Step | Hyp | Ref
| Expression |
1 | | simpll2 1212 |
. . . . . 6
⊢ ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 <
𝑅) ∧ (𝑃 ∈ 𝑋 ∧ 𝑆 ∈ ℝ* ∧ 𝑆 ≤ 𝑅)) ∧ 𝑧 ∈ 𝑋) → 𝑅 ∈
ℝ*) |
2 | | simpr1 1193 |
. . . . . . 7
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 <
𝑅) ∧ (𝑃 ∈ 𝑋 ∧ 𝑆 ∈ ℝ* ∧ 𝑆 ≤ 𝑅)) → 𝑃 ∈ 𝑋) |
3 | 2 | adantr 481 |
. . . . . 6
⊢ ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 <
𝑅) ∧ (𝑃 ∈ 𝑋 ∧ 𝑆 ∈ ℝ* ∧ 𝑆 ≤ 𝑅)) ∧ 𝑧 ∈ 𝑋) → 𝑃 ∈ 𝑋) |
4 | | simpr 485 |
. . . . . 6
⊢ ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 <
𝑅) ∧ (𝑃 ∈ 𝑋 ∧ 𝑆 ∈ ℝ* ∧ 𝑆 ≤ 𝑅)) ∧ 𝑧 ∈ 𝑋) → 𝑧 ∈ 𝑋) |
5 | | stdbdmet.1 |
. . . . . . 7
⊢ 𝐷 = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ if((𝑥𝐶𝑦) ≤ 𝑅, (𝑥𝐶𝑦), 𝑅)) |
6 | 5 | stdbdmetval 23670 |
. . . . . 6
⊢ ((𝑅 ∈ ℝ*
∧ 𝑃 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋) → (𝑃𝐷𝑧) = if((𝑃𝐶𝑧) ≤ 𝑅, (𝑃𝐶𝑧), 𝑅)) |
7 | 1, 3, 4, 6 | syl3anc 1370 |
. . . . 5
⊢ ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 <
𝑅) ∧ (𝑃 ∈ 𝑋 ∧ 𝑆 ∈ ℝ* ∧ 𝑆 ≤ 𝑅)) ∧ 𝑧 ∈ 𝑋) → (𝑃𝐷𝑧) = if((𝑃𝐶𝑧) ≤ 𝑅, (𝑃𝐶𝑧), 𝑅)) |
8 | 7 | breq1d 5084 |
. . . 4
⊢ ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 <
𝑅) ∧ (𝑃 ∈ 𝑋 ∧ 𝑆 ∈ ℝ* ∧ 𝑆 ≤ 𝑅)) ∧ 𝑧 ∈ 𝑋) → ((𝑃𝐷𝑧) < 𝑆 ↔ if((𝑃𝐶𝑧) ≤ 𝑅, (𝑃𝐶𝑧), 𝑅) < 𝑆)) |
9 | | simplr3 1216 |
. . . . . . . 8
⊢ ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 <
𝑅) ∧ (𝑃 ∈ 𝑋 ∧ 𝑆 ∈ ℝ* ∧ 𝑆 ≤ 𝑅)) ∧ 𝑧 ∈ 𝑋) → 𝑆 ≤ 𝑅) |
10 | 9 | biantrud 532 |
. . . . . . 7
⊢ ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 <
𝑅) ∧ (𝑃 ∈ 𝑋 ∧ 𝑆 ∈ ℝ* ∧ 𝑆 ≤ 𝑅)) ∧ 𝑧 ∈ 𝑋) → (𝑆 ≤ (𝑃𝐶𝑧) ↔ (𝑆 ≤ (𝑃𝐶𝑧) ∧ 𝑆 ≤ 𝑅))) |
11 | | simpr2 1194 |
. . . . . . . . 9
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 <
𝑅) ∧ (𝑃 ∈ 𝑋 ∧ 𝑆 ∈ ℝ* ∧ 𝑆 ≤ 𝑅)) → 𝑆 ∈
ℝ*) |
12 | 11 | adantr 481 |
. . . . . . . 8
⊢ ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 <
𝑅) ∧ (𝑃 ∈ 𝑋 ∧ 𝑆 ∈ ℝ* ∧ 𝑆 ≤ 𝑅)) ∧ 𝑧 ∈ 𝑋) → 𝑆 ∈
