MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lnext Structured version   Visualization version   GIF version

Theorem lnext 28543
Description: Extend a line with a missing point. Theorem 4.14 of [Schwabhauser] p. 37. (Contributed by Thierry Arnoux, 27-Apr-2019.)
Hypotheses
Ref Expression
tglngval.p 𝑃 = (Base‘𝐺)
tglngval.l 𝐿 = (LineG‘𝐺)
tglngval.i 𝐼 = (Itv‘𝐺)
tglngval.g (𝜑𝐺 ∈ TarskiG)
tglngval.x (𝜑𝑋𝑃)
tglngval.y (𝜑𝑌𝑃)
tgcolg.z (𝜑𝑍𝑃)
lnxfr.r = (cgrG‘𝐺)
lnxfr.a (𝜑𝐴𝑃)
lnxfr.b (𝜑𝐵𝑃)
lnxfr.d = (dist‘𝐺)
lnext.1 (𝜑 → (𝑌 ∈ (𝑋𝐿𝑍) ∨ 𝑋 = 𝑍))
lnext.2 (𝜑 → (𝑋 𝑌) = (𝐴 𝐵))
Assertion
Ref Expression
lnext (𝜑 → ∃𝑐𝑃 ⟨“𝑋𝑌𝑍”⟩ ⟨“𝐴𝐵𝑐”⟩)
Distinct variable groups:   ,𝑐   ,𝑐   𝐴,𝑐   𝐵,𝑐   𝐼,𝑐   𝑃,𝑐   𝑋,𝑐   𝑌,𝑐   𝑍,𝑐   𝜑,𝑐
Allowed substitution hints:   𝐺(𝑐)   𝐿(𝑐)

Proof of Theorem lnext
StepHypRef Expression
1 tglngval.p . . . . 5 𝑃 = (Base‘𝐺)
2 lnxfr.d . . . . 5 = (dist‘𝐺)
3 tglngval.i . . . . 5 𝐼 = (Itv‘𝐺)
4 tglngval.g . . . . 5 (𝜑𝐺 ∈ TarskiG)
5 lnxfr.a . . . . 5 (𝜑𝐴𝑃)
6 lnxfr.b . . . . 5 (𝜑𝐵𝑃)
7 tglngval.y . . . . 5 (𝜑𝑌𝑃)
8 tgcolg.z . . . . 5 (𝜑𝑍𝑃)
91, 2, 3, 4, 5, 6, 7, 8axtgsegcon 28440 . . . 4 (𝜑 → ∃𝑐𝑃 (𝐵 ∈ (𝐴𝐼𝑐) ∧ (𝐵 𝑐) = (𝑌 𝑍)))
109adantr 480 . . 3 ((𝜑𝑌 ∈ (𝑋𝐼𝑍)) → ∃𝑐𝑃 (𝐵 ∈ (𝐴𝐼𝑐) ∧ (𝐵 𝑐) = (𝑌 𝑍)))
11 lnxfr.r . . . . . 6 = (cgrG‘𝐺)
124ad3antrrr 730 . . . . . 6 ((((𝜑𝑌 ∈ (𝑋𝐼𝑍)) ∧ 𝑐𝑃) ∧ (𝐵 ∈ (𝐴𝐼𝑐) ∧ (𝐵 𝑐) = (𝑌 𝑍))) → 𝐺 ∈ TarskiG)
13 tglngval.x . . . . . . 7 (𝜑𝑋𝑃)
