Step | Hyp | Ref
| Expression |
1 | | comet.1 |
. . 3
⊢ (𝜑 → 𝐷 ∈ (∞Met‘𝑋)) |
2 | 1 | elfvexd 6808 |
. 2
⊢ (𝜑 → 𝑋 ∈ V) |
3 | | comet.2 |
. . 3
⊢ (𝜑 → 𝐹:(0[,]+∞)⟶ℝ*) |
4 | | xmetf 23482 |
. . . . . 6
⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝐷:(𝑋 × 𝑋)⟶ℝ*) |
5 | 1, 4 | syl 17 |
. . . . 5
⊢ (𝜑 → 𝐷:(𝑋 × 𝑋)⟶ℝ*) |
6 | 5 | ffnd 6601 |
. . . 4
⊢ (𝜑 → 𝐷 Fn (𝑋 × 𝑋)) |
7 | | xmetcl 23484 |
. . . . . . . 8
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋) → (𝑎𝐷𝑏) ∈
ℝ*) |
8 | | xmetge0 23497 |
. . . . . . . 8
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋) → 0 ≤ (𝑎𝐷𝑏)) |
9 | | elxrge0 13189 |
. . . . . . . 8
⊢ ((𝑎𝐷𝑏) ∈ (0[,]+∞) ↔ ((𝑎𝐷𝑏) ∈ ℝ* ∧ 0 ≤
(𝑎𝐷𝑏))) |
10 | 7, 8, 9 | sylanbrc 583 |
. . . . . . 7
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋) → (𝑎𝐷𝑏) ∈ (0[,]+∞)) |
11 | 10 | 3expb 1119 |
. . . . . 6
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) → (𝑎𝐷𝑏) ∈ (0[,]+∞)) |
12 | 1, 11 | sylan 580 |
. . . . 5
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) → (𝑎𝐷𝑏) ∈ (0[,]+∞)) |
13 | 12 | ralrimivva 3123 |
. . . 4
⊢ (𝜑 → ∀𝑎 ∈ 𝑋 ∀𝑏 ∈ 𝑋 (𝑎𝐷𝑏) ∈ (0[,]+∞)) |
14 | | ffnov 7401 |
. . . 4
⊢ (𝐷:(𝑋 × 𝑋)⟶(0[,]+∞) ↔ (𝐷 Fn (𝑋 × 𝑋) ∧ ∀𝑎 ∈ 𝑋 ∀𝑏 ∈ 𝑋 (𝑎𝐷𝑏) ∈ (0[,]+∞))) |
15 | 6, 13, 14 | sylanbrc 583 |
. . 3
⊢ (𝜑 → 𝐷:(𝑋 × 𝑋)⟶(0[,]+∞)) |
16 | 3, 15 | fcod 6626 |
. 2
⊢ (𝜑 → (𝐹 ∘ 𝐷):(𝑋 × 𝑋)⟶ℝ*) |
17 | | opelxpi 5626 |
. . . . . 6
⊢ ((𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋) → 〈𝑎, 𝑏〉 ∈ (𝑋 × 𝑋)) |
18 | | fvco3 6867 |
. . . . . 6
⊢ ((𝐷:(𝑋 × 𝑋)⟶ℝ* ∧
〈𝑎, 𝑏〉 ∈ (𝑋 × 𝑋)) → ((𝐹 ∘ 𝐷)‘〈𝑎, 𝑏〉) = (𝐹‘(𝐷‘〈𝑎, 𝑏〉))) |
19 | 5, 17, 18 | syl2an 596 |
. . . . 5
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) → ((𝐹 ∘ 𝐷)‘〈𝑎, 𝑏〉) = (𝐹‘(𝐷‘〈𝑎, 𝑏〉))) |
20 | | df-ov 7278 |
. . . . 5
⊢ (𝑎(𝐹 ∘ 𝐷)𝑏) = ((𝐹 ∘ 𝐷)‘〈𝑎, 𝑏〉) |
21 | | df-ov 7278 |
. . . . . 6
⊢ (𝑎𝐷𝑏) = (𝐷‘〈𝑎, 𝑏〉) |
22 | 21 | fveq2i 6777 |
. . . . 5
⊢ (𝐹‘(𝑎𝐷𝑏)) = (𝐹‘(𝐷‘〈𝑎, 𝑏〉)) |
23 | 19, 20, 22 | 3eqtr4g 2803 |
. . . 4
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) → (𝑎(𝐹 ∘ 𝐷)𝑏) = (𝐹‘(𝑎𝐷𝑏))) |
24 | 23 | eqeq1d 2740 |
. . 3
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) → ((𝑎(𝐹 ∘ 𝐷)𝑏) = 0 ↔ (𝐹‘(𝑎𝐷𝑏)) = 0)) |
25 | | fveq2 6774 |
. . . . . 6
⊢ (𝑥 = (𝑎𝐷𝑏) → (𝐹‘𝑥) = (𝐹‘(𝑎𝐷𝑏))) |
26 | 25 | eqeq1d 2740 |
. . . . 5
⊢ (𝑥 = (𝑎𝐷𝑏) → ((𝐹‘𝑥) = 0 ↔ (𝐹‘(𝑎𝐷𝑏)) = 0)) |
27 | | eqeq1 2742 |
. . . . 5
⊢ (𝑥 = (𝑎𝐷𝑏) → (𝑥 = 0 ↔ (𝑎𝐷𝑏) = 0)) |
