Step | Hyp | Ref
| Expression |
1 | | uhgrissubgr.v |
. . . 4
⊢ 𝑉 = (Vtx‘𝑆) |
2 | | uhgrissubgr.a |
. . . 4
⊢ 𝐴 = (Vtx‘𝐺) |
3 | | uhgrissubgr.i |
. . . 4
⊢ 𝐼 = (iEdg‘𝑆) |
4 | | uhgrissubgr.b |
. . . 4
⊢ 𝐵 = (iEdg‘𝐺) |
5 | | eqid 2740 |
. . . 4
⊢
(Edg‘𝑆) =
(Edg‘𝑆) |
6 | 1, 2, 3, 4, 5 | subgrprop2 27639 |
. . 3
⊢ (𝑆 SubGraph 𝐺 → (𝑉 ⊆ 𝐴 ∧ 𝐼 ⊆ 𝐵 ∧ (Edg‘𝑆) ⊆ 𝒫 𝑉)) |
7 | | 3simpa 1147 |
. . 3
⊢ ((𝑉 ⊆ 𝐴 ∧ 𝐼 ⊆ 𝐵 ∧ (Edg‘𝑆) ⊆ 𝒫 𝑉) → (𝑉 ⊆ 𝐴 ∧ 𝐼 ⊆ 𝐵)) |
8 | 6, 7 | syl 17 |
. 2
⊢ (𝑆 SubGraph 𝐺 → (𝑉 ⊆ 𝐴 ∧ 𝐼 ⊆ 𝐵)) |
9 | | simprl 768 |
. . . 4
⊢ (((𝐺 ∈ 𝑊 ∧ Fun 𝐵 ∧ 𝑆 ∈ UHGraph) ∧ (𝑉 ⊆ 𝐴 ∧ 𝐼 ⊆ 𝐵)) → 𝑉 ⊆ 𝐴) |
10 | | simp2 1136 |
. . . . . 6
⊢ ((𝐺 ∈ 𝑊 ∧ Fun 𝐵 ∧ 𝑆 ∈ UHGraph) → Fun 𝐵) |
11 | | simpr 485 |
. . . . . 6
⊢ ((𝑉 ⊆ 𝐴 ∧ 𝐼 ⊆ 𝐵) → 𝐼 ⊆ 𝐵) |
12 | | funssres 6476 |
. . . . . 6
⊢ ((Fun
𝐵 ∧ 𝐼 ⊆ 𝐵) → (𝐵 ↾ dom 𝐼) = 𝐼) |
13 | 10, 11, 12 | syl2an 596 |
. . . . 5
⊢ (((𝐺 ∈ 𝑊 ∧ Fun 𝐵 ∧ 𝑆 ∈ UHGraph) ∧ (𝑉 ⊆ 𝐴 ∧ 𝐼 ⊆ 𝐵)) → (𝐵 ↾ dom 𝐼) = 𝐼) |
14 | 13 | eqcomd 2746 |
. . . 4
⊢ (((𝐺 ∈ 𝑊 ∧ Fun 𝐵 ∧ 𝑆 ∈ UHGraph) ∧ (𝑉 ⊆ 𝐴 ∧ 𝐼 ⊆ 𝐵)) → 𝐼 = (𝐵 ↾ dom 𝐼)) |
15 | | edguhgr 27497 |
. . . . . . . . 9
⊢ ((𝑆 ∈ UHGraph ∧ 𝑒 ∈ (Edg‘𝑆)) → 𝑒 ∈ 𝒫 (Vtx‘𝑆)) |
16 | 15 | ex 413 |
. . . . . . . 8
⊢ (𝑆 ∈ UHGraph → (𝑒 ∈ (Edg‘𝑆) → 𝑒 ∈ 𝒫 (Vtx‘𝑆))) |
