| Step | Hyp | Ref
| Expression |
| 1 | | comet.1 |
. . 3
⊢ (𝜑 → 𝐷 ∈ (∞Met‘𝑋)) |
| 2 | 1 | elfvexd 6945 |
. 2
⊢ (𝜑 → 𝑋 ∈ V) |
| 3 | | comet.2 |
. . 3
⊢ (𝜑 → 𝐹:(0[,]+∞)⟶ℝ*) |
| 4 | | xmetf 24339 |
. . . . . 6
⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝐷:(𝑋 × 𝑋)⟶ℝ*) |
| 5 | 1, 4 | syl 17 |
. . . . 5
⊢ (𝜑 → 𝐷:(𝑋 × 𝑋)⟶ℝ*) |
| 6 | 5 | ffnd 6737 |
. . . 4
⊢ (𝜑 → 𝐷 Fn (𝑋 × 𝑋)) |
| 7 | | xmetcl 24341 |
. . . . . . . 8
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋) → (𝑎𝐷𝑏) ∈
ℝ*) |
| 8 | | xmetge0 24354 |
. . . . . . . 8
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋) → 0 ≤ (𝑎𝐷𝑏)) |
| 9 | | elxrge0 13497 |
. . . . . . . 8
⊢ ((𝑎𝐷𝑏) ∈ (0[,]+∞) ↔ ((𝑎𝐷𝑏) ∈ ℝ* ∧ 0 ≤
(𝑎𝐷𝑏))) |
| 10 | 7, 8, 9 | sylanbrc 583 |
. . . . . . 7
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋) → (𝑎𝐷𝑏) ∈ (0[,]+∞)) |
| 11 | 10 | 3expb 1121 |
. . . . . 6
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) → (𝑎𝐷𝑏) ∈ (0[,]+∞)) |
| 12 | 1, 11 | sylan 580 |
. . . . 5
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) → (𝑎𝐷𝑏) ∈ (0[,]+∞)) |
| 13 | 12 | ralrimivva 3202 |
. . . 4
⊢ (𝜑 → ∀𝑎 ∈ 𝑋 ∀𝑏 ∈ 𝑋 (𝑎𝐷𝑏) ∈ (0[,]+∞)) |
| 14 | | ffnov 7559 |
. . . 4
⊢ (𝐷:(𝑋 × 𝑋)⟶(0[,]+∞) ↔ (𝐷 Fn (𝑋 × 𝑋) ∧ ∀𝑎 ∈ 𝑋 ∀𝑏 ∈ 𝑋 (𝑎𝐷𝑏) ∈ (0[,]+∞))) |
| 15 | 6, 13, 14 | sylanbrc 583 |
. . 3
⊢ (𝜑 → 𝐷:(𝑋 × 𝑋)⟶(0[,]+∞)) |
| 16 | 3, 15 | fcod 6761 |
. 2
⊢ (𝜑 → (𝐹 ∘ 𝐷):(𝑋 × 𝑋)⟶ℝ*) |
| 17 | | opelxpi 5722 |
. . . . . 6
⊢ ((𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋) → 〈𝑎, 𝑏〉 ∈ (𝑋 × 𝑋)) |
| 18 | | fvco3 7008 |
. . . . . 6
⊢ ((𝐷:(𝑋 × 𝑋)⟶ℝ* ∧
〈𝑎, 𝑏〉 ∈ (𝑋 × 𝑋)) → ((𝐹 ∘ 𝐷)‘〈𝑎, 𝑏〉) = (𝐹‘(𝐷‘〈𝑎, 𝑏〉))) |
| 19 | 5, 17, 18 | syl2an 596 |
. . . . 5
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) → ((𝐹 ∘ 𝐷)‘〈𝑎, 𝑏〉) = (𝐹‘(𝐷‘〈𝑎, 𝑏〉))) |
| 20 | | df-ov 7434 |
. . . . 5
⊢ (𝑎(𝐹 ∘ 𝐷)𝑏) = ((𝐹 ∘ 𝐷)‘〈𝑎, 𝑏〉) |
| 21 | | df-ov 7434 |
. . . . . 6
⊢ (𝑎𝐷𝑏) = (𝐷‘〈𝑎, 𝑏〉) |
| 22 | 21 | fveq2i 6909 |
. . . . 5
⊢ (𝐹‘(𝑎𝐷𝑏)) = (𝐹‘(𝐷‘〈𝑎, 𝑏〉)) |
| 23 | 19, 20, 22 | 3eqtr4g 2802 |
. . . 4