28 | 26, 27 | bibi12d 346 |
. . . 4
⊢ (𝑥 = (𝑎𝐷𝑏) → (((𝐹‘𝑥) = 0 ↔ 𝑥 = 0) ↔ ((𝐹‘(𝑎𝐷𝑏)) = 0 ↔ (𝑎𝐷𝑏) = 0))) |
29 | | comet.3 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (0[,]+∞)) → ((𝐹‘𝑥) = 0 ↔ 𝑥 = 0)) |
30 | 29 | ralrimiva 3103 |
. . . . 5
⊢ (𝜑 → ∀𝑥 ∈ (0[,]+∞)((𝐹‘𝑥) = 0 ↔ 𝑥 = 0)) |
31 | 30 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) → ∀𝑥 ∈ (0[,]+∞)((𝐹‘𝑥) = 0 ↔ 𝑥 = 0)) |
32 | 28, 31, 12 | rspcdva 3562 |
. . 3
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) → ((𝐹‘(𝑎𝐷𝑏)) = 0 ↔ (𝑎𝐷𝑏) = 0)) |
33 | | xmeteq0 23491 |
. . . . 5
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋) → ((𝑎𝐷𝑏) = 0 ↔ 𝑎 = 𝑏)) |
34 | 33 | 3expb 1119 |
. . . 4
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) → ((𝑎𝐷𝑏) = 0 ↔ 𝑎 = 𝑏)) |
35 | 1, 34 | sylan 580 |
. . 3
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) → ((𝑎𝐷𝑏) = 0 ↔ 𝑎 = 𝑏)) |
36 | 24, 32, 35 | 3bitrd 305 |
. 2
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) → ((𝑎(𝐹 ∘ 𝐷)𝑏) = 0 ↔ 𝑎 = 𝑏)) |
37 | 3 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋)) → 𝐹:(0[,]+∞)⟶ℝ*) |
38 | 12 | 3adantr3 1170 |
. . . . 5
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋)) → (𝑎𝐷𝑏) ∈ (0[,]+∞)) |
39 | 37, 38 | ffvelrnd 6962 |
. . . 4
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋)) → (𝐹‘(𝑎𝐷𝑏)) ∈
ℝ*) |
40 | 15 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋)) → 𝐷:(𝑋 × 𝑋)⟶(0[,]+∞)) |
41 | | simpr3 1195 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋)) → 𝑐 ∈ 𝑋) |
42 | | simpr1 1193 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋)) → 𝑎 ∈ 𝑋) |
43 | 40, 41, 42 | fovrnd 7444 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋)) → (𝑐𝐷𝑎) ∈ (0[,]+∞)) |
44 | | simpr2 1194 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋)) → 𝑏 ∈ 𝑋) |
45 | 40, 41, 44 | fovrnd 7444 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋)) → (𝑐𝐷𝑏) ∈ (0[,]+∞)) |
46 | | ge0xaddcl 13194 |
. . . . . 6
⊢ (((𝑐𝐷𝑎) ∈ (0[,]+∞) ∧ (𝑐𝐷𝑏) ∈ (0[,]+∞)) → ((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏)) ∈ (0[,]+∞)) |
47 | 43, 45, 46 | syl2anc 584 |
. . . . 5
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋)) → ((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏)) ∈ (0[,]+∞)) |
48 | 37, 47 | ffvelrnd 6962 |
. . . 4
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋)) → (𝐹‘((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏))) ∈
