MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uhgrissubgr Structured version   Visualization version   GIF version

Theorem uhgrissubgr 28532
Description: The property of a hypergraph to be a subgraph. (Contributed by AV, 19-Nov-2020.)
Hypotheses
Ref Expression
uhgrissubgr.v 𝑉 = (Vtx‘𝑆)
uhgrissubgr.a 𝐴 = (Vtx‘𝐺)
uhgrissubgr.i 𝐼 = (iEdg‘𝑆)
uhgrissubgr.b 𝐵 = (iEdg‘𝐺)
Assertion
Ref Expression
uhgrissubgr ((𝐺𝑊 ∧ Fun 𝐵𝑆 ∈ UHGraph) → (𝑆 SubGraph 𝐺 ↔ (𝑉𝐴𝐼𝐵)))

Proof of Theorem uhgrissubgr
Dummy variable 𝑒 is distinct from all other variables.
StepHypRef Expression
1 uhgrissubgr.v . . . 4 𝑉 = (Vtx‘𝑆)
2 uhgrissubgr.a . . . 4 𝐴 = (Vtx‘𝐺)
3 uhgrissubgr.i . . . 4 𝐼 = (iEdg‘𝑆)
4 uhgrissubgr.b . . . 4 𝐵 = (iEdg‘𝐺)
5 eqid 2733 . . . 4 (Edg‘𝑆) = (Edg‘𝑆)
61, 2, 3, 4, 5subgrprop2 28531 . . 3 (𝑆 SubGraph 𝐺 → (𝑉𝐴𝐼𝐵 ∧ (Edg‘𝑆) ⊆ 𝒫 𝑉))
7 3simpa 1149 . . 3 ((𝑉𝐴𝐼𝐵 ∧ (Edg‘𝑆) ⊆ 𝒫 𝑉) → (𝑉𝐴𝐼𝐵))
86, 7syl 17 . 2 (𝑆 SubGraph 𝐺 → (𝑉𝐴𝐼𝐵))
9 simprl 770 . . . 4 (((𝐺𝑊 ∧ Fun 𝐵𝑆 ∈ UHGraph) ∧ (𝑉𝐴𝐼𝐵)) → 𝑉𝐴)
10 simp2 1138 . . . . . 6 ((𝐺𝑊 ∧ Fun 𝐵𝑆 ∈ UHGraph) → Fun 𝐵)
11 simpr 486 . . . . . 6 ((𝑉𝐴𝐼𝐵) → 𝐼𝐵)
12 funssres 6593 . . . . . 6 ((Fun 𝐵𝐼𝐵) → (𝐵 ↾ dom 𝐼) = 𝐼)
1310, 11, 12syl2an 597 . . . . 5 (((𝐺𝑊 ∧ Fun 𝐵𝑆 ∈ UHGraph) ∧ (𝑉𝐴𝐼𝐵)) → (𝐵 ↾ dom 𝐼) = 𝐼)
1413eqcomd 2739 . . . 4 (((𝐺𝑊 ∧ Fun 𝐵𝑆 ∈ UHGraph) ∧ (𝑉𝐴𝐼𝐵)) → 𝐼 = (𝐵 ↾ dom 𝐼))
15 edguhgr 28389 . . . . . . . . 9 ((𝑆 ∈ UHGraph ∧ 𝑒 ∈ (Edg‘𝑆)) → 𝑒 ∈ 𝒫 (Vtx‘𝑆))
1615ex 414 . . . . . . . 8 (𝑆 ∈ UHGraph → (𝑒 ∈ (Edg‘𝑆) → 𝑒 ∈ 𝒫 (Vtx‘𝑆)))
171pweqi 4619 . . . . . . . . 9 𝒫 𝑉 = 𝒫 (Vtx‘𝑆)
1817eleq2i 2826 . . . . . . . 8 (𝑒 ∈ 𝒫 𝑉𝑒 ∈ 𝒫 (Vtx‘𝑆))
1916, 18syl6ibr 252 . . . . . . 7 (𝑆 ∈ UHGraph → (𝑒 ∈ (Edg‘𝑆) → 𝑒 ∈ 𝒫 𝑉))
2019ssrdv 3989 . . . . . 6 (𝑆 ∈ UHGraph → (Edg‘𝑆) ⊆ 𝒫 𝑉)
21203ad2ant3 1136 . . . . 5 ((𝐺𝑊 ∧ Fun 𝐵𝑆 ∈ UHGraph) → (Edg‘𝑆) ⊆ 𝒫 𝑉)
2221adantr 482 . . . 4 (((𝐺𝑊 ∧ Fun 𝐵𝑆 ∈ UHGraph) ∧ (𝑉𝐴𝐼𝐵)) → (Edg‘𝑆) ⊆ 𝒫 𝑉)
231, 2, 3, 4, 5issubgr 28528 . . . . . 6 ((𝐺𝑊𝑆 ∈ UHGraph) → (𝑆 SubGraph 𝐺 ↔ (𝑉𝐴𝐼 = (𝐵 ↾ dom 𝐼) ∧ (Edg‘𝑆) ⊆ 𝒫 𝑉)))
24233adant2 1132 . . . . 5 ((𝐺𝑊 ∧ Fun 𝐵𝑆 ∈ UHGraph) → (𝑆 SubGraph 𝐺 ↔ (𝑉𝐴𝐼 = (𝐵 ↾ dom 𝐼) ∧ (Edg‘𝑆) ⊆ 𝒫 𝑉)))
2524adantr 482 . . . 4 (((𝐺𝑊 ∧ Fun 𝐵𝑆 ∈ UHGraph) ∧ (𝑉𝐴𝐼𝐵)) → (𝑆 SubGraph 𝐺 ↔ (𝑉𝐴𝐼 = (𝐵 ↾ dom 𝐼) ∧ (Edg‘𝑆) ⊆ 𝒫 𝑉)))
269, 14, 22, 25mpbir3and 1343 . . 3 (((𝐺𝑊 ∧ Fun 𝐵𝑆 ∈ UHGraph) ∧ (𝑉𝐴𝐼𝐵)) → 𝑆 SubGraph 𝐺)
2726ex 414 . 2 ((𝐺𝑊 ∧ Fun 𝐵𝑆 ∈ UHGraph) → ((𝑉𝐴𝐼𝐵) → 𝑆 SubGraph 𝐺))
288, 27impbid2 225 1 ((𝐺𝑊 ∧ Fun 𝐵𝑆 ∈ UHGraph) → (𝑆 SubGraph 𝐺 ↔ (𝑉𝐴𝐼𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  w3a 1088   = wceq 1542  wcel 2107  wss 3949  𝒫 cpw 4603   class class class wbr 5149  dom cdm 5677  cres 5679  Fun wfun 6538  cfv 6544  Vtxcvtx 28256  iEdgciedg 28257  Edgcedg 28307  UHGraphcuhgr 28316   SubGraph csubgr 28524
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pr 5428  ax-un 7725
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-sbc 3779  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-fv 6552  df-edg 28308  df-uhgr 28318  df-subgr 28525
This theorem is referenced by:  uhgrsubgrself  28537
  Copyright terms: Public domain W3C validator