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) → (𝑎(𝐹 ∘ 𝐷)𝑏) = (𝐹‘(𝑎𝐷𝑏))) |
| 24 | 23 | eqeq1d 2739 |
. . 3
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) → ((𝑎(𝐹 ∘ 𝐷)𝑏) = 0 ↔ (𝐹‘(𝑎𝐷𝑏)) = 0)) |
| 25 | | fveq2 6906 |
. . . . . 6
⊢ (𝑥 = (𝑎𝐷𝑏) → (𝐹‘𝑥) = (𝐹‘(𝑎𝐷𝑏))) |
| 26 | 25 | eqeq1d 2739 |
. . . . 5
⊢ (𝑥 = (𝑎𝐷𝑏) → ((𝐹‘𝑥) = 0 ↔ (𝐹‘(𝑎𝐷𝑏)) = 0)) |
| 27 | | eqeq1 2741 |
. . . . 5
⊢ (𝑥 = (𝑎𝐷𝑏) → (𝑥 = 0 ↔ (𝑎𝐷𝑏) = 0)) |
| 28 | 26, 27 | bibi12d 345 |
. . . 4
⊢ (𝑥 = (𝑎𝐷𝑏) → (((𝐹‘𝑥) = 0 ↔ 𝑥 = 0) ↔ ((𝐹‘(𝑎𝐷𝑏)) = 0 ↔ (𝑎𝐷𝑏) = 0))) |
| 29 | | comet.3 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (0[,]+∞)) → ((𝐹‘𝑥) = 0 ↔ 𝑥 = 0)) |
| 30 | 29 | ralrimiva 3146 |
. . . . 5
⊢ (𝜑 → ∀𝑥 ∈ (0[,]+∞)((𝐹‘𝑥) = 0 ↔ 𝑥 = 0)) |
| 31 | 30 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) → ∀𝑥 ∈ (0[,]+∞)((𝐹‘𝑥) = 0 ↔ 𝑥 = 0)) |
| 32 | 28, 31, 12 | rspcdva 3623 |
. . 3
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) → ((𝐹‘(𝑎𝐷𝑏)) = 0 ↔ (𝑎𝐷𝑏) = 0)) |
| 33 | | xmeteq0 24348 |
. . . . 5
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋) → ((𝑎𝐷𝑏) = 0 ↔ 𝑎 = 𝑏)) |
| 34 | 33 | 3expb 1121 |
. . . 4
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) → ((𝑎𝐷𝑏) = 0 ↔ 𝑎 = 𝑏)) |
| 35 | 1, 34 | sylan 580 |
. . 3
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) → ((𝑎𝐷𝑏) = 0 ↔ 𝑎 = 𝑏)) |
| 36 | 24, 32, 35 | 3bitrd 305 |
. 2
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) → ((𝑎(𝐹 ∘ 𝐷)𝑏) = 0 ↔ 𝑎 = 𝑏)) |
| 37 | 3 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋)) → 𝐹:(0[,]+∞)⟶ℝ*) |
| 38 | 12 | 3adantr3 1172 |
. . . . 5
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋)) → (𝑎𝐷𝑏) ∈ (0[,]+∞)) |
| 39 | 37, 38 | ffvelcdmd 7105 |
. . . 4
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋)) → (𝐹‘(𝑎𝐷𝑏)) ∈
ℝ*) |
| 40 | 15 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋)) → 𝐷:(𝑋 × 𝑋)⟶(0[,]+∞)) |
| 41 | | simpr3 1197 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋)) → 𝑐 ∈ 𝑋) |
| 42 | | simpr1 1195 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋)) → 𝑎 ∈ 𝑋) |
