MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  stdbdbl Structured version   Visualization version   GIF version

Theorem stdbdbl 23873
Description: The standard bounded metric corresponding to 𝐶 generates the same balls as 𝐶 for radii less than 𝑅. (Contributed by Mario Carneiro, 26-Aug-2015.)
Hypothesis
Ref Expression
stdbdmet.1 𝐷 = (𝑥𝑋, 𝑦𝑋 ↦ if((𝑥𝐶𝑦) ≤ 𝑅, (𝑥𝐶𝑦), 𝑅))
Assertion
Ref Expression
stdbdbl (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑃𝑋𝑆 ∈ ℝ*𝑆𝑅)) → (𝑃(ball‘𝐷)𝑆) = (𝑃(ball‘𝐶)𝑆))
Distinct variable groups:   𝑥,𝑦,𝐶   𝑥,𝑃,𝑦   𝑥,𝑅,𝑦   𝑥,𝑋,𝑦
Allowed substitution hints:   𝐷(𝑥,𝑦)   𝑆(𝑥,𝑦)

Proof of Theorem stdbdbl
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 simpll2 1213 . . . . . 6 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑃𝑋𝑆 ∈ ℝ*𝑆𝑅)) ∧ 𝑧𝑋) → 𝑅 ∈ ℝ*)
2 simpr1 1194 . . . . . . 7 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑃𝑋𝑆 ∈ ℝ*𝑆𝑅)) → 𝑃𝑋)
32adantr 481 . . . . . 6 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑃𝑋𝑆 ∈ ℝ*𝑆𝑅)) ∧ 𝑧𝑋) → 𝑃𝑋)
4 simpr 485 . . . . . 6 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑃𝑋𝑆 ∈ ℝ*𝑆𝑅)) ∧ 𝑧𝑋) → 𝑧𝑋)
5 stdbdmet.1 . . . . . . 7 𝐷 = (𝑥𝑋, 𝑦𝑋 ↦ if((𝑥𝐶𝑦) ≤ 𝑅, (𝑥𝐶𝑦), 𝑅))
65stdbdmetval 23870 . . . . . 6 ((𝑅 ∈ ℝ*𝑃𝑋𝑧𝑋) → (𝑃𝐷𝑧) = if((𝑃𝐶𝑧) ≤ 𝑅, (𝑃𝐶𝑧), 𝑅))
71, 3, 4, 6syl3anc 1371 . . . . 5 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑃𝑋𝑆 ∈ ℝ*𝑆𝑅)) ∧ 𝑧𝑋) → (𝑃𝐷𝑧) = if((𝑃𝐶𝑧) ≤ 𝑅, (𝑃𝐶𝑧), 𝑅))
87breq1d 5115 . . . 4 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑃𝑋𝑆 ∈ ℝ*𝑆𝑅)) ∧ 𝑧𝑋) → ((𝑃𝐷𝑧) < 𝑆 ↔ if((𝑃𝐶𝑧) ≤ 𝑅, (𝑃𝐶𝑧), 𝑅) < 𝑆))
9 simplr3 1217 . . . . . . . 8 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑃𝑋𝑆 ∈ ℝ*𝑆𝑅)) ∧ 𝑧𝑋) → 𝑆𝑅)
109biantrud 532 . . . . . . 7 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑃𝑋𝑆 ∈ ℝ*𝑆𝑅)) ∧ 𝑧𝑋) → (𝑆 ≤ (𝑃𝐶𝑧) ↔ (𝑆 ≤ (𝑃𝐶𝑧) ∧ 𝑆𝑅)))
11 simpr2 1195 . . . . . . . . 9 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑃𝑋𝑆 ∈ ℝ*𝑆𝑅)) → 𝑆 ∈ ℝ*)
1211adantr 481 . . . . . . . 8 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑃𝑋𝑆 ∈ ℝ*𝑆𝑅)) ∧ 𝑧𝑋) → 𝑆 ∈ ℝ*)
13 simpl1 1191 . . . . . . . . . 10 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑃𝑋𝑆 ∈ ℝ*𝑆𝑅)) → 𝐶 ∈ (∞Met‘𝑋))
1413adantr 481 . . . . . . . . 9 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑃𝑋𝑆 ∈ ℝ*𝑆𝑅)) ∧ 𝑧𝑋) → 𝐶 ∈ (∞Met‘𝑋))
15 xmetcl 23684 . . . . . . . . 9 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑧𝑋) → (𝑃𝐶𝑧) ∈ ℝ*)
1614, 3, 4, 15syl3anc 1371 . . . . . . . 8 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑃𝑋𝑆 ∈ ℝ*𝑆𝑅)) ∧ 𝑧𝑋) → (𝑃𝐶𝑧) ∈ ℝ*)
17 xrlemin 13103 . . . . . . . 8 ((𝑆 ∈ ℝ* ∧ (𝑃𝐶𝑧) ∈ ℝ*𝑅 ∈ ℝ*) → (𝑆 ≤ if((𝑃𝐶𝑧) ≤ 𝑅, (𝑃𝐶𝑧), 𝑅) ↔ (𝑆 ≤ (𝑃𝐶𝑧) ∧ 𝑆𝑅)))
1812, 16, 1, 17syl3anc 1371 . . . . . . 7 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑃𝑋𝑆 ∈ ℝ*𝑆𝑅)) ∧ 𝑧𝑋) → (𝑆 ≤ if((𝑃𝐶𝑧) ≤ 𝑅, (𝑃𝐶𝑧), 𝑅) ↔ (𝑆 ≤ (𝑃𝐶𝑧) ∧ 𝑆𝑅)))
1910, 18bitr4d 281 . . . . . 6 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑃𝑋𝑆 ∈ ℝ*𝑆𝑅)) ∧ 𝑧𝑋) → (𝑆 ≤ (𝑃𝐶𝑧) ↔ 𝑆 ≤ if((𝑃𝐶𝑧) ≤ 𝑅, (𝑃𝐶𝑧), 𝑅)))