ℝ*) |
49 | 37, 43 | ffvelrnd 6962 |
. . . . 5
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋)) → (𝐹‘(𝑐𝐷𝑎)) ∈
ℝ*) |
50 | 37, 45 | ffvelrnd 6962 |
. . . . 5
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋)) → (𝐹‘(𝑐𝐷𝑏)) ∈
ℝ*) |
51 | 49, 50 | xaddcld 13035 |
. . . 4
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋)) → ((𝐹‘(𝑐𝐷𝑎)) +𝑒 (𝐹‘(𝑐𝐷𝑏))) ∈
ℝ*) |
52 | | 3anrot 1099 |
. . . . . . 7
⊢ ((𝑐 ∈ 𝑋 ∧ 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋) ↔ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋)) |
53 | | xmettri2 23493 |
. . . . . . 7
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑐 ∈ 𝑋 ∧ 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) → (𝑎𝐷𝑏) ≤ ((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏))) |
54 | 52, 53 | sylan2br 595 |
. . . . . 6
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋)) → (𝑎𝐷𝑏) ≤ ((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏))) |
55 | 1, 54 | sylan 580 |
. . . . 5
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋)) → (𝑎𝐷𝑏) ≤ ((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏))) |
56 | | comet.4 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ (0[,]+∞) ∧ 𝑦 ∈ (0[,]+∞))) →
(𝑥 ≤ 𝑦 → (𝐹‘𝑥) ≤ (𝐹‘𝑦))) |
57 | 56 | ralrimivva 3123 |
. . . . . . 7
⊢ (𝜑 → ∀𝑥 ∈ (0[,]+∞)∀𝑦 ∈ (0[,]+∞)(𝑥 ≤ 𝑦 → (𝐹‘𝑥) ≤ (𝐹‘𝑦))) |
58 | 57 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋)) → ∀𝑥 ∈ (0[,]+∞)∀𝑦 ∈ (0[,]+∞)(𝑥 ≤ 𝑦 → (𝐹‘𝑥) ≤ (𝐹‘𝑦))) |
59 | | breq1 5077 |
. . . . . . . 8
⊢ (𝑥 = (𝑎𝐷𝑏) → (𝑥 ≤ 𝑦 ↔ (𝑎𝐷𝑏) ≤ 𝑦)) |
60 | 25 | breq1d 5084 |
. . . . . . . 8
⊢ (𝑥 = (𝑎𝐷𝑏) → ((𝐹‘𝑥) ≤ (𝐹‘𝑦) ↔ (𝐹‘(𝑎𝐷𝑏)) ≤ (𝐹‘𝑦))) |
61 | 59, 60 | imbi12d 345 |
. . . . . . 7
⊢ (𝑥 = (𝑎𝐷𝑏) → ((𝑥 ≤ 𝑦 → (𝐹‘𝑥) ≤ (𝐹‘𝑦)) ↔ ((𝑎𝐷𝑏) ≤ 𝑦 → (𝐹‘(𝑎𝐷𝑏)) ≤ (𝐹‘𝑦)))) |
62 | | breq2 5078 |
. . . . . . . 8
⊢ (𝑦 = ((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏)) → ((𝑎𝐷𝑏) ≤ 𝑦 ↔ (𝑎𝐷𝑏) ≤ ((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏)))) |
63 | | fveq2 6774 |
. . . . . . . . 9
⊢ (𝑦 = ((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏)) → (𝐹‘𝑦) = (𝐹‘((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏)))) |
64 | 63 | breq2d 5086 |
. . . . . . . 8
⊢ (𝑦 = ((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏)) → ((𝐹‘(𝑎𝐷𝑏)) ≤ (𝐹‘𝑦) ↔ (𝐹‘(𝑎𝐷𝑏)) ≤ (𝐹‘((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏))))) |
65 | 62, 64 | imbi12d 345 |