1413ad3antrrr 730 . . . . . 6 ((((𝜑𝑌 ∈ (𝑋𝐼𝑍)) ∧ 𝑐𝑃) ∧ (𝐵 ∈ (𝐴𝐼𝑐) ∧ (𝐵 𝑐) = (𝑌 𝑍))) → 𝑋𝑃)
157ad3antrrr 730 . . . . . 6 ((((𝜑𝑌 ∈ (𝑋𝐼𝑍)) ∧ 𝑐𝑃) ∧ (𝐵 ∈ (𝐴𝐼𝑐) ∧ (𝐵 𝑐) = (𝑌 𝑍))) → 𝑌𝑃)
168ad3antrrr 730 . . . . . 6 ((((𝜑𝑌 ∈ (𝑋𝐼𝑍)) ∧ 𝑐𝑃) ∧ (𝐵 ∈ (𝐴𝐼𝑐) ∧ (𝐵 𝑐) = (𝑌 𝑍))) → 𝑍𝑃)
175ad3antrrr 730 . . . . . 6 ((((𝜑𝑌 ∈ (𝑋𝐼𝑍)) ∧ 𝑐𝑃) ∧ (𝐵 ∈ (𝐴𝐼𝑐) ∧ (𝐵 𝑐) = (𝑌 𝑍))) → 𝐴𝑃)
186ad3antrrr 730 . . . . . 6 ((((𝜑𝑌 ∈ (𝑋𝐼𝑍)) ∧ 𝑐𝑃) ∧ (𝐵 ∈ (𝐴𝐼𝑐) ∧ (𝐵 𝑐) = (𝑌 𝑍))) → 𝐵𝑃)
19 simplr 768 . . . . . 6 ((((𝜑𝑌 ∈ (𝑋𝐼𝑍)) ∧ 𝑐𝑃) ∧ (𝐵 ∈ (𝐴𝐼𝑐) ∧ (𝐵 𝑐) = (𝑌 𝑍))) → 𝑐𝑃)
20 lnext.2 . . . . . . 7 (𝜑 → (𝑋 𝑌) = (𝐴 𝐵))
2120ad3antrrr 730 . . . . . 6 ((((𝜑𝑌 ∈ (𝑋𝐼𝑍)) ∧ 𝑐𝑃) ∧ (𝐵 ∈ (𝐴𝐼𝑐) ∧ (𝐵 𝑐) = (𝑌 𝑍))) → (𝑋 𝑌) = (𝐴 𝐵))
22 simprr 772 . . . . . . 7 ((((𝜑𝑌 ∈ (𝑋𝐼𝑍)) ∧ 𝑐𝑃) ∧ (𝐵 ∈ (𝐴𝐼𝑐) ∧ (𝐵 𝑐) = (𝑌 𝑍))) → (𝐵 𝑐) = (𝑌 𝑍))
2322eqcomd 2737 . . . . . 6 ((((𝜑𝑌 ∈ (𝑋𝐼𝑍)) ∧ 𝑐𝑃) ∧ (𝐵 ∈ (𝐴𝐼𝑐) ∧ (𝐵 𝑐) = (𝑌 𝑍))) → (𝑌 𝑍) = (𝐵 𝑐))
24 simpllr 775 . . . . . . . 8 ((((𝜑𝑌 ∈ (𝑋𝐼𝑍)) ∧ 𝑐𝑃) ∧ (𝐵 ∈ (𝐴𝐼𝑐) ∧ (𝐵 𝑐) = (𝑌 𝑍))) → 𝑌 ∈ (𝑋𝐼𝑍))
25 simprl 770 . . . . . . . 8 ((((𝜑𝑌 ∈ (𝑋𝐼𝑍)) ∧ 𝑐𝑃) ∧ (𝐵 ∈ (𝐴𝐼𝑐) ∧ (𝐵 𝑐) = (𝑌 𝑍))) → 𝐵 ∈ (𝐴𝐼𝑐))
261, 2, 3, 12, 14, 15, 16, 17, 18, 19, 24, 25, 21, 23tgcgrextend 28461 . . . . . . 7 ((((𝜑𝑌 ∈ (𝑋𝐼𝑍)) ∧ 𝑐𝑃) ∧ (𝐵 ∈ (𝐴𝐼𝑐) ∧ (𝐵 𝑐) = (𝑌 𝑍))) → (𝑋 𝑍) = (𝐴 𝑐))
271, 2, 3, 12, 14, 16, 17, 19, 26tgcgrcomlr 28456 . . . . . 6 ((((𝜑𝑌 ∈ (𝑋𝐼𝑍)) ∧ 𝑐𝑃) ∧ (𝐵 ∈ (𝐴𝐼𝑐) ∧ (𝐵 𝑐) = (𝑌 𝑍))) → (𝑍 𝑋) = (𝑐 𝐴))
