MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  comet Structured version   Visualization version   GIF version

Theorem comet 23365
Description: The composition of an extended metric with a monotonic subadditive function is an extended metric. (Contributed by Mario Carneiro, 21-Mar-2015.)
Hypotheses
Ref Expression
comet.1 (𝜑𝐷 ∈ (∞Met‘𝑋))
comet.2 (𝜑𝐹:(0[,]+∞)⟶ℝ*)
comet.3 ((𝜑𝑥 ∈ (0[,]+∞)) → ((𝐹𝑥) = 0 ↔ 𝑥 = 0))
comet.4 ((𝜑 ∧ (𝑥 ∈ (0[,]+∞) ∧ 𝑦 ∈ (0[,]+∞))) → (𝑥𝑦 → (𝐹𝑥) ≤ (𝐹𝑦)))
comet.5 ((𝜑 ∧ (𝑥 ∈ (0[,]+∞) ∧ 𝑦 ∈ (0[,]+∞))) → (𝐹‘(𝑥 +𝑒 𝑦)) ≤ ((𝐹𝑥) +𝑒 (𝐹𝑦)))
Assertion
Ref Expression
comet (𝜑 → (𝐹𝐷) ∈ (∞Met‘𝑋))
Distinct variable groups:   𝑥,𝑦,𝐷   𝑥,𝐹,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝑋(𝑥,𝑦)

Proof of Theorem comet
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 comet.1 . . 3 (𝜑𝐷 ∈ (∞Met‘𝑋))
21elfvexd 6729 . 2 (𝜑𝑋 ∈ V)
3 comet.2 . . 3 (𝜑𝐹:(0[,]+∞)⟶ℝ*)
4 xmetf 23181 . . . . . 6 (𝐷 ∈ (∞Met‘𝑋) → 𝐷:(𝑋 × 𝑋)⟶ℝ*)
51, 4syl 17 . . . . 5 (𝜑𝐷:(𝑋 × 𝑋)⟶ℝ*)
65ffnd 6524 . . . 4 (𝜑𝐷 Fn (𝑋 × 𝑋))
7 xmetcl 23183 . . . . . . . 8 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑎𝑋𝑏𝑋) → (𝑎𝐷𝑏) ∈ ℝ*)
8 xmetge0 23196 . . . . . . . 8 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑎𝑋𝑏𝑋) → 0 ≤ (𝑎𝐷𝑏))
9 elxrge0 13010 . . . . . . . 8 ((𝑎𝐷𝑏) ∈ (0[,]+∞) ↔ ((𝑎𝐷𝑏) ∈ ℝ* ∧ 0 ≤ (𝑎𝐷𝑏)))
107, 8, 9sylanbrc 586 . . . . . . 7 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑎𝑋𝑏𝑋) → (𝑎𝐷𝑏) ∈ (0[,]+∞))
11103expb 1122 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑎𝑋𝑏𝑋)) → (𝑎𝐷𝑏) ∈ (0[,]+∞))
121, 11sylan 583 . . . . 5 ((𝜑 ∧ (𝑎𝑋𝑏𝑋)) → (𝑎𝐷𝑏) ∈ (0[,]+∞))
1312ralrimivva 3102 . . . 4 (𝜑 → ∀𝑎𝑋𝑏𝑋 (𝑎𝐷𝑏) ∈ (0[,]+∞))
14 ffnov 7315 . . . 4 (𝐷:(𝑋 × 𝑋)⟶(0[,]+∞) ↔ (𝐷 Fn (𝑋 × 𝑋) ∧ ∀𝑎𝑋𝑏𝑋 (𝑎𝐷𝑏) ∈ (0[,]+∞)))
156, 13, 14sylanbrc 586 . . 3 (𝜑𝐷:(𝑋 × 𝑋)⟶(0[,]+∞))
163, 15fcod 6549 . 2 (𝜑 → (𝐹𝐷):(𝑋 × 𝑋)⟶ℝ*)
17 opelxpi 5573 . . . . . 6 ((𝑎𝑋𝑏𝑋) → ⟨𝑎, 𝑏⟩ ∈ (𝑋 × 𝑋))