17 | 1 | pweqi 4557 |
. . . . . . . . 9
⊢ 𝒫
𝑉 = 𝒫
(Vtx‘𝑆) |
18 | 17 | eleq2i 2832 |
. . . . . . . 8
⊢ (𝑒 ∈ 𝒫 𝑉 ↔ 𝑒 ∈ 𝒫 (Vtx‘𝑆)) |
19 | 16, 18 | syl6ibr 251 |
. . . . . . 7
⊢ (𝑆 ∈ UHGraph → (𝑒 ∈ (Edg‘𝑆) → 𝑒 ∈ 𝒫 𝑉)) |
20 | 19 | ssrdv 3932 |
. . . . . 6
⊢ (𝑆 ∈ UHGraph →
(Edg‘𝑆) ⊆
𝒫 𝑉) |
21 | 20 | 3ad2ant3 1134 |
. . . . 5
⊢ ((𝐺 ∈ 𝑊 ∧ Fun 𝐵 ∧ 𝑆 ∈ UHGraph) → (Edg‘𝑆) ⊆ 𝒫 𝑉) |
22 | 21 | adantr 481 |
. . . 4
⊢ (((𝐺 ∈ 𝑊 ∧ Fun 𝐵 ∧ 𝑆 ∈ UHGraph) ∧ (𝑉 ⊆ 𝐴 ∧ 𝐼 ⊆ 𝐵)) → (Edg‘𝑆) ⊆ 𝒫 𝑉) |
23 | 1, 2, 3, 4, 5 | issubgr 27636 |
. . . . . 6
⊢ ((𝐺 ∈ 𝑊 ∧ 𝑆 ∈ UHGraph) → (𝑆 SubGraph 𝐺 ↔ (𝑉 ⊆ 𝐴 ∧ 𝐼 = (𝐵 ↾ dom 𝐼) ∧ (Edg‘𝑆) ⊆ 𝒫 𝑉))) |
24 | 23 | 3adant2 1130 |
. . . . 5
⊢ ((𝐺 ∈ 𝑊 ∧ Fun 𝐵 ∧ 𝑆 ∈ UHGraph) → (𝑆 SubGraph 𝐺 ↔ (𝑉 ⊆ 𝐴 ∧ 𝐼 = (𝐵 ↾ dom 𝐼) ∧ (Edg‘𝑆) ⊆ 𝒫 𝑉))) |
25 | 24 | adantr 481 |
. . . 4
⊢ (((𝐺 ∈ 𝑊 ∧ Fun 𝐵 ∧ 𝑆 ∈ UHGraph) ∧ (𝑉 ⊆ 𝐴 ∧ 𝐼 ⊆ 𝐵)) → (𝑆 SubGraph 𝐺 ↔ (𝑉 ⊆ 𝐴 ∧ 𝐼 = (𝐵 ↾ dom 𝐼) ∧ (Edg‘𝑆) ⊆ 𝒫 𝑉))) |
26 | 9, 14, 22, 25 | mpbir3and 1341 |
. . 3
⊢ (((𝐺 ∈ 𝑊 ∧ Fun 𝐵 ∧ 𝑆 ∈ UHGraph) ∧ (𝑉 ⊆ 𝐴 ∧ 𝐼 ⊆ 𝐵)) → 𝑆 SubGraph 𝐺) |
27 | 26 | ex 413 |
. 2
⊢ ((𝐺 ∈ 𝑊 ∧ Fun 𝐵 ∧ 𝑆 ∈ UHGraph) → ((𝑉 ⊆ 𝐴 ∧ 𝐼 ⊆ 𝐵) → 𝑆 SubGraph 𝐺)) |
28 | 8, 27 | impbid2 225 |
1
⊢ ((𝐺 ∈ 𝑊 ∧ Fun 𝐵 ∧ 𝑆 ∈ UHGraph) → (𝑆 SubGraph 𝐺 ↔ (𝑉 ⊆ 𝐴 ∧ 𝐼 ⊆ 𝐵))) |