281, 2, 11, 12, 14, 15, 16, 17, 18, 19, 21, 23, 27trgcgr 28492 . . . . 5 ((((𝜑𝑌 ∈ (𝑋𝐼𝑍)) ∧ 𝑐𝑃) ∧ (𝐵 ∈ (𝐴𝐼𝑐) ∧ (𝐵 𝑐) = (𝑌 𝑍))) → ⟨“𝑋𝑌𝑍”⟩ ⟨“𝐴𝐵𝑐”⟩)
2928ex 412 . . . 4 (((𝜑𝑌 ∈ (𝑋𝐼𝑍)) ∧ 𝑐𝑃) → ((𝐵 ∈ (𝐴𝐼𝑐) ∧ (𝐵 𝑐) = (𝑌 𝑍)) → ⟨“𝑋𝑌𝑍”⟩ ⟨“𝐴𝐵𝑐”⟩))
3029reximdva 3145 . . 3 ((𝜑𝑌 ∈ (𝑋𝐼𝑍)) → (∃𝑐𝑃 (𝐵 ∈ (𝐴𝐼𝑐) ∧ (𝐵 𝑐) = (𝑌 𝑍)) → ∃𝑐𝑃 ⟨“𝑋𝑌𝑍”⟩ ⟨“𝐴𝐵𝑐”⟩))
3110, 30mpd 15 . 2 ((𝜑𝑌 ∈ (𝑋𝐼𝑍)) → ∃𝑐𝑃 ⟨“𝑋𝑌𝑍”⟩ ⟨“𝐴𝐵𝑐”⟩)
321, 2, 3, 4, 6, 5, 13, 8axtgsegcon 28440 . . . 4 (𝜑 → ∃𝑐𝑃 (𝐴 ∈ (𝐵𝐼𝑐) ∧ (𝐴 𝑐) = (𝑋 𝑍)))
3332adantr 480 . . 3 ((𝜑𝑋 ∈ (𝑌𝐼𝑍)) → ∃𝑐𝑃 (𝐴 ∈ (𝐵𝐼𝑐) ∧ (𝐴 𝑐) = (𝑋 𝑍)))
344ad3antrrr 730 . . . . . 6 ((((𝜑𝑋 ∈ (𝑌𝐼𝑍)) ∧ 𝑐𝑃) ∧ (𝐴 ∈ (𝐵𝐼𝑐) ∧ (𝐴 𝑐) = (𝑋 𝑍))) → 𝐺 ∈ TarskiG)
3513ad3antrrr 730 . . . . . 6 ((((𝜑𝑋 ∈ (𝑌𝐼𝑍)) ∧ 𝑐𝑃) ∧ (𝐴 ∈ (𝐵𝐼𝑐) ∧ (𝐴 𝑐) = (𝑋 𝑍))) → 𝑋𝑃)
367ad3antrrr 730 . . . . . 6 ((((𝜑𝑋 ∈ (𝑌𝐼𝑍)) ∧ 𝑐𝑃) ∧ (𝐴 ∈ (𝐵𝐼𝑐) ∧ (𝐴 𝑐) = (𝑋 𝑍))) → 𝑌𝑃)
378ad3antrrr 730 . . . . . 6 ((((𝜑𝑋 ∈ (𝑌𝐼𝑍)) ∧ 𝑐𝑃) ∧ (𝐴 ∈ (𝐵𝐼𝑐) ∧ (𝐴 𝑐) = (𝑋 𝑍))) → 𝑍𝑃)
385ad3antrrr 730 . . . . . 6 ((((𝜑𝑋 ∈ (𝑌𝐼𝑍)) ∧ 𝑐𝑃) ∧ (𝐴 ∈ (𝐵𝐼𝑐) ∧ (𝐴 𝑐) = (𝑋 𝑍))) → 𝐴𝑃)
396ad3antrrr 730 . . . . . 6 ((((𝜑𝑋 ∈ (𝑌𝐼𝑍)) ∧ 𝑐𝑃) ∧ (𝐴 ∈ (𝐵𝐼𝑐) ∧ (𝐴 𝑐) = (𝑋 𝑍))) → 𝐵𝑃)
40 simplr 768 . . . . . 6 ((((𝜑𝑋 ∈ (𝑌𝐼𝑍)) ∧ 𝑐𝑃) ∧ (𝐴 ∈ (𝐵𝐼𝑐) ∧ (𝐴 𝑐) = (𝑋 𝑍))) → 𝑐𝑃)
4120ad3antrrr 730 . . . . . 6 ((((𝜑𝑋 ∈ (𝑌𝐼𝑍)) ∧ 𝑐𝑃) ∧ (𝐴 ∈ (𝐵𝐼𝑐) ∧ (𝐴 𝑐) = (𝑋 𝑍))) → (𝑋 𝑌) = (𝐴 𝐵))
42 simpllr 775 . . . . . . 7 ((((𝜑𝑋 ∈ (𝑌𝐼𝑍)) ∧ 𝑐𝑃) ∧ (𝐴 ∈ (𝐵𝐼𝑐) ∧ (𝐴 𝑐) = (𝑋 𝑍))) → 𝑋 ∈ (𝑌𝐼𝑍))
43 simprl 770 . . . . . . 7 ((((𝜑𝑋 ∈ (𝑌𝐼𝑍)) ∧ 𝑐𝑃) ∧ (𝐴 ∈ (𝐵𝐼𝑐) ∧ (𝐴 𝑐) = (𝑋 𝑍))) → 𝐴 ∈ (𝐵𝐼𝑐))