| 43 | 40, 41, 42 | fovcdmd 7605 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋)) → (𝑐𝐷𝑎) ∈ (0[,]+∞)) |
| 44 | | simpr2 1196 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋)) → 𝑏 ∈ 𝑋) |
| 45 | 40, 41, 44 | fovcdmd 7605 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋)) → (𝑐𝐷𝑏) ∈ (0[,]+∞)) |
| 46 | | ge0xaddcl 13502 |
. . . . . 6
⊢ (((𝑐𝐷𝑎) ∈ (0[,]+∞) ∧ (𝑐𝐷𝑏) ∈ (0[,]+∞)) → ((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏)) ∈ (0[,]+∞)) |
| 47 | 43, 45, 46 | syl2anc 584 |
. . . . 5
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋)) → ((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏)) ∈ (0[,]+∞)) |
| 48 | 37, 47 | ffvelcdmd 7105 |
. . . 4
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋)) → (𝐹‘((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏))) ∈
ℝ*) |
| 49 | 37, 43 | ffvelcdmd 7105 |
. . . . 5
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋)) → (𝐹‘(𝑐𝐷𝑎)) ∈
ℝ*) |
| 50 | 37, 45 | ffvelcdmd 7105 |
. . . . 5
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋)) → (𝐹‘(𝑐𝐷𝑏)) ∈
ℝ*) |
| 51 | 49, 50 | xaddcld 13343 |
. . . 4
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋)) → ((𝐹‘(𝑐𝐷𝑎)) +𝑒 (𝐹‘(𝑐𝐷𝑏))) ∈
ℝ*) |
| 52 | | 3anrot 1100 |
. . . . . . 7
⊢ ((𝑐 ∈ 𝑋 ∧ 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋) ↔ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋)) |
| 53 | | xmettri2 24350 |
. . . . . . 7
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑐 ∈ 𝑋 ∧ 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) → (𝑎𝐷𝑏) ≤ ((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏))) |
| 54 | 52, 53 | sylan2br 595 |
. . . . . 6
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋)) → (𝑎𝐷𝑏) ≤ ((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏))) |
| 55 | 1, 54 | sylan 580 |
. . . . 5
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋)) → (𝑎𝐷𝑏) ≤ ((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏))) |
| 56 | | comet.4 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ (0[,]+∞) ∧ 𝑦 ∈ (0[,]+∞))) →