ℝ*) |
13 | | simpl1 1190 |
. . . . . . . . . 10
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 <
𝑅) ∧ (𝑃 ∈ 𝑋 ∧ 𝑆 ∈ ℝ* ∧ 𝑆 ≤ 𝑅)) → 𝐶 ∈ (∞Met‘𝑋)) |
14 | 13 | adantr 481 |
. . . . . . . . 9
⊢ ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 <
𝑅) ∧ (𝑃 ∈ 𝑋 ∧ 𝑆 ∈ ℝ* ∧ 𝑆 ≤ 𝑅)) ∧ 𝑧 ∈ 𝑋) → 𝐶 ∈ (∞Met‘𝑋)) |
15 | | xmetcl 23484 |
. . . . . . . . 9
⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋) → (𝑃𝐶𝑧) ∈
ℝ*) |
16 | 14, 3, 4, 15 | syl3anc 1370 |
. . . . . . . 8
⊢ ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 <
𝑅) ∧ (𝑃 ∈ 𝑋 ∧ 𝑆 ∈ ℝ* ∧ 𝑆 ≤ 𝑅)) ∧ 𝑧 ∈ 𝑋) → (𝑃𝐶𝑧) ∈
ℝ*) |
17 | | xrlemin 12918 |
. . . . . . . 8
⊢ ((𝑆 ∈ ℝ*
∧ (𝑃𝐶𝑧) ∈ ℝ* ∧ 𝑅 ∈ ℝ*)
→ (𝑆 ≤ if((𝑃𝐶𝑧) ≤ 𝑅, (𝑃𝐶𝑧), 𝑅) ↔ (𝑆 ≤ (𝑃𝐶𝑧) ∧ 𝑆 ≤ 𝑅))) |
18 | 12, 16, 1, 17 | syl3anc 1370 |
. . . . . . 7
⊢ ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 <
𝑅) ∧ (𝑃 ∈ 𝑋 ∧ 𝑆 ∈ ℝ* ∧ 𝑆 ≤ 𝑅)) ∧ 𝑧 ∈ 𝑋) → (𝑆 ≤ if((𝑃𝐶𝑧) ≤ 𝑅, (𝑃𝐶𝑧), 𝑅) ↔ (𝑆 ≤ (𝑃𝐶𝑧) ∧ 𝑆 ≤ 𝑅))) |
19 | 10, 18 | bitr4d 281 |
. . . . . 6
⊢ ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 <
𝑅) ∧ (𝑃 ∈ 𝑋 ∧ 𝑆 ∈ ℝ* ∧ 𝑆 ≤ 𝑅)) ∧ 𝑧 ∈ 𝑋) → (𝑆 ≤ (𝑃𝐶𝑧) ↔ 𝑆 ≤ if((𝑃𝐶𝑧) ≤ 𝑅, (𝑃𝐶𝑧), 𝑅))) |
20 | 19 | notbid 318 |
. . . . 5
⊢ ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 <
𝑅) ∧ (𝑃 ∈ 𝑋 ∧ 𝑆 ∈ ℝ* ∧ 𝑆 ≤ 𝑅)) ∧ 𝑧 ∈ 𝑋) → (¬ 𝑆 ≤ (𝑃𝐶𝑧) ↔ ¬ 𝑆 ≤ if((𝑃𝐶𝑧) ≤ 𝑅, (𝑃𝐶𝑧), 𝑅))) |
21 | | xrltnle 11042 |
. . . . . 6
⊢ (((𝑃𝐶𝑧) ∈ ℝ* ∧ 𝑆 ∈ ℝ*)
→ ((𝑃𝐶𝑧) < 𝑆 ↔ ¬ 𝑆 ≤ (𝑃𝐶𝑧))) |
22 | 16, 12, 21 | syl2anc 584 |
. . . . 5
⊢ ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 <
𝑅) ∧ (𝑃 ∈ 𝑋 ∧ 𝑆 ∈ ℝ* ∧ 𝑆 ≤ 𝑅)) ∧ 𝑧 ∈ 𝑋) → ((𝑃𝐶𝑧) < 𝑆 ↔ ¬ 𝑆 ≤ (𝑃𝐶𝑧))) |
23 | 16, 1 | ifcld 4505 |
. . . . . 6
⊢ ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 <
𝑅) ∧ (𝑃 ∈ 𝑋 ∧ 𝑆 ∈ ℝ* ∧ 𝑆 ≤ 𝑅)) ∧ 𝑧 ∈ 𝑋) → if((𝑃𝐶𝑧) ≤ 𝑅, (𝑃𝐶𝑧), 𝑅) ∈
ℝ*) |
24 | | xrltnle 11042 |
. . . . . 6
⊢
((if((𝑃𝐶𝑧) ≤ 𝑅, (𝑃𝐶𝑧), 𝑅) ∈ ℝ* ∧ 𝑆 ∈ ℝ*)
