![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dfacfin7 | Structured version Visualization version GIF version |
Description: Axiom of Choice equivalent: the VII-finite sets are the same as I-finite sets. (Contributed by Mario Carneiro, 18-May-2015.) |
Ref | Expression |
---|---|
dfacfin7 | ⊢ (CHOICE ↔ FinVII = Fin) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssequn2 4183 | . 2 ⊢ ((V ∖ dom card) ⊆ Fin ↔ (Fin ∪ (V ∖ dom card)) = Fin) | |
2 | dfac10 10135 | . . . 4 ⊢ (CHOICE ↔ dom card = V) | |
3 | finnum 9946 | . . . . . . 7 ⊢ (𝑥 ∈ Fin → 𝑥 ∈ dom card) | |
4 | 3 | ssriv 3986 | . . . . . 6 ⊢ Fin ⊆ dom card |
5 | ssequn2 4183 | . . . . . 6 ⊢ (Fin ⊆ dom card ↔ (dom card ∪ Fin) = dom card) | |
6 | 4, 5 | mpbi 229 | . . . . 5 ⊢ (dom card ∪ Fin) = dom card |
7 | 6 | eqeq1i 2736 | . . . 4 ⊢ ((dom card ∪ Fin) = V ↔ dom card = V) |
8 | 2, 7 | bitr4i 278 | . . 3 ⊢ (CHOICE ↔ (dom card ∪ Fin) = V) |
9 | ssv 4006 | . . . 4 ⊢ (dom card ∪ Fin) ⊆ V | |
10 | eqss 3997 | . . . 4 ⊢ ((dom card ∪ Fin) = V ↔ ((dom card ∪ Fin) ⊆ V ∧ V ⊆ (dom card ∪ Fin))) | |
11 | 9, 10 | mpbiran 706 | . . 3 ⊢ ((dom card ∪ Fin) = V ↔ V ⊆ (dom card ∪ Fin)) |
12 | ssundif 4487 | . . 3 ⊢ (V ⊆ (dom card ∪ Fin) ↔ (V ∖ dom card) ⊆ Fin) | |
13 | 8, 11, 12 | 3bitri 297 | . 2 ⊢ (CHOICE ↔ (V ∖ dom card) ⊆ Fin) |
14 | dffin7-2 10396 | . . 3 ⊢ FinVII = (Fin ∪ (V ∖ dom card)) | |
15 | 14 | eqeq1i 2736 | . 2 ⊢ (FinVII = Fin ↔ (Fin ∪ (V ∖ dom card)) = Fin) |
16 | 1, 13, 15 | 3bitr4i 303 | 1 ⊢ (CHOICE ↔ FinVII = Fin) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1540 Vcvv 3473 ∖ cdif 3945 ∪ cun 3946 ⊆ wss 3948 dom cdm 5676 Fincfn 8942 cardccrd 9933 CHOICEwac 10113 FinVIIcfin7 10282 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7728 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-se 5632 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-isom 6552 df-riota 7368 df-ov 7415 df-om 7859 df-2nd 7979 df-frecs 8269 df-wrecs 8300 df-recs 8374 df-1o 8469 df-er 8706 df-en 8943 df-dom 8944 df-sdom 8945 df-fin 8946 df-card 9937 df-ac 10114 df-fin7 10289 |
This theorem is referenced by: fin71ac 10531 |
Copyright terms: Public domain | W3C validator |