![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > strfvd | Structured version Visualization version GIF version |
Description: Deduction version of strfv 17137. (Contributed by Mario Carneiro, 15-Nov-2014.) |
Ref | Expression |
---|---|
strfvd.e | β’ πΈ = Slot (πΈβndx) |
strfvd.s | β’ (π β π β π) |
strfvd.f | β’ (π β Fun π) |
strfvd.n | β’ (π β β¨(πΈβndx), πΆβ© β π) |
Ref | Expression |
---|---|
strfvd | β’ (π β πΆ = (πΈβπ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | strfvd.e | . . 3 β’ πΈ = Slot (πΈβndx) | |
2 | strfvd.s | . . 3 β’ (π β π β π) | |
3 | 1, 2 | strfvnd 17118 | . 2 β’ (π β (πΈβπ) = (πβ(πΈβndx))) |
4 | strfvd.f | . . 3 β’ (π β Fun π) | |
5 | strfvd.n | . . 3 β’ (π β β¨(πΈβndx), πΆβ© β π) | |
6 | funopfv 6944 | . . 3 β’ (Fun π β (β¨(πΈβndx), πΆβ© β π β (πβ(πΈβndx)) = πΆ)) | |
7 | 4, 5, 6 | sylc 65 | . 2 β’ (π β (πβ(πΈβndx)) = πΆ) |
8 | 3, 7 | eqtr2d 2774 | 1 β’ (π β πΆ = (πΈβπ)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1542 β wcel 2107 β¨cop 4635 Fun wfun 6538 βcfv 6544 Slot cslot 17114 ndxcnx 17126 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-iota 6496 df-fun 6546 df-fv 6552 df-slot 17115 |
This theorem is referenced by: strssd 17139 |
Copyright terms: Public domain | W3C validator |