MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  stdbdbl Structured version   Visualization version   GIF version

Theorem stdbdbl 24018
Description: The standard bounded metric corresponding to 𝐶 generates the same balls as 𝐶 for radii less than 𝑅. (Contributed by Mario Carneiro, 26-Aug-2015.)
Hypothesis
Ref Expression
stdbdmet.1 𝐷 = (𝑥𝑋, 𝑦𝑋 ↦ if((𝑥𝐶𝑦) ≤ 𝑅, (𝑥𝐶𝑦), 𝑅))
Assertion
Ref Expression
stdbdbl (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑃𝑋𝑆 ∈ ℝ*𝑆𝑅)) → (𝑃(ball‘𝐷)𝑆) = (𝑃(ball‘𝐶)𝑆))
Distinct variable groups:   𝑥,𝑦,𝐶   𝑥,𝑃,𝑦   𝑥,𝑅,𝑦   𝑥,𝑋,𝑦
Allowed substitution hints:   𝐷(𝑥,𝑦)   𝑆(𝑥,𝑦)

Proof of Theorem stdbdbl
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 simpll2 1214 . . . . . 6 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑃𝑋𝑆 ∈ ℝ*𝑆𝑅)) ∧ 𝑧𝑋) → 𝑅 ∈ ℝ*)
2 simpr1 1195 . . . . . . 7 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑃𝑋𝑆 ∈ ℝ*𝑆𝑅)) → 𝑃𝑋)
32adantr 482 . . . . . 6 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑃𝑋𝑆 ∈ ℝ*𝑆𝑅)) ∧ 𝑧𝑋) → 𝑃𝑋)
4 simpr 486 . . . . . 6 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑃𝑋𝑆 ∈ ℝ*𝑆𝑅)) ∧ 𝑧𝑋) → 𝑧𝑋)
5 stdbdmet.1 . . . . . . 7 𝐷 = (𝑥𝑋, 𝑦𝑋 ↦ if((𝑥𝐶𝑦) ≤ 𝑅, (𝑥𝐶𝑦), 𝑅))
65stdbdmetval 24015 . . . . . 6 ((𝑅 ∈ ℝ*𝑃𝑋𝑧𝑋) → (𝑃𝐷𝑧) = if((𝑃𝐶𝑧) ≤ 𝑅, (𝑃𝐶𝑧), 𝑅))
71, 3, 4, 6syl3anc 1372 . . . . 5 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑃𝑋𝑆 ∈ ℝ*𝑆𝑅)) ∧ 𝑧𝑋) → (𝑃𝐷𝑧) = if((𝑃𝐶𝑧) ≤ 𝑅, (𝑃𝐶𝑧), 𝑅))
87breq1d 5158 . . . 4 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑃𝑋𝑆 ∈ ℝ*𝑆𝑅)) ∧ 𝑧𝑋) → ((𝑃𝐷𝑧) < 𝑆 ↔ if((𝑃𝐶𝑧) ≤ 𝑅, (𝑃𝐶𝑧), 𝑅) < 𝑆))
9 simplr3 1218 . . . . . . . 8 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑃𝑋𝑆 ∈ ℝ*𝑆𝑅)) ∧ 𝑧𝑋) → 𝑆𝑅)
109biantrud 533 . . . . . . 7 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑃𝑋𝑆 ∈ ℝ*𝑆𝑅)) ∧ 𝑧𝑋) → (𝑆 ≤ (𝑃𝐶𝑧) ↔ (𝑆 ≤ (𝑃𝐶𝑧) ∧ 𝑆𝑅)))
11 simpr2 1196 . . . . . . . . 9 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑃𝑋𝑆 ∈ ℝ*𝑆𝑅)) → 𝑆 ∈ ℝ*)
1211adantr 482 . . . . . . . 8 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑃𝑋𝑆 ∈ ℝ*𝑆𝑅)) ∧ 𝑧𝑋) → 𝑆 ∈ ℝ*)
13 simpl1 1192 . . . . . . . . . 10 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑃𝑋𝑆 ∈ ℝ*𝑆𝑅)) → 𝐶 ∈ (∞Met‘𝑋))
