MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uhgrissubgr Structured version   Visualization version   GIF version

Theorem uhgrissubgr 28570
Description: The property of a hypergraph to be a subgraph. (Contributed by AV, 19-Nov-2020.)
Hypotheses
Ref Expression
uhgrissubgr.v 𝑉 = (Vtx‘𝑆)
uhgrissubgr.a 𝐴 = (Vtx‘𝐺)
uhgrissubgr.i 𝐼 = (iEdg‘𝑆)
uhgrissubgr.b 𝐵 = (iEdg‘𝐺)
Assertion
Ref Expression
uhgrissubgr ((𝐺𝑊 ∧ Fun 𝐵𝑆 ∈ UHGraph) → (𝑆 SubGraph 𝐺 ↔ (𝑉𝐴𝐼𝐵)))

Proof of Theorem uhgrissubgr
Dummy variable 𝑒 is distinct from all other variables.
StepHypRef Expression
1 uhgrissubgr.v . . . 4 𝑉 = (Vtx‘𝑆)
2 uhgrissubgr.a . . . 4 𝐴 = (Vtx‘𝐺)
3 uhgrissubgr.i . . . 4 𝐼 = (iEdg‘𝑆)
4 uhgrissubgr.b . . . 4 𝐵 = (iEdg‘𝐺)
5 eqid 2732 . . . 4 (Edg‘𝑆) = (Edg‘𝑆)
61, 2, 3, 4, 5subgrprop2 28569 . . 3 (𝑆 SubGraph 𝐺 → (𝑉𝐴𝐼𝐵 ∧ (Edg‘𝑆) ⊆ 𝒫 𝑉))
7 3simpa 1148 . . 3 ((𝑉𝐴𝐼𝐵 ∧ (Edg‘𝑆) ⊆ 𝒫 𝑉) → (𝑉𝐴𝐼𝐵))
86, 7syl 17 . 2 (𝑆 SubGraph 𝐺 → (𝑉𝐴𝐼𝐵))
9 simprl 769 . . . 4 (((𝐺𝑊 ∧ Fun 𝐵𝑆 ∈ UHGraph) ∧ (𝑉𝐴𝐼𝐵)) → 𝑉𝐴)
10 simp2 1137 . . . . . 6 ((𝐺𝑊 ∧ Fun 𝐵𝑆 ∈ UHGraph) → Fun 𝐵)
11 simpr 485 . . . . . 6 ((𝑉𝐴𝐼𝐵) → 𝐼𝐵)
12 funssres 6592 . . . . . 6 ((Fun 𝐵𝐼𝐵) → (𝐵 ↾ dom 𝐼) = 𝐼)
1310, 11, 12syl2an 596 . . . . 5 (((𝐺𝑊 ∧ Fun 𝐵𝑆 ∈ UHGraph) ∧ (𝑉𝐴𝐼𝐵)) → (𝐵 ↾ dom 𝐼) = 𝐼)
1413eqcomd 2738 . . . 4 (((𝐺𝑊 ∧ Fun 𝐵𝑆 ∈ UHGraph) ∧ (𝑉𝐴𝐼𝐵)) → 𝐼 = (𝐵 ↾ dom 𝐼))
15 edguhgr 28427 . . . . . . . . 9 ((𝑆 ∈ UHGraph ∧ 𝑒 ∈ (Edg‘𝑆)) → 𝑒 ∈ 𝒫 (Vtx‘𝑆))
1615ex 413 . . . . . . . 8 (𝑆 ∈ UHGraph → (𝑒 ∈ (Edg‘𝑆) → 𝑒 ∈ 𝒫 (Vtx‘𝑆)))
171pweqi 4618 . . . . . . . . 9 𝒫 𝑉 = 𝒫 (Vtx‘𝑆)
1817eleq2i 2825 . . . . . . . 8 (𝑒 ∈ 𝒫 𝑉𝑒 ∈ 𝒫 (Vtx‘𝑆))
1916, 18imbitrrdi 251 . . . . . . 7 (𝑆 ∈ UHGraph → (𝑒 ∈ (Edg‘𝑆) → 𝑒 ∈ 𝒫 𝑉))
2019ssrdv 3988 . . . . . 6 (𝑆 ∈ UHGraph → (Edg‘𝑆) ⊆ 𝒫 𝑉)
21203ad2ant3 1135 . . . . 5 ((𝐺𝑊 ∧ Fun 𝐵𝑆 ∈ UHGraph) → (Edg‘𝑆) ⊆ 𝒫 𝑉)
2221adantr 481 . . . 4 (((𝐺𝑊 ∧ Fun 𝐵𝑆 ∈ UHGraph) ∧ (𝑉𝐴𝐼𝐵)) → (Edg‘𝑆) ⊆ 𝒫 𝑉)
231, 2, 3, 4, 5issubgr 28566 . . . . . 6 ((𝐺𝑊𝑆 ∈ UHGraph) → (𝑆 SubGraph 𝐺 ↔ (𝑉𝐴𝐼 = (𝐵 ↾ dom 𝐼) ∧ (Edg‘𝑆) ⊆ 𝒫 𝑉)))
24233adant2 1131 . . . . 5 ((𝐺𝑊 ∧ Fun 𝐵𝑆 ∈ UHGraph) → (𝑆 SubGraph 𝐺 ↔ (𝑉𝐴𝐼 = (𝐵 ↾ dom 𝐼) ∧ (Edg‘𝑆) ⊆ 𝒫 𝑉)))
2524adantr 481 . . . 4 (((𝐺𝑊 ∧ Fun 𝐵𝑆 ∈ UHGraph) ∧ (𝑉𝐴𝐼𝐵)) → (𝑆 SubGraph 𝐺 ↔ (𝑉𝐴𝐼 = (𝐵 ↾ dom 𝐼) ∧ (Edg‘𝑆) ⊆ 𝒫 𝑉)))
269, 14, 22, 25mpbir3and 1342 . . 3 (((𝐺𝑊 ∧ Fun 𝐵𝑆 ∈ UHGraph) ∧ (𝑉𝐴𝐼𝐵)) → 𝑆 SubGraph 𝐺)
2726ex 413 . 2 ((𝐺𝑊 ∧ Fun 𝐵𝑆 ∈ UHGraph) → ((𝑉𝐴𝐼𝐵) → 𝑆 SubGraph 𝐺))
288, 27impbid2 225 1 ((𝐺𝑊 ∧ Fun 𝐵𝑆 ∈ UHGraph) → (𝑆 SubGraph 𝐺 ↔ (𝑉𝐴𝐼𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wss 3948  𝒫 cpw 4602   class class class wbr 5148  dom cdm 5676  cres 5678  Fun wfun 6537  cfv 6543  Vtxcvtx 28294  iEdgciedg 28295  Edgcedg 28345  UHGraphcuhgr 28354   SubGraph csubgr 28562
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pr 5427  ax-un 7727
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-sbc 3778  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-fv 6551  df-edg 28346  df-uhgr 28356  df-subgr 28563
This theorem is referenced by:  uhgrsubgrself  28575
  Copyright terms: Public domain W3C validator