2019notbid 317 . . . . 5 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑃𝑋𝑆 ∈ ℝ*𝑆𝑅)) ∧ 𝑧𝑋) → (¬ 𝑆 ≤ (𝑃𝐶𝑧) ↔ ¬ 𝑆 ≤ if((𝑃𝐶𝑧) ≤ 𝑅, (𝑃𝐶𝑧), 𝑅)))
21 xrltnle 11222 . . . . . 6 (((𝑃𝐶𝑧) ∈ ℝ*𝑆 ∈ ℝ*) → ((𝑃𝐶𝑧) < 𝑆 ↔ ¬ 𝑆 ≤ (𝑃𝐶𝑧)))
2216, 12, 21syl2anc 584 . . . . 5 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑃𝑋𝑆 ∈ ℝ*𝑆𝑅)) ∧ 𝑧𝑋) → ((𝑃𝐶𝑧) < 𝑆 ↔ ¬ 𝑆 ≤ (𝑃𝐶𝑧)))
2316, 1ifcld 4532 . . . . . 6 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑃𝑋𝑆 ∈ ℝ*𝑆𝑅)) ∧ 𝑧𝑋) → if((𝑃𝐶𝑧) ≤ 𝑅, (𝑃𝐶𝑧), 𝑅) ∈ ℝ*)
24 xrltnle 11222 . . . . . 6 ((if((𝑃𝐶𝑧) ≤ 𝑅, (𝑃𝐶𝑧), 𝑅) ∈ ℝ*𝑆 ∈ ℝ*) → (if((𝑃𝐶𝑧) ≤ 𝑅, (𝑃𝐶𝑧), 𝑅) < 𝑆 ↔ ¬ 𝑆 ≤ if((𝑃𝐶𝑧) ≤ 𝑅, (𝑃𝐶𝑧), 𝑅)))
2523, 12, 24syl2anc 584 . . . . 5 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑃𝑋𝑆 ∈ ℝ*𝑆𝑅)) ∧ 𝑧𝑋) → (if((𝑃𝐶𝑧) ≤ 𝑅, (𝑃𝐶𝑧), 𝑅) < 𝑆 ↔ ¬ 𝑆 ≤ if((𝑃𝐶𝑧) ≤ 𝑅, (𝑃𝐶𝑧), 𝑅)))
2620, 22, 253bitr4d 310 . . . 4 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑃𝑋𝑆 ∈ ℝ*𝑆𝑅)) ∧ 𝑧𝑋) → ((𝑃𝐶𝑧) < 𝑆 ↔ if((𝑃𝐶𝑧) ≤ 𝑅, (𝑃𝐶𝑧), 𝑅) < 𝑆))
278, 26bitr4d 281 . . 3 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑃𝑋𝑆 ∈ ℝ*𝑆𝑅)) ∧ 𝑧𝑋) → ((𝑃𝐷𝑧) < 𝑆 ↔ (𝑃𝐶𝑧) < 𝑆))
2827rabbidva 3414 . 2 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑃𝑋𝑆 ∈ ℝ*𝑆𝑅)) → {𝑧𝑋 ∣ (𝑃𝐷𝑧) < 𝑆} = {𝑧𝑋 ∣ (𝑃𝐶𝑧) < 𝑆})
295stdbdxmet 23871 . . . 4 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) → 𝐷 ∈ (∞Met‘𝑋))
3029adantr 481 . . 3 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑃𝑋𝑆 ∈ ℝ*𝑆𝑅)) → 𝐷 ∈ (∞Met‘𝑋))
31 blval 23739 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑆 ∈ ℝ*) → (𝑃(ball‘𝐷)𝑆) = {𝑧𝑋 ∣ (𝑃𝐷𝑧) < 𝑆})
3230, 2, 11, 31syl3anc 1371 . 2 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑃𝑋𝑆 ∈ ℝ*𝑆𝑅)) → (𝑃(ball‘𝐷)𝑆) = {𝑧𝑋 ∣ (𝑃𝐷𝑧) < 𝑆})
33 blval 23739 . . 3 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑆 ∈ ℝ*) → (𝑃(ball‘𝐶)𝑆) = {𝑧𝑋 ∣ (𝑃𝐶𝑧) < 𝑆})
3413, 2, 11, 33syl3anc 1371 . 2 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑃𝑋𝑆 ∈ ℝ*𝑆𝑅)) → (𝑃(ball‘𝐶)𝑆) = {𝑧𝑋 ∣ (𝑃𝐶𝑧) < 𝑆})
3528, 32, 343eqtr4d 2786 1 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑃𝑋𝑆 ∈ ℝ*𝑆𝑅)) → (𝑃(ball‘𝐷)𝑆) = (𝑃(ball‘𝐶)𝑆))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  {crab 3407  ifcif 4486   class class class wbr 5105  cfv 6496  (class class class)co 7357  cmpo 7359  0cc0 11051  *cxr 11188   < clt 11189  cle 11190  ∞Metcxmet 20781  ballcbl 20783
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-id 5531  df-po 5545  df-so 5546  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-1st 7921  df-2nd 7922  df-er 8648  df-map 8767  df-en 8884  df-dom 8885  df-sdom 8886  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-2 12216  df-rp 12916  df-xneg 13033  df-xadd 13034  df-xmul 13035  df-icc 13271  df-psmet 20788  df-xmet 20789  df-bl 20791
This theorem is referenced by:  stdbdmopn  23874  xlebnum  24328
  Copyright terms: Public domain W3C validator