| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dfacfin7 | Structured version Visualization version GIF version | ||
| Description: Axiom of Choice equivalent: the VII-finite sets are the same as I-finite sets. (Contributed by Mario Carneiro, 18-May-2015.) |
| Ref | Expression |
|---|---|
| dfacfin7 | ⊢ (CHOICE ↔ FinVII = Fin) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssequn2 4140 | . 2 ⊢ ((V ∖ dom card) ⊆ Fin ↔ (Fin ∪ (V ∖ dom card)) = Fin) | |
| 2 | dfac10 10032 | . . . 4 ⊢ (CHOICE ↔ dom card = V) | |
| 3 | finnum 9844 | . . . . . . 7 ⊢ (𝑥 ∈ Fin → 𝑥 ∈ dom card) | |
| 4 | 3 | ssriv 3939 | . . . . . 6 ⊢ Fin ⊆ dom card |
| 5 | ssequn2 4140 | . . . . . 6 ⊢ (Fin ⊆ dom card ↔ (dom card ∪ Fin) = dom card) | |
| 6 | 4, 5 | mpbi 230 | . . . . 5 ⊢ (dom card ∪ Fin) = dom card |
| 7 | 6 | eqeq1i 2734 | . . . 4 ⊢ ((dom card ∪ Fin) = V ↔ dom card = V) |
| 8 | 2, 7 | bitr4i 278 | . . 3 ⊢ (CHOICE ↔ (dom card ∪ Fin) = V) |
| 9 | ssv 3960 | . . . 4 ⊢ (dom card ∪ Fin) ⊆ V | |
| 10 | eqss 3951 | . . . 4 ⊢ ((dom card ∪ Fin) = V ↔ ((dom card ∪ Fin) ⊆ V ∧ V ⊆ (dom card ∪ Fin))) | |
| 11 | 9, 10 | mpbiran 709 | . . 3 ⊢ ((dom card ∪ Fin) = V ↔ V ⊆ (dom card ∪ Fin)) |
| 12 | ssundif 4439 | . . 3 ⊢ (V ⊆ (dom card ∪ Fin) ↔ (V ∖ dom card) ⊆ Fin) | |
| 13 | 8, 11, 12 | 3bitri 297 | . 2 ⊢ (CHOICE ↔ (V ∖ dom card) ⊆ Fin) |
| 14 | dffin7-2 10292 | . . 3 ⊢ FinVII = (Fin ∪ (V ∖ dom card)) | |
| 15 | 14 | eqeq1i 2734 | . 2 ⊢ (FinVII = Fin ↔ (Fin ∪ (V ∖ dom card)) = Fin) |
| 16 | 1, 13, 15 | 3bitr4i 303 | 1 ⊢ (CHOICE ↔ FinVII = Fin) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 Vcvv 3436 ∖ cdif 3900 ∪ cun 3901 ⊆ wss 3903 dom cdm 5619 Fincfn 8872 cardccrd 9831 CHOICEwac 10009 FinVIIcfin7 10178 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-int 4897 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-isom 6491 df-riota 7306 df-ov 7352 df-om 7800 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-1o 8388 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-card 9835 df-ac 10010 df-fin7 10185 |
| This theorem is referenced by: fin71ac 10427 |
| Copyright terms: Public domain | W3C validator |