MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uhgrissubgr Structured version   Visualization version   GIF version

Theorem uhgrissubgr 29254
Description: The property of a hypergraph to be a subgraph. (Contributed by AV, 19-Nov-2020.)
Hypotheses
Ref Expression
uhgrissubgr.v 𝑉 = (Vtx‘𝑆)
uhgrissubgr.a 𝐴 = (Vtx‘𝐺)
uhgrissubgr.i 𝐼 = (iEdg‘𝑆)
uhgrissubgr.b 𝐵 = (iEdg‘𝐺)
Assertion
Ref Expression
uhgrissubgr ((𝐺𝑊 ∧ Fun 𝐵𝑆 ∈ UHGraph) → (𝑆 SubGraph 𝐺 ↔ (𝑉𝐴𝐼𝐵)))

Proof of Theorem uhgrissubgr
Dummy variable 𝑒 is distinct from all other variables.
StepHypRef Expression
1 uhgrissubgr.v . . . 4 𝑉 = (Vtx‘𝑆)
2 uhgrissubgr.a . . . 4 𝐴 = (Vtx‘𝐺)
3 uhgrissubgr.i . . . 4 𝐼 = (iEdg‘𝑆)
4 uhgrissubgr.b . . . 4 𝐵 = (iEdg‘𝐺)
5 eqid 2731 . . . 4 (Edg‘𝑆) = (Edg‘𝑆)
61, 2, 3, 4, 5subgrprop2 29253 . . 3 (𝑆 SubGraph 𝐺 → (𝑉𝐴𝐼𝐵 ∧ (Edg‘𝑆) ⊆ 𝒫 𝑉))
7 3simpa 1148 . . 3 ((𝑉𝐴𝐼𝐵 ∧ (Edg‘𝑆) ⊆ 𝒫 𝑉) → (𝑉𝐴𝐼𝐵))
86, 7syl 17 . 2 (𝑆 SubGraph 𝐺 → (𝑉𝐴𝐼𝐵))
9 simprl 770 . . . 4 (((𝐺𝑊 ∧ Fun 𝐵𝑆 ∈ UHGraph) ∧ (𝑉𝐴𝐼𝐵)) → 𝑉𝐴)
10 simp2 1137 . . . . . 6 ((𝐺𝑊 ∧ Fun 𝐵𝑆 ∈ UHGraph) → Fun 𝐵)
11 simpr 484 . . . . . 6 ((𝑉𝐴𝐼𝐵) → 𝐼𝐵)
12 funssres 6525 . . . . . 6 ((Fun 𝐵𝐼𝐵) → (𝐵 ↾ dom 𝐼) = 𝐼)
1310, 11, 12syl2an 596 . . . . 5 (((𝐺𝑊 ∧ Fun 𝐵𝑆 ∈ UHGraph) ∧ (𝑉𝐴𝐼𝐵)) → (𝐵 ↾ dom 𝐼) = 𝐼)
1413eqcomd 2737 . . . 4 (((𝐺𝑊 ∧ Fun 𝐵𝑆 ∈ UHGraph) ∧ (𝑉𝐴𝐼𝐵)) → 𝐼 = (𝐵 ↾ dom 𝐼))
15 edguhgr 29108 . . . . . . . . 9 ((𝑆 ∈ UHGraph ∧ 𝑒 ∈ (Edg‘𝑆)) → 𝑒 ∈ 𝒫 (Vtx‘𝑆))
1615ex 412 . . . . . . . 8 (𝑆 ∈ UHGraph → (𝑒 ∈ (Edg‘𝑆) → 𝑒 ∈ 𝒫 (Vtx‘𝑆)))
171pweqi 4566 . . . . . . . . 9 𝒫 𝑉 = 𝒫 (Vtx‘𝑆)
1817eleq2i 2823 . . . . . . . 8 (𝑒 ∈ 𝒫 𝑉𝑒 ∈ 𝒫 (Vtx‘𝑆))
1916, 18imbitrrdi 252 . . . . . . 7 (𝑆 ∈ UHGraph → (𝑒 ∈ (Edg‘𝑆) → 𝑒 ∈ 𝒫 𝑉))
2019ssrdv 3940 . . . . . 6 (𝑆 ∈ UHGraph → (Edg‘𝑆) ⊆ 𝒫 𝑉)
21203ad2ant3 1135 . . . . 5 ((𝐺𝑊 ∧ Fun 𝐵𝑆 ∈ UHGraph) → (Edg‘𝑆) ⊆ 𝒫 𝑉)
2221adantr 480 . . . 4 (((𝐺𝑊 ∧ Fun 𝐵𝑆 ∈ UHGraph) ∧ (𝑉𝐴𝐼𝐵)) → (Edg‘𝑆) ⊆ 𝒫 𝑉)
231, 2, 3, 4, 5issubgr 29250 . . . . . 6 ((𝐺𝑊𝑆 ∈ UHGraph) → (𝑆 SubGraph 𝐺 ↔ (𝑉𝐴𝐼 = (𝐵 ↾ dom 𝐼) ∧ (Edg‘𝑆) ⊆ 𝒫 𝑉)))
24233adant2 1131 . . . . 5 ((𝐺𝑊 ∧ Fun 𝐵𝑆 ∈ UHGraph) → (𝑆 SubGraph 𝐺 ↔ (𝑉𝐴𝐼 = (𝐵 ↾ dom 𝐼) ∧ (Edg‘𝑆) ⊆ 𝒫 𝑉)))
2524adantr 480 . . . 4 (((𝐺𝑊 ∧ Fun 𝐵𝑆 ∈ UHGraph) ∧ (𝑉𝐴𝐼𝐵)) → (𝑆 SubGraph 𝐺 ↔ (𝑉𝐴𝐼 = (𝐵 ↾ dom 𝐼) ∧ (Edg‘𝑆) ⊆ 𝒫 𝑉)))
269, 14, 22, 25mpbir3and 1343 . . 3 (((𝐺𝑊 ∧ Fun 𝐵𝑆 ∈ UHGraph) ∧ (𝑉𝐴𝐼𝐵)) → 𝑆 SubGraph 𝐺)
2726ex 412 . 2 ((𝐺𝑊 ∧ Fun 𝐵𝑆 ∈ UHGraph) → ((𝑉𝐴𝐼𝐵) → 𝑆 SubGraph 𝐺))
288, 27impbid2 226 1 ((𝐺𝑊 ∧ Fun 𝐵𝑆 ∈ UHGraph) → (𝑆 SubGraph 𝐺 ↔ (𝑉𝐴𝐼𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wss 3902  𝒫 cpw 4550   class class class wbr 5091  dom cdm 5616  cres 5618  Fun wfun 6475  cfv 6481  Vtxcvtx 28975  iEdgciedg 28976  Edgcedg 29026  UHGraphcuhgr 29035   SubGraph csubgr 29246
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3742  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-fv 6489  df-edg 29027  df-uhgr 29037  df-subgr 29247
This theorem is referenced by:  uhgrsubgrself  29259  isubgrsubgr  47906
  Copyright terms: Public domain W3C validator