(𝑥 ≤ 𝑦 → (𝐹‘𝑥) ≤ (𝐹‘𝑦))) |
| 57 | 56 | ralrimivva 3202 |
. . . . . . 7
⊢ (𝜑 → ∀𝑥 ∈ (0[,]+∞)∀𝑦 ∈ (0[,]+∞)(𝑥 ≤ 𝑦 → (𝐹‘𝑥) ≤ (𝐹‘𝑦))) |
| 58 | 57 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋)) → ∀𝑥 ∈ (0[,]+∞)∀𝑦 ∈ (0[,]+∞)(𝑥 ≤ 𝑦 → (𝐹‘𝑥) ≤ (𝐹‘𝑦))) |
| 59 | | breq1 5146 |
. . . . . . . 8
⊢ (𝑥 = (𝑎𝐷𝑏) → (𝑥 ≤ 𝑦 ↔ (𝑎𝐷𝑏) ≤ 𝑦)) |
| 60 | 25 | breq1d 5153 |
. . . . . . . 8
⊢ (𝑥 = (𝑎𝐷𝑏) → ((𝐹‘𝑥) ≤ (𝐹‘𝑦) ↔ (𝐹‘(𝑎𝐷𝑏)) ≤ (𝐹‘𝑦))) |
| 61 | 59, 60 | imbi12d 344 |
. . . . . . 7
⊢ (𝑥 = (𝑎𝐷𝑏) → ((𝑥 ≤ 𝑦 → (𝐹‘𝑥) ≤ (𝐹‘𝑦)) ↔ ((𝑎𝐷𝑏) ≤ 𝑦 → (𝐹‘(𝑎𝐷𝑏)) ≤ (𝐹‘𝑦)))) |
| 62 | | breq2 5147 |
. . . . . . . 8
⊢ (𝑦 = ((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏)) → ((𝑎𝐷𝑏) ≤ 𝑦 ↔ (𝑎𝐷𝑏) ≤ ((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏)))) |
| 63 | | fveq2 6906 |
. . . . . . . . 9
⊢ (𝑦 = ((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏)) → (𝐹‘𝑦) = (𝐹‘((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏)))) |
| 64 | 63 | breq2d 5155 |
. . . . . . . 8
⊢ (𝑦 = ((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏)) → ((𝐹‘(𝑎𝐷𝑏)) ≤ (𝐹‘𝑦) ↔ (𝐹‘(𝑎𝐷𝑏)) ≤ (𝐹‘((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏))))) |
| 65 | 62, 64 | imbi12d 344 |
. . . . . . 7
⊢ (𝑦 = ((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏)) → (((𝑎𝐷𝑏) ≤ 𝑦 → (𝐹‘(𝑎𝐷𝑏)) ≤ (𝐹‘𝑦)) ↔ ((𝑎𝐷𝑏) ≤ ((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏)) → (𝐹‘(𝑎𝐷𝑏)) ≤ (𝐹‘((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏)))))) |
| 66 | 61, 65 | rspc2va 3634 |
. . . . . 6
⊢ ((((𝑎𝐷𝑏) ∈ (0[,]+∞) ∧ ((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏)) ∈ (0[,]+∞)) ∧ ∀𝑥 ∈
(0[,]+∞)∀𝑦
∈ (0[,]+∞)(𝑥
≤ 𝑦 → (𝐹‘𝑥) ≤ (𝐹‘𝑦))) → ((𝑎𝐷𝑏) ≤ ((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏)) → (𝐹‘(𝑎𝐷𝑏)) ≤ (𝐹‘((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏))))) |
| 67 | 38, 47, 58, 66 | syl21anc 838 |
. . . . 5
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋)) → ((𝑎𝐷𝑏) ≤ ((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏)) → (𝐹‘(𝑎𝐷𝑏)) ≤ (𝐹‘((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏))))) |