18 fvco3 6788 . . . . . 6 ((𝐷:(𝑋 × 𝑋)⟶ℝ* ∧ ⟨𝑎, 𝑏⟩ ∈ (𝑋 × 𝑋)) → ((𝐹𝐷)‘⟨𝑎, 𝑏⟩) = (𝐹‘(𝐷‘⟨𝑎, 𝑏⟩)))
195, 17, 18syl2an 599 . . . . 5 ((𝜑 ∧ (𝑎𝑋𝑏𝑋)) → ((𝐹𝐷)‘⟨𝑎, 𝑏⟩) = (𝐹‘(𝐷‘⟨𝑎, 𝑏⟩)))
20 df-ov 7194 . . . . 5 (𝑎(𝐹𝐷)𝑏) = ((𝐹𝐷)‘⟨𝑎, 𝑏⟩)
21 df-ov 7194 . . . . . 6 (𝑎𝐷𝑏) = (𝐷‘⟨𝑎, 𝑏⟩)
2221fveq2i 6698 . . . . 5 (𝐹‘(𝑎𝐷𝑏)) = (𝐹‘(𝐷‘⟨𝑎, 𝑏⟩))
2319, 20, 223eqtr4g 2796 . . . 4 ((𝜑 ∧ (𝑎𝑋𝑏𝑋)) → (𝑎(𝐹𝐷)𝑏) = (𝐹‘(𝑎𝐷𝑏)))
2423eqeq1d 2738 . . 3 ((𝜑 ∧ (𝑎𝑋𝑏𝑋)) → ((𝑎(𝐹𝐷)𝑏) = 0 ↔ (𝐹‘(𝑎𝐷𝑏)) = 0))
25 fveq2 6695 . . . . . 6 (𝑥 = (𝑎𝐷𝑏) → (𝐹𝑥) = (𝐹‘(𝑎𝐷𝑏)))
2625eqeq1d 2738 . . . . 5 (𝑥 = (𝑎𝐷𝑏) → ((𝐹𝑥) = 0 ↔ (𝐹‘(𝑎𝐷𝑏)) = 0))
27 eqeq1 2740 . . . . 5 (𝑥 = (𝑎𝐷𝑏) → (𝑥 = 0 ↔ (𝑎𝐷𝑏) = 0))
2826, 27bibi12d 349 . . . 4 (𝑥 = (𝑎𝐷𝑏) → (((𝐹𝑥) = 0 ↔ 𝑥 = 0) ↔ ((𝐹‘(𝑎𝐷𝑏)) = 0 ↔ (𝑎𝐷𝑏) = 0)))
29 comet.3 . . . . . 6 ((𝜑𝑥 ∈ (0[,]+∞)) → ((𝐹𝑥) = 0 ↔ 𝑥 = 0))
3029ralrimiva 3095 . . . . 5 (𝜑 → ∀𝑥 ∈ (0[,]+∞)((𝐹𝑥) = 0 ↔ 𝑥 = 0))
3130adantr 484 . . . 4 ((𝜑 ∧ (𝑎𝑋𝑏𝑋)) → ∀𝑥 ∈ (0[,]+∞)((𝐹𝑥) = 0 ↔ 𝑥 = 0))
3228, 31, 12rspcdva 3529 . . 3 ((𝜑 ∧ (𝑎𝑋𝑏𝑋)) → ((𝐹‘(𝑎𝐷𝑏)) = 0 ↔ (𝑎𝐷𝑏) = 0))
33 xmeteq0 23190 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑎𝑋𝑏𝑋) → ((𝑎𝐷𝑏) = 0 ↔ 𝑎 = 𝑏))
34333expb 1122 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑎𝑋𝑏𝑋)) → ((𝑎𝐷𝑏) = 0 ↔ 𝑎 = 𝑏))
351, 34sylan 583 . . 3 ((𝜑 ∧ (𝑎𝑋𝑏𝑋)) → ((𝑎𝐷𝑏) = 0 ↔ 𝑎 = 𝑏))
3624, 32, 353bitrd 308 . 2 ((𝜑 ∧ (𝑎𝑋𝑏𝑋)) → ((𝑎(𝐹𝐷)𝑏) = 0 ↔ 𝑎 = 𝑏))
373adantr 484 . . . . 5 ((𝜑 ∧ (𝑎𝑋𝑏𝑋𝑐𝑋)) → 𝐹:(0[,]+∞)⟶ℝ*)
38123adantr3 1173 . . . . 5 ((𝜑 ∧ (𝑎𝑋𝑏𝑋𝑐𝑋)) → (𝑎𝐷𝑏) ∈ (0[,]+∞))
3937, 38ffvelrnd 6883 . . . 4 ((𝜑 ∧ (𝑎𝑋𝑏𝑋𝑐𝑋)) → (𝐹‘(𝑎𝐷𝑏)) ∈ ℝ*)
4015adantr 484 . . . . . . 7 ((𝜑 ∧ (𝑎𝑋𝑏𝑋𝑐𝑋)) → 𝐷:(𝑋 × 𝑋)⟶(0[,]+∞))
41 simpr3 1198 . . . . . . 7 ((𝜑 ∧ (𝑎𝑋𝑏𝑋𝑐𝑋)) → 𝑐𝑋)
42 simpr1 1196 . . . . . . 7 ((𝜑 ∧ (𝑎𝑋𝑏𝑋𝑐𝑋)) → 𝑎𝑋)
4340, 41, 42fovrnd 7358 . . . . . 6 ((𝜑 ∧ (𝑎𝑋𝑏𝑋𝑐𝑋)) → (𝑐𝐷𝑎) ∈ (0[,]+∞))
44 simpr2 1197 . . . . . . 7 ((𝜑 ∧ (𝑎𝑋𝑏𝑋𝑐𝑋)) → 𝑏𝑋)
