MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  stdbdbl Structured version   Visualization version   GIF version

Theorem stdbdbl 23579
Description: The standard bounded metric corresponding to 𝐶 generates the same balls as 𝐶 for radii less than 𝑅. (Contributed by Mario Carneiro, 26-Aug-2015.)
Hypothesis
Ref Expression
stdbdmet.1 𝐷 = (𝑥𝑋, 𝑦𝑋 ↦ if((𝑥𝐶𝑦) ≤ 𝑅, (𝑥𝐶𝑦), 𝑅))
Assertion
Ref Expression
stdbdbl (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑃𝑋𝑆 ∈ ℝ*𝑆𝑅)) → (𝑃(ball‘𝐷)𝑆) = (𝑃(ball‘𝐶)𝑆))
Distinct variable groups:   𝑥,𝑦,𝐶   𝑥,𝑃,𝑦   𝑥,𝑅,𝑦   𝑥,𝑋,𝑦
Allowed substitution hints:   𝐷(𝑥,𝑦)   𝑆(𝑥,𝑦)

Proof of Theorem stdbdbl
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 simpll2 1211 . . . . . 6 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑃𝑋𝑆 ∈ ℝ*𝑆𝑅)) ∧ 𝑧𝑋) → 𝑅 ∈ ℝ*)
2 simpr1 1192 . . . . . . 7 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑃𝑋𝑆 ∈ ℝ*𝑆𝑅)) → 𝑃𝑋)
32adantr 480 . . . . . 6 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑃𝑋𝑆 ∈ ℝ*𝑆𝑅)) ∧ 𝑧𝑋) → 𝑃𝑋)
4 simpr 484 . . . . . 6 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑃𝑋𝑆 ∈ ℝ*𝑆𝑅)) ∧ 𝑧𝑋) → 𝑧𝑋)
5 stdbdmet.1 . . . . . . 7 𝐷 = (𝑥𝑋, 𝑦𝑋 ↦ if((𝑥𝐶𝑦) ≤ 𝑅, (𝑥𝐶𝑦), 𝑅))
65stdbdmetval 23576 . . . . . 6 ((𝑅 ∈ ℝ*𝑃𝑋𝑧𝑋) → (𝑃𝐷𝑧) = if((𝑃𝐶𝑧) ≤ 𝑅, (𝑃𝐶𝑧), 𝑅))
71, 3, 4, 6syl3anc 1369 . . . . 5 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑃𝑋𝑆 ∈ ℝ*𝑆𝑅)) ∧ 𝑧𝑋) → (𝑃𝐷𝑧) = if((𝑃𝐶𝑧) ≤ 𝑅, (𝑃𝐶𝑧), 𝑅))
87breq1d 5080 . . . 4 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑃𝑋𝑆 ∈ ℝ*𝑆𝑅)) ∧ 𝑧𝑋) → ((𝑃𝐷𝑧) < 𝑆 ↔ if((𝑃𝐶𝑧) ≤ 𝑅, (𝑃𝐶𝑧), 𝑅) < 𝑆))
9 simplr3 1215 . . . . . . . 8 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑃𝑋𝑆 ∈ ℝ*𝑆𝑅)) ∧ 𝑧𝑋) → 𝑆𝑅)
109biantrud 531 . . . . . . 7 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑃𝑋𝑆 ∈ ℝ*𝑆𝑅)) ∧ 𝑧𝑋) → (𝑆 ≤ (𝑃𝐶𝑧) ↔ (𝑆 ≤ (𝑃𝐶𝑧) ∧ 𝑆𝑅)))
11 simpr2 1193 . . . . . . . . 9 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑃𝑋𝑆 ∈ ℝ*𝑆𝑅)) → 𝑆 ∈ ℝ*)
1211adantr 480 . . . . . . . 8 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑃𝑋𝑆 ∈ ℝ*𝑆𝑅)) ∧ 𝑧𝑋) → 𝑆 ∈ ℝ*)
13 simpl1 1189 . . . . . . . . . 10 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑃𝑋𝑆 ∈ ℝ*𝑆𝑅)) → 𝐶 ∈ (∞Met‘𝑋))
1413adantr 480 . . . . . . . . 9 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑃𝑋𝑆 ∈ ℝ*𝑆𝑅)) ∧ 𝑧𝑋) → 𝐶 ∈ (∞Met‘𝑋))
15 xmetcl 23392 . . . . . . . . 9 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑧𝑋) → (𝑃𝐶𝑧) ∈ ℝ*)
1614, 3, 4, 15syl3anc 1369 . . . . . . . 8 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑃𝑋𝑆 ∈ ℝ*𝑆𝑅)) ∧ 𝑧𝑋) → (𝑃𝐶𝑧) ∈ ℝ*)
17 xrlemin 12847 . . . . . . . 8 ((𝑆 ∈ ℝ* ∧ (𝑃𝐶𝑧) ∈ ℝ*𝑅 ∈ ℝ*) → (𝑆 ≤ if((𝑃𝐶𝑧) ≤ 𝑅, (𝑃𝐶𝑧), 𝑅) ↔ (𝑆 ≤ (𝑃𝐶𝑧) ∧ 𝑆𝑅)))
1812, 16, 1, 17syl3anc 1369 . . . . . . 7 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑃𝑋𝑆 ∈ ℝ*𝑆𝑅)) ∧ 𝑧𝑋) → (𝑆 ≤ if((𝑃𝐶𝑧) ≤ 𝑅, (𝑃𝐶𝑧), 𝑅) ↔ (𝑆 ≤ (𝑃𝐶𝑧) ∧ 𝑆𝑅)))