→ (if((𝑃𝐶𝑧) ≤ 𝑅, (𝑃𝐶𝑧), 𝑅) < 𝑆 ↔ ¬ 𝑆 ≤ if((𝑃𝐶𝑧) ≤ 𝑅, (𝑃𝐶𝑧), 𝑅))) |
25 | 23, 12, 24 | syl2anc 584 |
. . . . 5
⊢ ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 <
𝑅) ∧ (𝑃 ∈ 𝑋 ∧ 𝑆 ∈ ℝ* ∧ 𝑆 ≤ 𝑅)) ∧ 𝑧 ∈ 𝑋) → (if((𝑃𝐶𝑧) ≤ 𝑅, (𝑃𝐶𝑧), 𝑅) < 𝑆 ↔ ¬ 𝑆 ≤ if((𝑃𝐶𝑧) ≤ 𝑅, (𝑃𝐶𝑧), 𝑅))) |
26 | 20, 22, 25 | 3bitr4d 311 |
. . . 4
⊢ ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 <
𝑅) ∧ (𝑃 ∈ 𝑋 ∧ 𝑆 ∈ ℝ* ∧ 𝑆 ≤ 𝑅)) ∧ 𝑧 ∈ 𝑋) → ((𝑃𝐶𝑧) < 𝑆 ↔ if((𝑃𝐶𝑧) ≤ 𝑅, (𝑃𝐶𝑧), 𝑅) < 𝑆)) |
27 | 8, 26 | bitr4d 281 |
. . 3
⊢ ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 <
𝑅) ∧ (𝑃 ∈ 𝑋 ∧ 𝑆 ∈ ℝ* ∧ 𝑆 ≤ 𝑅)) ∧ 𝑧 ∈ 𝑋) → ((𝑃𝐷𝑧) < 𝑆 ↔ (𝑃𝐶𝑧) < 𝑆)) |
28 | 27 | rabbidva 3413 |
. 2
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 <
𝑅) ∧ (𝑃 ∈ 𝑋 ∧ 𝑆 ∈ ℝ* ∧ 𝑆 ≤ 𝑅)) → {𝑧 ∈ 𝑋 ∣ (𝑃𝐷𝑧) < 𝑆} = {𝑧 ∈ 𝑋 ∣ (𝑃𝐶𝑧) < 𝑆}) |
29 | 5 | stdbdxmet 23671 |
. . . 4
⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 <
𝑅) → 𝐷 ∈ (∞Met‘𝑋)) |
30 | 29 | adantr 481 |
. . 3
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 <
𝑅) ∧ (𝑃 ∈ 𝑋 ∧ 𝑆 ∈ ℝ* ∧ 𝑆 ≤ 𝑅)) → 𝐷 ∈ (∞Met‘𝑋)) |
31 | | blval 23539 |
. . 3
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑆 ∈ ℝ*) → (𝑃(ball‘𝐷)𝑆) = {𝑧 ∈ 𝑋 ∣ (𝑃𝐷𝑧) < 𝑆}) |
32 | 30, 2, 11, 31 | syl3anc 1370 |
. 2
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 <
𝑅) ∧ (𝑃 ∈ 𝑋 ∧ 𝑆 ∈ ℝ* ∧ 𝑆 ≤ 𝑅)) → (𝑃(ball‘𝐷)𝑆) = {𝑧 ∈ 𝑋 ∣ (𝑃𝐷𝑧) < 𝑆}) |
33 | | blval 23539 |
. . 3
⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑆 ∈ ℝ*) → (𝑃(ball‘𝐶)𝑆) = {𝑧 ∈ 𝑋 ∣ (𝑃𝐶𝑧) < 𝑆}) |
34 | 13, 2, 11, 33 | syl3anc 1370 |
. 2
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 <
𝑅) ∧ (𝑃 ∈ 𝑋 ∧ 𝑆 ∈ ℝ* ∧ 𝑆 ≤ 𝑅)) → (𝑃(ball‘𝐶)𝑆) = {𝑧 ∈ 𝑋 ∣ (𝑃𝐶𝑧) < 𝑆}) |
35 | 28, 32, 34 | 3eqtr4d 2788 |
1
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 <
𝑅) ∧ (𝑃 ∈ 𝑋 ∧ 𝑆 ∈ ℝ* ∧ 𝑆 ≤ 𝑅)) → (𝑃(ball‘𝐷)𝑆) = (𝑃(ball‘𝐶)𝑆)) |