441, 2, 3, 34, 35, 36, 38, 39, 41tgcgrcomlr 28456 . . . . . . 7 ((((𝜑𝑋 ∈ (𝑌𝐼𝑍)) ∧ 𝑐𝑃) ∧ (𝐴 ∈ (𝐵𝐼𝑐) ∧ (𝐴 𝑐) = (𝑋 𝑍))) → (𝑌 𝑋) = (𝐵 𝐴))
45 simprr 772 . . . . . . . 8 ((((𝜑𝑋 ∈ (𝑌𝐼𝑍)) ∧ 𝑐𝑃) ∧ (𝐴 ∈ (𝐵𝐼𝑐) ∧ (𝐴 𝑐) = (𝑋 𝑍))) → (𝐴 𝑐) = (𝑋 𝑍))
4645eqcomd 2737 . . . . . . 7 ((((𝜑𝑋 ∈ (𝑌𝐼𝑍)) ∧ 𝑐𝑃) ∧ (𝐴 ∈ (𝐵𝐼𝑐) ∧ (𝐴 𝑐) = (𝑋 𝑍))) → (𝑋 𝑍) = (𝐴 𝑐))
471, 2, 3, 34, 36, 35, 37, 39, 38, 40, 42, 43, 44, 46tgcgrextend 28461 . . . . . 6 ((((𝜑𝑋 ∈ (𝑌𝐼𝑍)) ∧ 𝑐𝑃) ∧ (𝐴 ∈ (𝐵𝐼𝑐) ∧ (𝐴 𝑐) = (𝑋 𝑍))) → (𝑌 𝑍) = (𝐵 𝑐))
481, 2, 3, 34, 35, 37, 38, 40, 46tgcgrcomlr 28456 . . . . . 6 ((((𝜑𝑋 ∈ (𝑌𝐼𝑍)) ∧ 𝑐𝑃) ∧ (𝐴 ∈ (𝐵𝐼𝑐) ∧ (𝐴 𝑐) = (𝑋 𝑍))) → (𝑍 𝑋) = (𝑐 𝐴))
491, 2, 11, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48trgcgr 28492 . . . . 5 ((((𝜑𝑋 ∈ (𝑌𝐼𝑍)) ∧ 𝑐𝑃) ∧ (𝐴 ∈ (𝐵𝐼𝑐) ∧ (𝐴 𝑐) = (𝑋 𝑍))) → ⟨“𝑋𝑌𝑍”⟩ ⟨“𝐴𝐵𝑐”⟩)
5049ex 412 . . . 4 (((𝜑𝑋 ∈ (𝑌𝐼𝑍)) ∧ 𝑐𝑃) → ((𝐴 ∈ (𝐵𝐼𝑐) ∧ (𝐴 𝑐) = (𝑋 𝑍)) → ⟨“𝑋𝑌𝑍”⟩ ⟨“𝐴𝐵𝑐”⟩))
5150reximdva 3145 . . 3 ((𝜑𝑋 ∈ (𝑌𝐼𝑍)) → (∃𝑐𝑃 (𝐴 ∈ (𝐵𝐼𝑐) ∧ (𝐴 𝑐) = (𝑋 𝑍)) → ∃𝑐𝑃 ⟨“𝑋𝑌𝑍”⟩ ⟨“𝐴𝐵𝑐”⟩))
5233, 51mpd 15 . 2 ((𝜑𝑋 ∈ (𝑌𝐼𝑍)) → ∃𝑐𝑃 ⟨“𝑋𝑌𝑍”⟩ ⟨“𝐴𝐵𝑐”⟩)
534adantr 480 . . . 4 ((𝜑𝑍 ∈ (𝑋𝐼𝑌)) → 𝐺 ∈ TarskiG)
5413adantr 480 . . . 4 ((𝜑𝑍 ∈ (𝑋𝐼𝑌)) → 𝑋𝑃)
558adantr 480 . . . 4 ((𝜑𝑍 ∈ (𝑋𝐼𝑌)) → 𝑍𝑃)
567adantr 480 . . . 4 ((𝜑𝑍 ∈ (𝑋𝐼𝑌)) → 𝑌𝑃)
575adantr 480 . . . 4 ((𝜑𝑍 ∈ (𝑋𝐼𝑌)) → 𝐴𝑃)
586adantr 480 . . . 4 ((𝜑𝑍 ∈ (𝑋𝐼𝑌)) → 𝐵𝑃)
59 simpr 484 . . . 4 ((𝜑𝑍 ∈ (𝑋𝐼𝑌)) → 𝑍 ∈ (𝑋𝐼𝑌))
