dom card ∪ Fin) = V ↔ ((dom card ∪ Fin) ⊆ V ∧ V ⊆ (dom card ∪ Fin))) | |
11 | 9, 10 | mpbiran 702 | . . 3 ⊢ ((dom card ∪ Fin) = V ↔ V ⊆ (dom card ∪ Fin)) |
12 | ssundif 4276 | . . 3 ⊢ (V ⊆ (dom card ∪ Fin) ↔ (V ∖ dom card) ⊆ Fin) | |
13 | 8, 11, 12 | 3bitri 289 | . 2 ⊢ (CHOICE ↔ (V ∖ dom card) ⊆ Fin) |
14 | dffin7-2 9536 | . . 3 ⊢ FinVII = (Fin ∪ (V ∖ dom card)) | |
15 | 14 | eqeq1i 2831 | . 2 ⊢ (FinVII = Fin ↔ (Fin ∪ (V ∖ dom card)) = Fin) |
16 | 1, 13, 15 | 3bitr4i 295 | 1 ⊢ (CHOICE ↔ FinVII = Fin) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 198 = wceq 1658 Vcvv 3415 ∖ cdif 3796 ∪ cun 3797 ⊆ wss 3799 dom cdm 5343 Fincfn 8223 cardccrd 9075 CHOICEwac 9252 FinVIIcfin7 9422 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-8 2168 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2391 ax-ext 2804 ax-rep 4995 ax-sep 5006 ax-nul 5014 ax-pow 5066 ax-pr 5128 ax-un 7210 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3or 1114 df-3an 1115 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-mo 2606 df-eu 2641 df-clab 2813 df-cleq 2819 df-clel 2822 df-nfc 2959 df-ne 3001 df-ral 3123 df-rex 3124 df-reu 3125 df-rmo 3126 df-rab 3127 df-v 3417 df-sbc 3664 df-csb 3759 df-dif 3802 df-un 3804 df-in 3806 df-ss 3813 df-pss 3815 df-nul 4146 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-tp 4403 df-op 4405 df-uni 4660 df-int 4699 df-iun 4743 df-br 4875 df-opab 4937 df-mpt 4954 df-tr 4977 df-id 5251 df-eprel 5256 df-po 5264 df-so 5265 df-fr 5302 df-se 5303 df-we 5304 df-xp 5349 df-rel 5350 df-cnv 5351 df-co 5352 df-dm 5353 df-rn 5354 df-res 5355 df-ima 5356 df-pred 5921 df-ord 5967 df-on 5968 df-lim 5969 df-suc 5970 df-iota 6087 df-fun 6126 df-fn 6127 df-f 6128 df-f1 6129 df-fo 6130 df-f1o 6131 df-fv 6132 df-isom 6133 df-riota 6867 df-om 7328 df-wrecs 7673 df-recs 7735 df-er 8010 df-en 8224 df-dom 8225 df-sdom 8226 df-fin 8227 df-card 9079 df-ac 9253 df-fin7 9429 |
This theorem is referenced by: fin71ac 9671 |
Copyright terms: Public domain | W3C validator |