. . . . . . 7
⊢ (𝑦 = ((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏)) → (((𝑎𝐷𝑏) ≤ 𝑦 → (𝐹‘(𝑎𝐷𝑏)) ≤ (𝐹‘𝑦)) ↔ ((𝑎𝐷𝑏) ≤ ((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏)) → (𝐹‘(𝑎𝐷𝑏)) ≤ (𝐹‘((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏)))))) |
66 | 61, 65 | rspc2va 3571 |
. . . . . 6
⊢ ((((𝑎𝐷𝑏) ∈ (0[,]+∞) ∧ ((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏)) ∈ (0[,]+∞)) ∧ ∀𝑥 ∈
(0[,]+∞)∀𝑦
∈ (0[,]+∞)(𝑥
≤ 𝑦 → (𝐹‘𝑥) ≤ (𝐹‘𝑦))) → ((𝑎𝐷𝑏) ≤ ((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏)) → (𝐹‘(𝑎𝐷𝑏)) ≤ (𝐹‘((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏))))) |
67 | 38, 47, 58, 66 | syl21anc 835 |
. . . . 5
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋)) → ((𝑎𝐷𝑏) ≤ ((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏)) → (𝐹‘(𝑎𝐷𝑏)) ≤ (𝐹‘((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏))))) |
68 | 55, 67 | mpd 15 |
. . . 4
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋)) → (𝐹‘(𝑎𝐷𝑏)) ≤ (𝐹‘((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏)))) |
69 | | comet.5 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ (0[,]+∞) ∧ 𝑦 ∈ (0[,]+∞))) →
(𝐹‘(𝑥 +𝑒 𝑦)) ≤ ((𝐹‘𝑥) +𝑒 (𝐹‘𝑦))) |
70 | 69 | ralrimivva 3123 |
. . . . . 6
⊢ (𝜑 → ∀𝑥 ∈ (0[,]+∞)∀𝑦 ∈ (0[,]+∞)(𝐹‘(𝑥 +𝑒 𝑦)) ≤ ((𝐹‘𝑥) +𝑒 (𝐹‘𝑦))) |
71 | 70 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋)) → ∀𝑥 ∈ (0[,]+∞)∀𝑦 ∈ (0[,]+∞)(𝐹‘(𝑥 +𝑒 𝑦)) ≤ ((𝐹‘𝑥) +𝑒 (𝐹‘𝑦))) |
72 | | fvoveq1 7298 |
. . . . . . 7
⊢ (𝑥 = (𝑐𝐷𝑎) → (𝐹‘(𝑥 +𝑒 𝑦)) = (𝐹‘((𝑐𝐷𝑎) +𝑒 𝑦))) |
73 | | fveq2 6774 |
. . . . . . . 8
⊢ (𝑥 = (𝑐𝐷𝑎) → (𝐹‘𝑥) = (𝐹‘(𝑐𝐷𝑎))) |
74 | 73 | oveq1d 7290 |
. . . . . . 7
⊢ (𝑥 = (𝑐𝐷𝑎) → ((𝐹‘𝑥) +𝑒 (𝐹‘𝑦)) = ((𝐹‘(𝑐𝐷𝑎)) +𝑒 (𝐹‘𝑦))) |
75 | 72, 74 | breq12d 5087 |
. . . . . 6
⊢ (𝑥 = (𝑐𝐷𝑎) → ((𝐹‘(𝑥 +𝑒 𝑦)) ≤ ((𝐹‘𝑥) +𝑒 (𝐹‘𝑦)) ↔ (𝐹‘((𝑐𝐷𝑎) +𝑒 𝑦)) ≤ ((𝐹‘(𝑐𝐷𝑎)) +𝑒 (𝐹‘𝑦)))) |
76 | | oveq2 7283 |
. . . . . . . 8
⊢ (𝑦 = (𝑐𝐷𝑏) → ((𝑐𝐷𝑎) +𝑒 𝑦) = ((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏))) |
77 | 76 | fveq2d 6778 |
. . . . . . 7
⊢ (𝑦 = (𝑐𝐷𝑏) → (𝐹‘((𝑐𝐷𝑎) +𝑒 𝑦)) = (𝐹‘((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏)))) |
78 | | fveq2 6774 |
. . . . . . . 8
⊢ (𝑦 = (𝑐𝐷𝑏) → (𝐹‘𝑦) = (𝐹‘(𝑐𝐷𝑏))) |
79 | 78 | oveq2d 7291 |
. . . . . . 7
⊢ (𝑦 = (𝑐𝐷𝑏) → ((𝐹‘(𝑐𝐷𝑎)) +𝑒 (𝐹‘𝑦)) = ((𝐹‘(𝑐𝐷𝑎)) +𝑒 (𝐹‘(𝑐𝐷𝑏)))) |
80 | 77, 79 | breq12d 5087 |
. . . . . 6