6020adantr 480 . . . 4 ((𝜑𝑍 ∈ (𝑋𝐼𝑌)) → (𝑋 𝑌) = (𝐴 𝐵))
611, 2, 3, 11, 53, 54, 55, 56, 57, 58, 59, 60tgcgrxfr 28494 . . 3 ((𝜑𝑍 ∈ (𝑋𝐼𝑌)) → ∃𝑐𝑃 (𝑐 ∈ (𝐴𝐼𝐵) ∧ ⟨“𝑋𝑍𝑌”⟩ ⟨“𝐴𝑐𝐵”⟩))
624ad3antrrr 730 . . . . . 6 ((((𝜑𝑍 ∈ (𝑋𝐼𝑌)) ∧ 𝑐𝑃) ∧ (𝑐 ∈ (𝐴𝐼𝐵) ∧ ⟨“𝑋𝑍𝑌”⟩ ⟨“𝐴𝑐𝐵”⟩)) → 𝐺 ∈ TarskiG)
6313ad3antrrr 730 . . . . . 6 ((((𝜑𝑍 ∈ (𝑋𝐼𝑌)) ∧ 𝑐𝑃) ∧ (𝑐 ∈ (𝐴𝐼𝐵) ∧ ⟨“𝑋𝑍𝑌”⟩ ⟨“𝐴𝑐𝐵”⟩)) → 𝑋𝑃)
648ad3antrrr 730 . . . . . 6 ((((𝜑𝑍 ∈ (𝑋𝐼𝑌)) ∧ 𝑐𝑃) ∧ (𝑐 ∈ (𝐴𝐼𝐵) ∧ ⟨“𝑋𝑍𝑌”⟩ ⟨“𝐴𝑐𝐵”⟩)) → 𝑍𝑃)
657ad3antrrr 730 . . . . . 6 ((((𝜑𝑍 ∈ (𝑋𝐼𝑌)) ∧ 𝑐𝑃) ∧ (𝑐 ∈ (𝐴𝐼𝐵) ∧ ⟨“𝑋𝑍𝑌”⟩ ⟨“𝐴𝑐𝐵”⟩)) → 𝑌𝑃)
665ad3antrrr 730 . . . . . 6 ((((𝜑𝑍 ∈ (𝑋𝐼𝑌)) ∧ 𝑐𝑃) ∧ (𝑐 ∈ (𝐴𝐼𝐵) ∧ ⟨“𝑋𝑍𝑌”⟩ ⟨“𝐴𝑐𝐵”⟩)) → 𝐴𝑃)
67 simplr 768 . . . . . 6 ((((𝜑𝑍 ∈ (𝑋𝐼𝑌)) ∧ 𝑐𝑃) ∧ (𝑐 ∈ (𝐴𝐼𝐵) ∧ ⟨“𝑋𝑍𝑌”⟩ ⟨“𝐴𝑐𝐵”⟩)) → 𝑐𝑃)
686ad3antrrr 730 . . . . . 6 ((((𝜑𝑍 ∈ (𝑋𝐼𝑌)) ∧ 𝑐𝑃) ∧ (𝑐 ∈ (𝐴𝐼𝐵) ∧ ⟨“𝑋𝑍𝑌”⟩ ⟨“𝐴𝑐𝐵”⟩)) → 𝐵𝑃)
69 simprr 772 . . . . . 6 ((((𝜑𝑍 ∈ (𝑋𝐼𝑌)) ∧ 𝑐𝑃) ∧ (𝑐 ∈ (𝐴𝐼𝐵) ∧ ⟨“𝑋𝑍𝑌”⟩ ⟨“𝐴𝑐𝐵”⟩)) → ⟨“𝑋𝑍𝑌”⟩ ⟨“𝐴𝑐𝐵”⟩)
701, 2, 3, 11, 62, 63, 64, 65, 66, 67, 68, 69cgr3swap23 28500 . . . . 5 ((((𝜑𝑍 ∈ (𝑋𝐼𝑌)) ∧ 𝑐𝑃) ∧ (𝑐 ∈ (𝐴𝐼𝐵) ∧ ⟨“𝑋𝑍𝑌”⟩ ⟨“𝐴𝑐𝐵”⟩)) → ⟨“𝑋𝑌𝑍”⟩ ⟨“𝐴𝐵𝑐”⟩)
7170ex 412 . . . 4 (((𝜑𝑍 ∈ (𝑋𝐼𝑌)) ∧ 𝑐𝑃) → ((𝑐 ∈ (𝐴𝐼𝐵) ∧ ⟨“𝑋𝑍𝑌”⟩ ⟨“𝐴𝑐𝐵”⟩) → ⟨“𝑋𝑌𝑍”⟩ ⟨“𝐴𝐵𝑐”⟩))
7271reximdva 3145 . . 3 ((𝜑𝑍 ∈ (𝑋𝐼𝑌)) → (∃𝑐𝑃 (𝑐 ∈ (𝐴𝐼𝐵) ∧ ⟨“𝑋𝑍𝑌”⟩ ⟨“𝐴𝑐𝐵”⟩) → ∃𝑐𝑃 ⟨“𝑋𝑌𝑍”⟩ ⟨“𝐴𝐵𝑐”⟩))
7361, 72mpd 15 . 2 ((𝜑𝑍 ∈ (𝑋𝐼𝑌)) → ∃𝑐𝑃 ⟨“𝑋𝑌𝑍”⟩ ⟨“𝐴𝐵𝑐”⟩)
74 lnext.1 . . 3 (𝜑 → (𝑌 ∈ (𝑋𝐿𝑍) ∨ 𝑋 = 𝑍))
75 tglngval.l . . . 4 𝐿 = (LineG‘𝐺)