1413adantr 482 . . . . . . . . 9 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑃𝑋𝑆 ∈ ℝ*𝑆𝑅)) ∧ 𝑧𝑋) → 𝐶 ∈ (∞Met‘𝑋))
15 xmetcl 23829 . . . . . . . . 9 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑧𝑋) → (𝑃𝐶𝑧) ∈ ℝ*)
1614, 3, 4, 15syl3anc 1372 . . . . . . . 8 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑃𝑋𝑆 ∈ ℝ*𝑆𝑅)) ∧ 𝑧𝑋) → (𝑃𝐶𝑧) ∈ ℝ*)
17 xrlemin 13160 . . . . . . . 8 ((𝑆 ∈ ℝ* ∧ (𝑃𝐶𝑧) ∈ ℝ*𝑅 ∈ ℝ*) → (𝑆 ≤ if((𝑃𝐶𝑧) ≤ 𝑅, (𝑃𝐶𝑧), 𝑅) ↔ (𝑆 ≤ (𝑃𝐶𝑧) ∧ 𝑆𝑅)))
1812, 16, 1, 17syl3anc 1372 . . . . . . 7 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑃𝑋𝑆 ∈ ℝ*𝑆𝑅)) ∧ 𝑧𝑋) → (𝑆 ≤ if((𝑃𝐶𝑧) ≤ 𝑅, (𝑃𝐶𝑧), 𝑅) ↔ (𝑆 ≤ (𝑃𝐶𝑧) ∧ 𝑆𝑅)))
1910, 18bitr4d 282 . . . . . 6 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑃𝑋𝑆 ∈ ℝ*𝑆𝑅)) ∧ 𝑧𝑋) → (𝑆 ≤ (𝑃𝐶𝑧) ↔ 𝑆 ≤ if((𝑃𝐶𝑧) ≤ 𝑅, (𝑃𝐶𝑧), 𝑅)))
2019notbid 318 . . . . 5 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑃𝑋𝑆 ∈ ℝ*𝑆𝑅)) ∧ 𝑧𝑋) → (¬ 𝑆 ≤ (𝑃𝐶𝑧) ↔ ¬ 𝑆 ≤ if((𝑃𝐶𝑧) ≤ 𝑅, (𝑃𝐶𝑧), 𝑅)))
21 xrltnle 11278 . . . . . 6 (((𝑃𝐶𝑧) ∈ ℝ*𝑆 ∈ ℝ*) → ((𝑃𝐶𝑧) < 𝑆 ↔ ¬ 𝑆 ≤ (𝑃𝐶𝑧)))
2216, 12, 21syl2anc 585 . . . . 5 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑃𝑋𝑆 ∈ ℝ*𝑆𝑅)) ∧ 𝑧𝑋) → ((𝑃𝐶𝑧) < 𝑆 ↔ ¬ 𝑆 ≤ (𝑃𝐶𝑧)))
2316, 1ifcld 4574 . . . . . 6 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑃𝑋𝑆 ∈ ℝ*𝑆𝑅)) ∧ 𝑧𝑋) → if((𝑃𝐶𝑧) ≤ 𝑅, (𝑃𝐶𝑧), 𝑅) ∈ ℝ*)
24 xrltnle 11278 . . . . . 6 ((if((𝑃𝐶𝑧) ≤ 𝑅, (𝑃𝐶𝑧), 𝑅) ∈ ℝ*𝑆 ∈ ℝ*) → (if((𝑃𝐶𝑧) ≤ 𝑅, (𝑃𝐶𝑧), 𝑅) < 𝑆 ↔ ¬ 𝑆 ≤ if((𝑃𝐶𝑧) ≤ 𝑅, (𝑃𝐶𝑧), 𝑅)))
2523, 12, 24syl2anc 585 . . . . 5 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑃𝑋𝑆 ∈ ℝ*𝑆𝑅)) ∧ 𝑧𝑋) → (if((𝑃𝐶𝑧) ≤ 𝑅, (𝑃𝐶𝑧), 𝑅) < 𝑆 ↔ ¬ 𝑆 ≤ if((𝑃𝐶𝑧) ≤ 𝑅, (𝑃𝐶𝑧), 𝑅)))
2620, 22, 253bitr4d 311 . . . 4 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑃𝑋𝑆 ∈ ℝ*𝑆𝑅)) ∧ 𝑧𝑋) → ((𝑃𝐶𝑧) < 𝑆 ↔ if((𝑃𝐶𝑧) ≤ 𝑅, (𝑃𝐶𝑧), 𝑅) < 𝑆))
278, 26bitr4d 282 . . 3 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑃𝑋𝑆 ∈ ℝ*𝑆𝑅)) ∧ 𝑧𝑋) → ((𝑃𝐷𝑧) < 𝑆 ↔ (𝑃𝐶𝑧) < 𝑆))
2827rabbidva 3440 . 2 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑃𝑋𝑆 ∈ ℝ*𝑆𝑅)) → {𝑧𝑋 ∣ (𝑃𝐷𝑧) < 𝑆} = {𝑧𝑋 ∣ (𝑃𝐶𝑧) < 𝑆})
295stdbdxmet 24016 . . . 4 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) → 𝐷 ∈ (∞Met‘𝑋))