⊢ (𝑦 = (𝑐𝐷𝑏) → ((𝐹‘((𝑐𝐷𝑎) +𝑒 𝑦)) ≤ ((𝐹‘(𝑐𝐷𝑎)) +𝑒 (𝐹‘𝑦)) ↔ (𝐹‘((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏))) ≤ ((𝐹‘(𝑐𝐷𝑎)) +𝑒 (𝐹‘(𝑐𝐷𝑏))))) |
81 | 75, 80 | rspc2va 3571 |
. . . . 5
⊢ ((((𝑐𝐷𝑎) ∈ (0[,]+∞) ∧ (𝑐𝐷𝑏) ∈ (0[,]+∞)) ∧ ∀𝑥 ∈
(0[,]+∞)∀𝑦
∈ (0[,]+∞)(𝐹‘(𝑥 +𝑒 𝑦)) ≤ ((𝐹‘𝑥) +𝑒 (𝐹‘𝑦))) → (𝐹‘((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏))) ≤ ((𝐹‘(𝑐𝐷𝑎)) +𝑒 (𝐹‘(𝑐𝐷𝑏)))) |
82 | 43, 45, 71, 81 | syl21anc 835 |
. . . 4
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋)) → (𝐹‘((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏))) ≤ ((𝐹‘(𝑐𝐷𝑎)) +𝑒 (𝐹‘(𝑐𝐷𝑏)))) |
83 | 39, 48, 51, 68, 82 | xrletrd 12896 |
. . 3
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋)) → (𝐹‘(𝑎𝐷𝑏)) ≤ ((𝐹‘(𝑐𝐷𝑎)) +𝑒 (𝐹‘(𝑐𝐷𝑏)))) |
84 | 23 | 3adantr3 1170 |
. . 3
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋)) → (𝑎(𝐹 ∘ 𝐷)𝑏) = (𝐹‘(𝑎𝐷𝑏))) |
85 | 5 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋)) → 𝐷:(𝑋 × 𝑋)⟶ℝ*) |
86 | 41, 42 | opelxpd 5627 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋)) → 〈𝑐, 𝑎〉 ∈ (𝑋 × 𝑋)) |
87 | 85, 86 | fvco3d 6868 |
. . . . 5
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋)) → ((𝐹 ∘ 𝐷)‘〈𝑐, 𝑎〉) = (𝐹‘(𝐷‘〈𝑐, 𝑎〉))) |
88 | | df-ov 7278 |
. . . . 5
⊢ (𝑐(𝐹 ∘ 𝐷)𝑎) = ((𝐹 ∘ 𝐷)‘〈𝑐, 𝑎〉) |
89 | | df-ov 7278 |
. . . . . 6
⊢ (𝑐𝐷𝑎) = (𝐷‘〈𝑐, 𝑎〉) |
90 | 89 | fveq2i 6777 |
. . . . 5
⊢ (𝐹‘(𝑐𝐷𝑎)) = (𝐹‘(𝐷‘〈𝑐, 𝑎〉)) |
91 | 87, 88, 90 | 3eqtr4g 2803 |
. . . 4
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋)) → (𝑐(𝐹 ∘ 𝐷)𝑎) = (𝐹‘(𝑐𝐷𝑎))) |
92 | 41, 44 | opelxpd 5627 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋)) → 〈𝑐, 𝑏〉 ∈ (𝑋 × 𝑋)) |
93 | 85, 92 | fvco3d 6868 |
. . . . 5
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋)) → ((𝐹 ∘ 𝐷)‘〈𝑐, 𝑏〉) = (𝐹‘(𝐷‘〈𝑐, 𝑏〉))) |
94 | | df-ov 7278 |
. . . . 5
⊢ (𝑐(𝐹 ∘ 𝐷)𝑏) = ((𝐹 ∘ 𝐷)‘〈𝑐, 𝑏〉) |
95 | | df-ov 7278 |
. . . . . 6
⊢ (𝑐𝐷𝑏) = (𝐷‘〈𝑐, 𝑏〉) |
96 | 95 | fveq2i 6777 |
. . . . 5
⊢ (𝐹‘(𝑐𝐷𝑏)) = (𝐹‘(𝐷‘〈𝑐, 𝑏〉)) |
97 | 93, 94, 96 | 3eqtr4g 2803 |
. . . 4
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋)) → (𝑐(𝐹 ∘ 𝐷)𝑏) = (𝐹‘(𝑐𝐷𝑏))) |
98 | 91, 97 | oveq12d 7293 |
. . 3
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋)) → ((𝑐(𝐹 ∘ 𝐷)𝑎) +𝑒 (𝑐(𝐹 ∘ 𝐷)𝑏)) = ((𝐹‘(𝑐𝐷𝑎)) +𝑒 (𝐹‘(𝑐𝐷𝑏)))) |
99 | 83, 84, 98 | 3brtr4d 5106 |
. 2
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋)) → (𝑎(𝐹 ∘ 𝐷)𝑏) ≤ ((𝑐(𝐹 ∘ 𝐷)𝑎) +𝑒 (𝑐(𝐹 ∘ 𝐷)𝑏))) |
100 | 2, 16, 36, 99 | isxmetd 23479 |
1
⊢ (𝜑 → (𝐹 ∘ 𝐷) ∈ (∞Met‘𝑋)) |