4540, 41, 44fovrnd 7358 . . . . . 6 ((𝜑 ∧ (𝑎𝑋𝑏𝑋𝑐𝑋)) → (𝑐𝐷𝑏) ∈ (0[,]+∞))
46 ge0xaddcl 13015 . . . . . 6 (((𝑐𝐷𝑎) ∈ (0[,]+∞) ∧ (𝑐𝐷𝑏) ∈ (0[,]+∞)) → ((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏)) ∈ (0[,]+∞))
4743, 45, 46syl2anc 587 . . . . 5 ((𝜑 ∧ (𝑎𝑋𝑏𝑋𝑐𝑋)) → ((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏)) ∈ (0[,]+∞))
4837, 47ffvelrnd 6883 . . . 4 ((𝜑 ∧ (𝑎𝑋𝑏𝑋𝑐𝑋)) → (𝐹‘((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏))) ∈ ℝ*)
4937, 43ffvelrnd 6883 . . . . 5 ((𝜑 ∧ (𝑎𝑋𝑏𝑋𝑐𝑋)) → (𝐹‘(𝑐𝐷𝑎)) ∈ ℝ*)
5037, 45ffvelrnd 6883 . . . . 5 ((𝜑 ∧ (𝑎𝑋𝑏𝑋𝑐𝑋)) → (𝐹‘(𝑐𝐷𝑏)) ∈ ℝ*)
5149, 50xaddcld 12856 . . . 4 ((𝜑 ∧ (𝑎𝑋𝑏𝑋𝑐𝑋)) → ((𝐹‘(𝑐𝐷𝑎)) +𝑒 (𝐹‘(𝑐𝐷𝑏))) ∈ ℝ*)
52 3anrot 1102 . . . . . . 7 ((𝑐𝑋𝑎𝑋𝑏𝑋) ↔ (𝑎𝑋𝑏𝑋𝑐𝑋))
53 xmettri2 23192 . . . . . . 7 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑐𝑋𝑎𝑋𝑏𝑋)) → (𝑎𝐷𝑏) ≤ ((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏)))
5452, 53sylan2br 598 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑎𝑋𝑏𝑋𝑐𝑋)) → (𝑎𝐷𝑏) ≤ ((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏)))
551, 54sylan 583 . . . . 5 ((𝜑 ∧ (𝑎𝑋𝑏𝑋𝑐𝑋)) → (𝑎𝐷𝑏) ≤ ((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏)))
56 comet.4 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (0[,]+∞) ∧ 𝑦 ∈ (0[,]+∞))) → (𝑥𝑦 → (𝐹𝑥) ≤ (𝐹𝑦)))
5756ralrimivva 3102 . . . . . . 7 (𝜑 → ∀𝑥 ∈ (0[,]+∞)∀𝑦 ∈ (0[,]+∞)(𝑥𝑦 → (𝐹𝑥) ≤ (𝐹𝑦)))
5857adantr 484 . . . . . 6 ((𝜑 ∧ (𝑎𝑋𝑏𝑋𝑐𝑋)) → ∀𝑥 ∈ (0[,]+∞)∀𝑦 ∈ (0[,]+∞)(𝑥𝑦 → (𝐹𝑥) ≤ (𝐹𝑦)))
59 breq1 5042 . . . . . . . 8 (𝑥 = (𝑎𝐷𝑏) → (𝑥𝑦 ↔ (𝑎𝐷𝑏) ≤ 𝑦))
6025breq1d 5049 . . . . . . . 8 (𝑥 = (𝑎𝐷𝑏) → ((𝐹𝑥) ≤ (𝐹𝑦) ↔ (𝐹‘(𝑎𝐷𝑏)) ≤ (𝐹𝑦)))
6159, 60imbi12d 348 . . . . . . 7 (𝑥 = (𝑎𝐷𝑏) → ((𝑥𝑦 → (𝐹𝑥) ≤ (𝐹𝑦)) ↔ ((𝑎𝐷𝑏) ≤ 𝑦 → (𝐹‘(𝑎𝐷𝑏)) ≤ (𝐹𝑦))))
62 breq2 5043 . . . . . . . 8 (𝑦 = ((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏)) → ((𝑎𝐷𝑏) ≤ 𝑦 ↔ (𝑎𝐷𝑏) ≤ ((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏))))
