| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dfacfin7 | Structured version Visualization version GIF version | ||
| Description: Axiom of Choice equivalent: the VII-finite sets are the same as I-finite sets. (Contributed by Mario Carneiro, 18-May-2015.) |
| Ref | Expression |
|---|---|
| dfacfin7 | ⊢ (CHOICE ↔ FinVII = Fin) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssequn2 4136 | . 2 ⊢ ((V ∖ dom card) ⊆ Fin ↔ (Fin ∪ (V ∖ dom card)) = Fin) | |
| 2 | dfac10 10029 | . . . 4 ⊢ (CHOICE ↔ dom card = V) | |
| 3 | finnum 9841 | . . . . . . 7 ⊢ (𝑥 ∈ Fin → 𝑥 ∈ dom card) | |
| 4 | 3 | ssriv 3933 | . . . . . 6 ⊢ Fin ⊆ dom card |
| 5 | ssequn2 4136 | . . . . . 6 ⊢ (Fin ⊆ dom card ↔ (dom card ∪ Fin) = dom card) | |
| 6 | 4, 5 | mpbi 230 | . . . . 5 ⊢ (dom card ∪ Fin) = dom card |
| 7 | 6 | eqeq1i 2736 | . . . 4 ⊢ ((dom card ∪ Fin) = V ↔ dom card = V) |
| 8 | 2, 7 | bitr4i 278 | . . 3 ⊢ (CHOICE ↔ (dom card ∪ Fin) = V) |
| 9 | ssv 3954 | . . . 4 ⊢ (dom card ∪ Fin) ⊆ V | |
| 10 | eqss 3945 | . . . 4 ⊢ ((dom card ∪ Fin) = V ↔ ((dom card ∪ Fin) ⊆ V ∧ V ⊆ (dom card ∪ Fin))) | |
| 11 | 9, 10 | mpbiran 709 | . . 3 ⊢ ((dom card ∪ Fin) = V ↔ V ⊆ (dom card ∪ Fin)) |
| 12 | ssundif 4435 | . . 3 ⊢ (V ⊆ (dom card ∪ Fin) ↔ (V ∖ dom card) ⊆ Fin) | |
| 13 | 8, 11, 12 | 3bitri 297 | . 2 ⊢ (CHOICE ↔ (V ∖ dom card) ⊆ Fin) |
| 14 | dffin7-2 10289 | . . 3 ⊢ FinVII = (Fin ∪ (V ∖ dom card)) | |
| 15 | 14 | eqeq1i 2736 | . 2 ⊢ (FinVII = Fin ↔ (Fin ∪ (V ∖ dom card)) = Fin) |
| 16 | 1, 13, 15 | 3bitr4i 303 | 1 ⊢ (CHOICE ↔ FinVII = Fin) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1541 Vcvv 3436 ∖ cdif 3894 ∪ cun 3895 ⊆ wss 3897 dom cdm 5614 Fincfn 8869 cardccrd 9828 CHOICEwac 10006 FinVIIcfin7 10175 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-se 5568 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-1o 8385 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-card 9832 df-ac 10007 df-fin7 10182 |
| This theorem is referenced by: fin71ac 10424 |
| Copyright terms: Public domain | W3C validator |