MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfacfin7 Structured version   Visualization version   GIF version

Theorem dfacfin7 10248
Description: Axiom of Choice equivalent: the VII-finite sets are the same as I-finite sets. (Contributed by Mario Carneiro, 18-May-2015.)
Assertion
Ref Expression
dfacfin7 (CHOICE ↔ FinVII = Fin)

Proof of Theorem dfacfin7
StepHypRef Expression
1 ssequn2 4129 . 2 ((V ∖ dom card) ⊆ Fin ↔ (Fin ∪ (V ∖ dom card)) = Fin)
2 dfac10 9986 . . . 4 (CHOICE ↔ dom card = V)
3 finnum 9797 . . . . . . 7 (𝑥 ∈ Fin → 𝑥 ∈ dom card)
43ssriv 3935 . . . . . 6 Fin ⊆ dom card
5 ssequn2 4129 . . . . . 6 (Fin ⊆ dom card ↔ (dom card ∪ Fin) = dom card)
64, 5mpbi 229 . . . . 5 (dom card ∪ Fin) = dom card
76eqeq1i 2741 . . . 4 ((dom card ∪ Fin) = V ↔ dom card = V)
82, 7bitr4i 277 . . 3 (CHOICE ↔ (dom card ∪ Fin) = V)
9 ssv 3955 . . . 4 (dom card ∪ Fin) ⊆ V
10 eqss 3946 . . . 4 ((dom card ∪ Fin) = V ↔ ((dom card ∪ Fin) ⊆ V ∧ V ⊆ (dom card ∪ Fin)))
119, 10mpbiran 706 . . 3 ((dom card ∪ Fin) = V ↔ V ⊆ (dom card ∪ Fin))
12 ssundif 4431 . . 3 (V ⊆ (dom card ∪ Fin) ↔ (V ∖ dom card) ⊆ Fin)
138, 11, 123bitri 296 . 2 (CHOICE ↔ (V ∖ dom card) ⊆ Fin)
14 dffin7-2 10247 . . 3 FinVII = (Fin ∪ (V ∖ dom card))
1514eqeq1i 2741 . 2 (FinVII = Fin ↔ (Fin ∪ (V ∖ dom card)) = Fin)
161, 13, 153bitr4i 302 1 (CHOICE ↔ FinVII = Fin)
Colors of variables: wff setvar class
Syntax hints:  wb 205   = wceq 1540  Vcvv 3441  cdif 3894  cun 3895  wss 3897  dom cdm 5614  Fincfn 8796  cardccrd 9784  CHOICEwac 9964  FinVIIcfin7 10133
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-rep 5226  ax-sep 5240  ax-nul 5247  ax-pow 5305  ax-pr 5369  ax-un 7642
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3349  df-reu 3350  df-rab 3404  df-v 3443  df-sbc 3727  df-csb 3843  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3916  df-nul 4269  df-if 4473  df-pw 4548  df-sn 4573  df-pr 4575  df-op 4579  df-uni 4852  df-int 4894  df-iun 4940  df-br 5090  df-opab 5152  df-mpt 5173  df-tr 5207  df-id 5512  df-eprel 5518  df-po 5526  df-so 5527  df-fr 5569  df-se 5570  df-we 5571  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6232  df-ord 6299  df-on 6300  df-lim 6301  df-suc 6302  df-iota 6425  df-fun 6475  df-fn 6476  df-f 6477  df-f1 6478  df-fo 6479  df-f1o 6480  df-fv 6481  df-isom 6482  df-riota 7286  df-ov 7332  df-om 7773  df-2nd 7892  df-frecs 8159  df-wrecs 8190  df-recs 8264  df-1o 8359  df-er 8561  df-en 8797  df-dom 8798  df-sdom 8799  df-fin 8800  df-card 9788  df-ac 9965  df-fin7 10140
This theorem is referenced by:  fin71ac  10382
  Copyright terms: Public domain W3C validator