63 fveq2 6695 . . . . . . . . 9 (𝑦 = ((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏)) → (𝐹𝑦) = (𝐹‘((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏))))
6463breq2d 5051 . . . . . . . 8 (𝑦 = ((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏)) → ((𝐹‘(𝑎𝐷𝑏)) ≤ (𝐹𝑦) ↔ (𝐹‘(𝑎𝐷𝑏)) ≤ (𝐹‘((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏)))))
6562, 64imbi12d 348 . . . . . . 7 (𝑦 = ((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏)) → (((𝑎𝐷𝑏) ≤ 𝑦 → (𝐹‘(𝑎𝐷𝑏)) ≤ (𝐹𝑦)) ↔ ((𝑎𝐷𝑏) ≤ ((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏)) → (𝐹‘(𝑎𝐷𝑏)) ≤ (𝐹‘((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏))))))
6661, 65rspc2va 3538 . . . . . 6 ((((𝑎𝐷𝑏) ∈ (0[,]+∞) ∧ ((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏)) ∈ (0[,]+∞)) ∧ ∀𝑥 ∈ (0[,]+∞)∀𝑦 ∈ (0[,]+∞)(𝑥𝑦 → (𝐹𝑥) ≤ (𝐹𝑦))) → ((𝑎𝐷𝑏) ≤ ((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏)) → (𝐹‘(𝑎𝐷𝑏)) ≤ (𝐹‘((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏)))))
6738, 47, 58, 66syl21anc 838 . . . . 5 ((𝜑 ∧ (𝑎𝑋𝑏𝑋𝑐𝑋)) → ((𝑎𝐷𝑏) ≤ ((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏)) → (𝐹‘(𝑎𝐷𝑏)) ≤ (𝐹‘((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏)))))
6855, 67mpd 15 . . . 4 ((𝜑 ∧ (𝑎𝑋𝑏𝑋𝑐𝑋)) → (𝐹‘(𝑎𝐷𝑏)) ≤ (𝐹‘((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏))))
69 comet.5 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (0[,]+∞) ∧ 𝑦 ∈ (0[,]+∞))) → (𝐹‘(𝑥 +𝑒 𝑦)) ≤ ((𝐹𝑥) +𝑒 (𝐹𝑦)))
7069ralrimivva 3102 . . . . . 6 (𝜑 → ∀𝑥 ∈ (0[,]+∞)∀𝑦 ∈ (0[,]+∞)(𝐹‘(𝑥 +𝑒 𝑦)) ≤ ((𝐹𝑥) +𝑒 (𝐹𝑦)))
7170adantr 484 . . . . 5 ((𝜑 ∧ (𝑎𝑋𝑏𝑋𝑐𝑋)) → ∀𝑥 ∈ (0[,]+∞)∀𝑦 ∈ (0[,]+∞)(𝐹‘(𝑥 +𝑒 𝑦)) ≤ ((𝐹𝑥) +𝑒 (𝐹𝑦)))
72 fvoveq1 7214 . . . . . . 7 (𝑥 = (𝑐𝐷𝑎) → (𝐹‘(𝑥 +𝑒 𝑦)) = (𝐹‘((𝑐𝐷𝑎) +𝑒 𝑦)))
73 fveq2 6695 . . . . . . . 8 (𝑥 = (𝑐𝐷𝑎) → (𝐹𝑥) = (𝐹‘(𝑐𝐷𝑎)))
7473oveq1d 7206 . . . . . . 7 (𝑥 = (𝑐𝐷𝑎) → ((𝐹𝑥) +𝑒 (𝐹𝑦)) = ((𝐹‘(𝑐𝐷𝑎)) +𝑒 (𝐹𝑦)))