| 68 | 55, 67 | mpd 15 |
. . . 4
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋)) → (𝐹‘(𝑎𝐷𝑏)) ≤ (𝐹‘((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏)))) |
| 69 | | comet.5 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ (0[,]+∞) ∧ 𝑦 ∈ (0[,]+∞))) →
(𝐹‘(𝑥 +𝑒 𝑦)) ≤ ((𝐹‘𝑥) +𝑒 (𝐹‘𝑦))) |
| 70 | 69 | ralrimivva 3202 |
. . . . . 6
⊢ (𝜑 → ∀𝑥 ∈ (0[,]+∞)∀𝑦 ∈ (0[,]+∞)(𝐹‘(𝑥 +𝑒 𝑦)) ≤ ((𝐹‘𝑥) +𝑒 (𝐹‘𝑦))) |
| 71 | 70 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋)) → ∀𝑥 ∈ (0[,]+∞)∀𝑦 ∈ (0[,]+∞)(𝐹‘(𝑥 +𝑒 𝑦)) ≤ ((𝐹‘𝑥) +𝑒 (𝐹‘𝑦))) |
| 72 | | fvoveq1 7454 |
. . . . . . 7
⊢ (𝑥 = (𝑐𝐷𝑎) → (𝐹‘(𝑥 +𝑒 𝑦)) = (𝐹‘((𝑐𝐷𝑎) +𝑒 𝑦))) |
| 73 | | fveq2 6906 |
. . . . . . . 8
⊢ (𝑥 = (𝑐𝐷𝑎) → (𝐹‘𝑥) = (𝐹‘(𝑐𝐷𝑎))) |
| 74 | 73 | oveq1d 7446 |
. . . . . . 7
⊢ (𝑥 = (𝑐𝐷𝑎) → ((𝐹‘𝑥) +𝑒 (𝐹‘𝑦)) = ((𝐹‘(𝑐𝐷𝑎)) +𝑒 (𝐹‘𝑦))) |
| 75 | 72, 74 | breq12d 5156 |
. . . . . 6
⊢ (𝑥 = (𝑐𝐷𝑎) → ((𝐹‘(𝑥 +𝑒 𝑦)) ≤ ((𝐹‘𝑥) +𝑒 (𝐹‘𝑦)) ↔ (𝐹‘((𝑐𝐷𝑎) +𝑒 𝑦)) ≤ ((𝐹‘(𝑐𝐷𝑎)) +𝑒 (𝐹‘𝑦)))) |
| 76 | | oveq2 7439 |
. . . . . . . 8
⊢ (𝑦 = (𝑐𝐷𝑏) → ((𝑐𝐷𝑎) +𝑒 𝑦) = ((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏))) |
| 77 | 76 | fveq2d 6910 |
. . . . . . 7
⊢ (𝑦 = (𝑐𝐷𝑏) → (𝐹‘((𝑐𝐷𝑎) +𝑒 𝑦)) = (𝐹‘((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏)))) |
| 78 | | fveq2 6906 |
. . . . . . . 8
⊢ (𝑦 = (𝑐𝐷𝑏) → (𝐹‘𝑦) = (𝐹‘(𝑐𝐷𝑏))) |
| 79 | 78 | oveq2d 7447 |
. . . . . . 7
⊢ (𝑦 = (𝑐𝐷𝑏) → ((𝐹‘(𝑐𝐷𝑎)) +𝑒 (𝐹‘𝑦)) = ((𝐹‘(𝑐𝐷𝑎)) +𝑒 (𝐹‘(𝑐𝐷𝑏)))) |
| 80 | 77, 79 | breq12d 5156 |
. . . . . 6
⊢ (𝑦 = (𝑐𝐷𝑏) → ((𝐹‘((𝑐𝐷𝑎) +𝑒 𝑦)) ≤ ((𝐹‘(𝑐𝐷𝑎)) +𝑒 (𝐹‘𝑦)) ↔ (𝐹‘((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏))) ≤ ((𝐹‘(𝑐𝐷𝑎)) +𝑒 (𝐹‘(𝑐𝐷𝑏))))) |
| 81 | 75, 80 | rspc2va 3634 |
. . . . 5
⊢ ((((𝑐𝐷𝑎) ∈ (0[,]+∞) ∧ (𝑐𝐷𝑏) ∈ (0[,]+∞)) ∧ ∀𝑥 ∈
(0[,]+∞)∀𝑦
∈ (0[,]+∞)(𝐹‘(𝑥 +𝑒 𝑦)) ≤ ((𝐹‘𝑥) +𝑒 (𝐹‘𝑦))) → (𝐹‘((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏))) ≤ ((𝐹‘(𝑐𝐷𝑎)) +𝑒 (𝐹‘(𝑐𝐷𝑏)))) |
| 82 | 43, 45, 71, 81 | syl21anc 838 |
. . . 4