3029adantr 482 . . 3 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑃𝑋𝑆 ∈ ℝ*𝑆𝑅)) → 𝐷 ∈ (∞Met‘𝑋))
31 blval 23884 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑆 ∈ ℝ*) → (𝑃(ball‘𝐷)𝑆) = {𝑧𝑋 ∣ (𝑃𝐷𝑧) < 𝑆})
3230, 2, 11, 31syl3anc 1372 . 2 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑃𝑋𝑆 ∈ ℝ*𝑆𝑅)) → (𝑃(ball‘𝐷)𝑆) = {𝑧𝑋 ∣ (𝑃𝐷𝑧) < 𝑆})
33 blval 23884 . . 3 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑆 ∈ ℝ*) → (𝑃(ball‘𝐶)𝑆) = {𝑧𝑋 ∣ (𝑃𝐶𝑧) < 𝑆})
3413, 2, 11, 33syl3anc 1372 . 2 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑃𝑋𝑆 ∈ ℝ*𝑆𝑅)) → (𝑃(ball‘𝐶)𝑆) = {𝑧𝑋 ∣ (𝑃𝐶𝑧) < 𝑆})
3528, 32, 343eqtr4d 2783 1 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑃𝑋𝑆 ∈ ℝ*𝑆𝑅)) → (𝑃(ball‘𝐷)𝑆) = (𝑃(ball‘𝐶)𝑆))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 397  w3a 1088   = wceq 1542  wcel 2107  {crab 3433  ifcif 4528   class class class wbr 5148  cfv 6541  (class class class)co 7406  cmpo 7408  0cc0 11107  *cxr 11244   < clt 11245  cle 11246  ∞Metcxmet 20922  ballcbl 20924
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7722  ax-cnex 11163  ax-resscn 11164  ax-1cn 11165  ax-icn 11166  ax-addcl 11167  ax-addrcl 11168  ax-mulcl 11169  ax-mulrcl 11170  ax-mulcom 11171  ax-addass 11172  ax-mulass 11173  ax-distr 11174  ax-i2m1 11175  ax-1ne0 11176  ax-1rid 11177  ax-rnegex 11178  ax-rrecex 11179  ax-cnre 11180  ax-pre-lttri 11181  ax-pre-lttrn 11182  ax-pre-ltadd 11183  ax-pre-mulgt0 11184
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-po 5588  df-so 5589  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6493  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-riota 7362  df-ov 7409  df-oprab 7410  df-mpo 7411  df-1st 7972  df-2nd 7973  df-er 8700  df-map 8819  df-en 8937  df-dom 8938  df-sdom 8939  df-pnf 11247  df-mnf 11248  df-xr 11249  df-ltxr 11250  df-le 11251  df-sub 11443  df-neg 11444  df-div 11869  df-2 12272  df-rp 12972  df-xneg 13089  df-xadd 13090  df-xmul 13091  df-icc 13328  df-psmet 20929  df-xmet 20930  df-bl 20932
This theorem is referenced by:  stdbdmopn  24019  xlebnum  24473
  Copyright terms: Public domain W3C validator