1910, 18bitr4d 281 . . . . . 6 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑃𝑋𝑆 ∈ ℝ*𝑆𝑅)) ∧ 𝑧𝑋) → (𝑆 ≤ (𝑃𝐶𝑧) ↔ 𝑆 ≤ if((𝑃𝐶𝑧) ≤ 𝑅, (𝑃𝐶𝑧), 𝑅)))
2019notbid 317 . . . . 5 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑃𝑋𝑆 ∈ ℝ*𝑆𝑅)) ∧ 𝑧𝑋) → (¬ 𝑆 ≤ (𝑃𝐶𝑧) ↔ ¬ 𝑆 ≤ if((𝑃𝐶𝑧) ≤ 𝑅, (𝑃𝐶𝑧), 𝑅)))
21 xrltnle 10973 . . . . . 6 (((𝑃𝐶𝑧) ∈ ℝ*𝑆 ∈ ℝ*) → ((𝑃𝐶𝑧) < 𝑆 ↔ ¬ 𝑆 ≤ (𝑃𝐶𝑧)))
2216, 12, 21syl2anc 583 . . . . 5 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑃𝑋𝑆 ∈ ℝ*𝑆𝑅)) ∧ 𝑧𝑋) → ((𝑃𝐶𝑧) < 𝑆 ↔ ¬ 𝑆 ≤ (𝑃𝐶𝑧)))
2316, 1ifcld 4502 . . . . . 6 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑃𝑋𝑆 ∈ ℝ*𝑆𝑅)) ∧ 𝑧𝑋) → if((𝑃𝐶𝑧) ≤ 𝑅, (𝑃𝐶𝑧), 𝑅) ∈ ℝ*)
24 xrltnle 10973 . . . . . 6 ((if((𝑃𝐶𝑧) ≤ 𝑅, (𝑃𝐶𝑧), 𝑅) ∈ ℝ*𝑆 ∈ ℝ*) → (if((𝑃𝐶𝑧) ≤ 𝑅, (𝑃𝐶𝑧), 𝑅) < 𝑆 ↔ ¬ 𝑆 ≤ if((𝑃𝐶𝑧) ≤ 𝑅, (𝑃𝐶𝑧), 𝑅)))
2523, 12, 24syl2anc 583 . . . . 5 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑃𝑋𝑆 ∈ ℝ*𝑆𝑅)) ∧ 𝑧𝑋) → (if((𝑃𝐶𝑧) ≤ 𝑅, (𝑃𝐶𝑧), 𝑅) < 𝑆 ↔ ¬ 𝑆 ≤ if((𝑃𝐶𝑧) ≤ 𝑅, (𝑃𝐶𝑧), 𝑅)))
2620, 22, 253bitr4d 310 . . . 4 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑃𝑋𝑆 ∈ ℝ*𝑆𝑅)) ∧ 𝑧𝑋) → ((𝑃𝐶𝑧) < 𝑆 ↔ if((𝑃𝐶𝑧) ≤ 𝑅, (𝑃𝐶𝑧), 𝑅) < 𝑆))
278, 26bitr4d 281 . . 3 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑃𝑋𝑆 ∈ ℝ*𝑆𝑅)) ∧ 𝑧𝑋) → ((𝑃𝐷𝑧) < 𝑆 ↔ (𝑃𝐶𝑧) < 𝑆))
2827rabbidva 3402 . 2 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑃𝑋𝑆 ∈ ℝ*𝑆𝑅)) → {𝑧𝑋 ∣ (𝑃𝐷𝑧) < 𝑆} = {𝑧𝑋 ∣ (𝑃𝐶𝑧) < 𝑆})
295stdbdxmet 23577 . . . 4 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) → 𝐷 ∈ (∞Met‘𝑋))
3029adantr 480 . . 3 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑃𝑋𝑆 ∈ ℝ*𝑆𝑅)) → 𝐷 ∈ (∞Met‘𝑋))
31 blval 23447 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑆 ∈ ℝ*) → (𝑃(ball‘𝐷)𝑆) = {𝑧𝑋 ∣ (𝑃𝐷𝑧) < 𝑆})
3230, 2, 11, 31syl3anc 1369 . 2 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑃𝑋𝑆 ∈ ℝ*𝑆𝑅)) → (𝑃(ball‘𝐷)𝑆) = {𝑧𝑋 ∣ (𝑃𝐷𝑧) < 𝑆})
33 blval 23447 . . 3 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑆 ∈ ℝ*) → (𝑃(ball‘𝐶)𝑆) = {𝑧𝑋 ∣ (𝑃𝐶𝑧) < 𝑆})
3413, 2, 11, 33syl3anc 1369 . 2 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑃𝑋𝑆 ∈ ℝ*𝑆𝑅)) → (𝑃(ball‘𝐶)𝑆) = {𝑧𝑋 ∣ (𝑃𝐶𝑧) < 𝑆})
3528, 32, 343eqtr4d 2788 1 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑃𝑋𝑆 ∈ ℝ*𝑆𝑅)) → (𝑃(ball‘𝐷)𝑆) = (𝑃(ball‘𝐶)𝑆))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  {crab 3067  ifcif 4456   class class class wbr 5070  cfv 6418  (class class class)co 7255  cmpo 7257  0cc0 10802  *cxr 10939   < clt 10940  cle 10941  ∞Metcxmet 20495  ballcbl 20497
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-po 5494  df-so 5495  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-1st 7804  df-2nd 7805  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-2 11966  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-icc 13015  df-psmet 20502  df-xmet 20503  df-bl 20505
This theorem is referenced by:  stdbdmopn  23580  xlebnum  24034
  Copyright terms: Public domain W3C validator