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋)) → (𝐹‘((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏))) ≤ ((𝐹‘(𝑐𝐷𝑎)) +𝑒 (𝐹‘(𝑐𝐷𝑏)))) |
| 83 | 39, 48, 51, 68, 82 | xrletrd 13204 |
. . 3
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋)) → (𝐹‘(𝑎𝐷𝑏)) ≤ ((𝐹‘(𝑐𝐷𝑎)) +𝑒 (𝐹‘(𝑐𝐷𝑏)))) |
| 84 | 23 | 3adantr3 1172 |
. . 3
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋)) → (𝑎(𝐹 ∘ 𝐷)𝑏) = (𝐹‘(𝑎𝐷𝑏))) |
| 85 | 5 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋)) → 𝐷:(𝑋 × 𝑋)⟶ℝ*) |
| 86 | 41, 42 | opelxpd 5724 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋)) → 〈𝑐, 𝑎〉 ∈ (𝑋 × 𝑋)) |
| 87 | 85, 86 | fvco3d 7009 |
. . . . 5
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋)) → ((𝐹 ∘ 𝐷)‘〈𝑐, 𝑎〉) = (𝐹‘(𝐷‘〈𝑐, 𝑎〉))) |
| 88 | | df-ov 7434 |
. . . . 5
⊢ (𝑐(𝐹 ∘ 𝐷)𝑎) = ((𝐹 ∘ 𝐷)‘〈𝑐, 𝑎〉) |
| 89 | | df-ov 7434 |
. . . . . 6
⊢ (𝑐𝐷𝑎) = (𝐷‘〈𝑐, 𝑎〉) |
| 90 | 89 | fveq2i 6909 |
. . . . 5
⊢ (𝐹‘(𝑐𝐷𝑎)) = (𝐹‘(𝐷‘〈𝑐, 𝑎〉)) |
| 91 | 87, 88, 90 | 3eqtr4g 2802 |
. . . 4
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋)) → (𝑐(𝐹 ∘ 𝐷)𝑎) = (𝐹‘(𝑐𝐷𝑎))) |
| 92 | 41, 44 | opelxpd 5724 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋)) → 〈𝑐, 𝑏〉 ∈ (𝑋 × 𝑋)) |
| 93 | 85, 92 | fvco3d 7009 |
. . . . 5
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋)) → ((𝐹 ∘ 𝐷)‘〈𝑐, 𝑏〉) = (𝐹‘(𝐷‘〈𝑐, 𝑏〉))) |
| 94 | | df-ov 7434 |
. . . . 5
⊢ (𝑐(𝐹 ∘ 𝐷)𝑏) = ((𝐹 ∘ 𝐷)‘〈𝑐, 𝑏〉) |
| 95 | | df-ov 7434 |
. . . . . 6
⊢ (𝑐𝐷𝑏) = (𝐷‘〈𝑐, 𝑏〉) |
| 96 | 95 | fveq2i 6909 |
. . . . 5
⊢ (𝐹‘(𝑐𝐷𝑏)) = (𝐹‘(𝐷‘〈𝑐, 𝑏〉)) |
| 97 | 93, 94, 96 | 3eqtr4g 2802 |
. . . 4
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋)) → (𝑐(𝐹 ∘ 𝐷)𝑏) = (𝐹‘(𝑐𝐷𝑏))) |
| 98 | 91, 97 | oveq12d 7449 |
. . 3
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋)) → ((𝑐(𝐹 ∘ 𝐷)𝑎) +𝑒 (𝑐(𝐹 ∘ 𝐷)𝑏)) = ((𝐹‘(𝑐𝐷𝑎)) +𝑒 (𝐹‘(𝑐𝐷𝑏)))) |
| 99 | 83, 84, 98 | 3brtr4d 5175 |
. 2
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋)) → (𝑎(𝐹 ∘ 𝐷)𝑏) ≤ ((𝑐(𝐹 ∘ 𝐷)𝑎) +𝑒 (𝑐(𝐹 ∘ 𝐷)𝑏))) |
| 100 | 2, 16, 36, 99 | isxmetd 24336 |
1
⊢ (𝜑 → (𝐹 ∘ 𝐷) ∈ (∞Met‘𝑋)) |