761, 75, 3, 4, 13, 8, 7tgcolg 28530 . . 3 (𝜑 → ((𝑌 ∈ (𝑋𝐿𝑍) ∨ 𝑋 = 𝑍) ↔ (𝑌 ∈ (𝑋𝐼𝑍) ∨ 𝑋 ∈ (𝑌𝐼𝑍) ∨ 𝑍 ∈ (𝑋𝐼𝑌))))
7774, 76mpbid 232 . 2 (𝜑 → (𝑌 ∈ (𝑋𝐼𝑍) ∨ 𝑋 ∈ (𝑌𝐼𝑍) ∨ 𝑍 ∈ (𝑋𝐼𝑌)))
7831, 52, 73, 77mpjao3dan 1434 1 (𝜑 → ∃𝑐𝑃 ⟨“𝑋𝑌𝑍”⟩ ⟨“𝐴𝐵𝑐”⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847  w3o 1085   = wceq 1541  wcel 2111  wrex 3056   class class class wbr 5091  cfv 6481  (class class class)co 7346  ⟨“cs3 14746  Basecbs 17117  distcds 17167  TarskiGcstrkg 28403  Itvcitv 28409  LineGclng 28410  cgrGccgrg 28486
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11059  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079  ax-pre-mulgt0 11080
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-tp 4581  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-oadd 8389  df-er 8622  df-pm 8753  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-dju 9791  df-card 9829  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-sub 11343  df-neg 11344  df-nn 12123  df-2 12185  df-3 12186  df-n0 12379  df-xnn0 12452  df-z 12466  df-uz 12730  df-fz 13405  df-fzo 13552  df-hash 14235  df-word 14418  df-concat 14475  df-s1 14501  df-s2 14752  df-s3 14753  df-trkgc 28424  df-trkgb 28425  df-trkgcb 28426  df-trkg 28429  df-cgrg 28487
This theorem is referenced by:  legov  28561  legov2  28562  legtrd  28565  symquadlem  28665  trgcopy  28780  cgrg3col4  28829
  Copyright terms: Public domain W3C validator