MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lnext Structured version   Visualization version   GIF version

Theorem lnext 26345
Description: Extend a line with a missing point. Theorem 4.14 of [Schwabhauser] p. 37. (Contributed by Thierry Arnoux, 27-Apr-2019.)
Hypotheses
Ref Expression
tglngval.p 𝑃 = (Base‘𝐺)
tglngval.l 𝐿 = (LineG‘𝐺)
tglngval.i 𝐼 = (Itv‘𝐺)
tglngval.g (𝜑𝐺 ∈ TarskiG)
tglngval.x (𝜑𝑋𝑃)
tglngval.y (𝜑𝑌𝑃)
tgcolg.z (𝜑𝑍𝑃)
lnxfr.r = (cgrG‘𝐺)
lnxfr.a (𝜑𝐴𝑃)
lnxfr.b (𝜑𝐵𝑃)
lnxfr.d = (dist‘𝐺)
lnext.1 (𝜑 → (𝑌 ∈ (𝑋𝐿𝑍) ∨ 𝑋 = 𝑍))
lnext.2 (𝜑 → (𝑋 𝑌) = (𝐴 𝐵))
Assertion
Ref Expression
lnext (𝜑 → ∃𝑐𝑃 ⟨“𝑋𝑌𝑍”⟩ ⟨“𝐴𝐵𝑐”⟩)
Distinct variable groups:   ,𝑐   ,𝑐   𝐴,𝑐   𝐵,𝑐   𝐼,𝑐   𝑃,𝑐   𝑋,𝑐   𝑌,𝑐   𝑍,𝑐   𝜑,𝑐
Allowed substitution hints:   𝐺(𝑐)   𝐿(𝑐)

Proof of Theorem lnext
StepHypRef Expression
1 tglngval.p . . . . 5 𝑃 = (Base‘𝐺)
2 lnxfr.d . . . . 5 = (dist‘𝐺)
3 tglngval.i . . . . 5 𝐼 = (Itv‘𝐺)
4 tglngval.g . . . . 5 (𝜑𝐺 ∈ TarskiG)
5 lnxfr.a . . . . 5 (𝜑𝐴𝑃)
6 lnxfr.b . . . . 5 (𝜑𝐵𝑃)
7 tglngval.y . . . . 5 (𝜑𝑌𝑃)
8 tgcolg.z . . . . 5 (𝜑𝑍𝑃)
91, 2, 3, 4, 5, 6, 7, 8axtgsegcon 26242 . . . 4 (𝜑 → ∃𝑐𝑃 (𝐵 ∈ (𝐴𝐼𝑐) ∧ (𝐵 𝑐) = (𝑌 𝑍)))
109adantr 483 . . 3 ((𝜑𝑌 ∈ (𝑋𝐼𝑍)) → ∃𝑐𝑃 (𝐵 ∈ (𝐴𝐼𝑐) ∧ (𝐵 𝑐) = (𝑌 𝑍)))
11 lnxfr.r . . . . . 6 = (cgrG‘𝐺)
124ad3antrrr 728 . . . . . 6 ((((𝜑𝑌 ∈ (𝑋𝐼𝑍)) ∧ 𝑐𝑃) ∧ (𝐵 ∈ (𝐴𝐼𝑐) ∧ (𝐵 𝑐) = (𝑌 𝑍))) → 𝐺 ∈ TarskiG)
13 tglngval.x . . . . . . 7 (𝜑𝑋𝑃)
1413ad3antrrr 728 . . . . . 6 ((((𝜑𝑌 ∈ (𝑋𝐼𝑍)) ∧ 𝑐𝑃) ∧ (𝐵 ∈ (𝐴𝐼𝑐) ∧ (𝐵 𝑐) = (𝑌 𝑍))) → 𝑋𝑃)
157ad3antrrr 728 . . . . . 6 ((((𝜑𝑌 ∈ (𝑋𝐼𝑍)) ∧ 𝑐𝑃) ∧ (𝐵 ∈ (𝐴𝐼𝑐) ∧ (𝐵 𝑐) = (𝑌 𝑍))) → 𝑌𝑃)