7572, 74breq12d 5052 . . . . . 6 (𝑥 = (𝑐𝐷𝑎) → ((𝐹‘(𝑥 +𝑒 𝑦)) ≤ ((𝐹𝑥) +𝑒 (𝐹𝑦)) ↔ (𝐹‘((𝑐𝐷𝑎) +𝑒 𝑦)) ≤ ((𝐹‘(𝑐𝐷𝑎)) +𝑒 (𝐹𝑦))))
76 oveq2 7199 . . . . . . . 8 (𝑦 = (𝑐𝐷𝑏) → ((𝑐𝐷𝑎) +𝑒 𝑦) = ((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏)))
7776fveq2d 6699 . . . . . . 7 (𝑦 = (𝑐𝐷𝑏) → (𝐹‘((𝑐𝐷𝑎) +𝑒 𝑦)) = (𝐹‘((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏))))
78 fveq2 6695 . . . . . . . 8 (𝑦 = (𝑐𝐷𝑏) → (𝐹𝑦) = (𝐹‘(𝑐𝐷𝑏)))
7978oveq2d 7207 . . . . . . 7 (𝑦 = (𝑐𝐷𝑏) → ((𝐹‘(𝑐𝐷𝑎)) +𝑒 (𝐹𝑦)) = ((𝐹‘(𝑐𝐷𝑎)) +𝑒 (𝐹‘(𝑐𝐷𝑏))))
8077, 79breq12d 5052 . . . . . 6 (𝑦 = (𝑐𝐷𝑏) → ((𝐹‘((𝑐𝐷𝑎) +𝑒 𝑦)) ≤ ((𝐹‘(𝑐𝐷𝑎)) +𝑒 (𝐹𝑦)) ↔ (𝐹‘((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏))) ≤ ((𝐹‘(𝑐𝐷𝑎)) +𝑒 (𝐹‘(𝑐𝐷𝑏)))))
8175, 80rspc2va 3538 . . . . 5 ((((𝑐𝐷𝑎) ∈ (0[,]+∞) ∧ (𝑐𝐷𝑏) ∈ (0[,]+∞)) ∧ ∀𝑥 ∈ (0[,]+∞)∀𝑦 ∈ (0[,]+∞)(𝐹‘(𝑥 +𝑒 𝑦)) ≤ ((𝐹𝑥) +𝑒 (𝐹𝑦))) → (𝐹‘((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏))) ≤ ((𝐹‘(𝑐𝐷𝑎)) +𝑒 (𝐹‘(𝑐𝐷𝑏))))
8243, 45, 71, 81syl21anc 838 . . . 4 ((𝜑 ∧ (𝑎𝑋𝑏𝑋𝑐𝑋)) → (𝐹‘((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏))) ≤ ((𝐹‘(𝑐𝐷𝑎)) +𝑒 (𝐹‘(𝑐𝐷𝑏))))
8339, 48, 51, 68, 82xrletrd 12717 . . 3 ((𝜑 ∧ (𝑎𝑋𝑏𝑋𝑐𝑋)) → (𝐹‘(𝑎𝐷𝑏)) ≤ ((𝐹‘(𝑐𝐷𝑎)) +𝑒 (𝐹‘(𝑐𝐷𝑏))))
84233adantr3 1173 . . 3 ((𝜑 ∧ (𝑎𝑋𝑏𝑋𝑐𝑋)) → (𝑎(𝐹𝐷)𝑏) = (𝐹‘(𝑎𝐷𝑏)))
855adantr 484 . . . . . 6 ((𝜑 ∧ (𝑎𝑋𝑏𝑋𝑐𝑋)) → 𝐷:(𝑋 × 𝑋)⟶ℝ*)
8641, 42opelxpd 5574 . . . . . 6 ((𝜑 ∧ (𝑎𝑋𝑏𝑋𝑐𝑋)) → ⟨𝑐, 𝑎⟩ ∈ (𝑋 × 𝑋))
8785, 86fvco3d 6789 . . . . 5 ((𝜑 ∧ (𝑎𝑋𝑏𝑋𝑐𝑋)) → ((𝐹𝐷)‘⟨𝑐, 𝑎⟩) = (𝐹‘(𝐷‘⟨𝑐, 𝑎⟩)))
88 df-ov 7194 . . . . 5 (𝑐(𝐹𝐷)𝑎) = ((𝐹𝐷)‘⟨𝑐, 𝑎⟩)
89 df-ov 7194 . . . . . 6 (𝑐𝐷𝑎) = (𝐷‘⟨𝑐, 𝑎⟩)
9089fveq2i 6698 . . . . 5 (𝐹‘(𝑐𝐷𝑎)) = (𝐹‘(𝐷‘⟨𝑐, 𝑎⟩))
9187, 88, 903eqtr4g 2796 . . . 4 ((𝜑 ∧ (𝑎𝑋𝑏𝑋𝑐𝑋)) → (𝑐(𝐹𝐷)𝑎) = (𝐹‘(𝑐𝐷𝑎)))
9241, 44opelxpd 5574 . . . . . 6 ((𝜑 ∧ (𝑎𝑋𝑏𝑋𝑐𝑋)) → ⟨𝑐, 𝑏⟩ ∈ (𝑋 × 𝑋))
9385, 92fvco3d 6789 . . . . 5 ((𝜑 ∧ (𝑎𝑋𝑏𝑋𝑐𝑋)) → ((𝐹𝐷)‘⟨𝑐, 𝑏⟩) = (𝐹‘(𝐷‘⟨𝑐, 𝑏⟩)))
94 df-ov 7194 . . . . 5 (𝑐(𝐹𝐷)𝑏) = ((𝐹𝐷)‘⟨𝑐, 𝑏⟩)
95 df-ov 7194 . . . . . 6 (𝑐𝐷𝑏) = (𝐷‘⟨𝑐, 𝑏⟩)
9695fveq2i 6698 . . . . 5 (𝐹‘(𝑐𝐷𝑏)) = (𝐹‘(𝐷‘⟨𝑐, 𝑏⟩))
9793, 94, 963eqtr4g 2796 . . . 4 ((𝜑 ∧ (𝑎𝑋𝑏𝑋𝑐𝑋)) → (𝑐(𝐹𝐷)𝑏) = (𝐹‘(𝑐𝐷𝑏)))
9891, 97oveq12d 7209 . . 3 ((𝜑 ∧ (𝑎𝑋𝑏𝑋𝑐𝑋)) → ((𝑐(𝐹𝐷)𝑎) +𝑒 (𝑐(𝐹𝐷)𝑏)) = ((𝐹‘(𝑐𝐷𝑎)) +𝑒 (𝐹‘(𝑐𝐷𝑏))))
9983, 84, 983brtr4d 5071 . 2 ((𝜑 ∧ (𝑎𝑋𝑏𝑋𝑐𝑋)) → (𝑎(𝐹𝐷)𝑏) ≤ ((𝑐(𝐹𝐷)𝑎) +𝑒 (𝑐(𝐹𝐷)𝑏)))
1002, 16, 36, 99isxmetd 23178 1 (𝜑 → (𝐹𝐷) ∈ (∞Met‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1089   = wceq 1543  wcel 2112  wral 3051  Vcvv 3398  cop 4533   class class class wbr 5039   × cxp 5534  ccom 5540   Fn wfn 6353  wf 6354  cfv 6358  (class class class)co 7191  0cc0 10694  +∞cpnf 10829  *cxr 10831  cle 10833   +𝑒 cxad 12667  [,]cicc 12903  ∞Metcxmet 20302
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501  ax-cnex 10750  ax-resscn 10751  ax-1cn 10752  ax-icn 10753  ax-addcl 10754  ax-addrcl 10755  ax-mulcl 10756  ax-mulrcl 10757  ax-mulcom 10758  ax-addass 10759  ax-mulass 10760  ax-distr 10761  ax-i2m1 10762  ax-1ne0 10763  ax-1rid 10764  ax-rnegex 10765  ax-rrecex 10766  ax-cnre 10767  ax-pre-lttri 10768  ax-pre-lttrn 10769  ax-pre-ltadd 10770  ax-pre-mulgt0 10771
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rmo 3059  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-op 4534  df-uni 4806  df-iun 4892  df-br 5040  df-opab 5102  df-mpt 5121  df-id 5440  df-po 5453  df-so 5454  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7148  df-ov 7194  df-oprab 7195  df-mpo 7196  df-1st 7739  df-2nd 7740  df-er 8369  df-map 8488  df-en 8605  df-dom 8606  df-sdom 8607  df-pnf 10834  df-mnf 10835  df-xr 10836  df-ltxr 10837  df-le 10838  df-sub 11029  df-neg 11030  df-div 11455  df-2 11858  df-rp 12552  df-xneg 12669  df-xadd 12670  df-xmul 12671  df-icc 12907  df-xmet 20310
This theorem is referenced by:  stdbdxmet  23367
  Copyright terms: Public domain W3C validator