168ad3antrrr 728 . . . . . 6 ((((𝜑𝑌 ∈ (𝑋𝐼𝑍)) ∧ 𝑐𝑃) ∧ (𝐵 ∈ (𝐴𝐼𝑐) ∧ (𝐵 𝑐) = (𝑌 𝑍))) → 𝑍𝑃)
175ad3antrrr 728 . . . . . 6 ((((𝜑𝑌 ∈ (𝑋𝐼𝑍)) ∧ 𝑐𝑃) ∧ (𝐵 ∈ (𝐴𝐼𝑐) ∧ (𝐵 𝑐) = (𝑌 𝑍))) → 𝐴𝑃)
186ad3antrrr 728 . . . . . 6 ((((𝜑𝑌 ∈ (𝑋𝐼𝑍)) ∧ 𝑐𝑃) ∧ (𝐵 ∈ (𝐴𝐼𝑐) ∧ (𝐵 𝑐) = (𝑌 𝑍))) → 𝐵𝑃)
19 simplr 767 . . . . . 6 ((((𝜑𝑌 ∈ (𝑋𝐼𝑍)) ∧ 𝑐𝑃) ∧ (𝐵 ∈ (𝐴𝐼𝑐) ∧ (𝐵 𝑐) = (𝑌 𝑍))) → 𝑐𝑃)
20 lnext.2 . . . . . . 7 (𝜑 → (𝑋 𝑌) = (𝐴 𝐵))
2120ad3antrrr 728 . . . . . 6 ((((𝜑𝑌 ∈ (𝑋𝐼𝑍)) ∧ 𝑐𝑃) ∧ (𝐵 ∈ (𝐴𝐼𝑐) ∧ (𝐵 𝑐) = (𝑌 𝑍))) → (𝑋 𝑌) = (𝐴 𝐵))
22 simprr 771 . . . . . . 7 ((((𝜑𝑌 ∈ (𝑋𝐼𝑍)) ∧ 𝑐𝑃) ∧ (𝐵 ∈ (𝐴𝐼𝑐) ∧ (𝐵 𝑐) = (𝑌 𝑍))) → (𝐵 𝑐) = (𝑌 𝑍))
2322eqcomd 2825 . . . . . 6 ((((𝜑𝑌 ∈ (𝑋𝐼𝑍)) ∧ 𝑐𝑃) ∧ (𝐵 ∈ (𝐴𝐼𝑐) ∧ (𝐵 𝑐) = (𝑌 𝑍))) → (𝑌 𝑍) = (𝐵 𝑐))
24 simpllr 774 . . . . . . . 8 ((((𝜑𝑌 ∈ (𝑋𝐼𝑍)) ∧ 𝑐𝑃) ∧ (𝐵 ∈ (𝐴𝐼𝑐) ∧ (𝐵 𝑐) = (𝑌 𝑍))) → 𝑌 ∈ (𝑋𝐼𝑍))
25 simprl 769 . . . . . . . 8 ((((𝜑𝑌 ∈ (𝑋𝐼𝑍)) ∧ 𝑐𝑃) ∧ (𝐵 ∈ (𝐴𝐼𝑐) ∧ (𝐵 𝑐) = (𝑌 𝑍))) → 𝐵 ∈ (𝐴𝐼𝑐))
261, 2, 3, 12, 14, 15, 16, 17, 18, 19, 24, 25, 21, 23tgcgrextend 26263 . . . . . . 7 ((((𝜑𝑌 ∈ (𝑋𝐼𝑍)) ∧ 𝑐𝑃) ∧ (𝐵 ∈ (𝐴𝐼𝑐) ∧ (𝐵 𝑐) = (𝑌 𝑍))) → (𝑋 𝑍) = (𝐴 𝑐))
271, 2, 3, 12, 14, 16, 17, 19, 26tgcgrcomlr 26258 . . . . . 6 ((((𝜑𝑌 ∈ (𝑋𝐼𝑍)) ∧ 𝑐𝑃) ∧ (𝐵 ∈ (𝐴𝐼𝑐) ∧ (𝐵 𝑐) = (𝑌 𝑍))) → (𝑍 𝑋) = (𝑐 𝐴))
281, 2, 11, 12, 14, 15, 16, 17, 18, 19, 21, 23, 27trgcgr 26294 . . . . 5 ((((𝜑𝑌 ∈ (𝑋𝐼𝑍)) ∧ 𝑐𝑃) ∧ (𝐵 ∈ (𝐴𝐼𝑐) ∧ (𝐵 𝑐) = (𝑌 𝑍))) → ⟨“𝑋𝑌𝑍”⟩ ⟨“𝐴𝐵𝑐”⟩)
2928ex 415 . . . 4 (((𝜑𝑌 ∈ (𝑋𝐼𝑍)) ∧ 𝑐𝑃) → ((𝐵 ∈ (𝐴𝐼𝑐) ∧ (𝐵 𝑐) = (𝑌 𝑍)) → ⟨“𝑋𝑌𝑍”⟩ ⟨“𝐴𝐵𝑐”⟩))
3029reximdva 3272 . . 3 ((𝜑𝑌 ∈ (𝑋𝐼𝑍)) → (∃𝑐𝑃 (𝐵 ∈ (𝐴𝐼𝑐) ∧ (𝐵 𝑐) = (𝑌 𝑍)) → ∃𝑐𝑃 ⟨“𝑋𝑌𝑍”⟩ ⟨“𝐴𝐵𝑐”⟩))
3110, 30mpd 15 . 2 ((𝜑𝑌 ∈ (𝑋𝐼𝑍)) → ∃𝑐𝑃 ⟨“𝑋𝑌𝑍”⟩ ⟨“𝐴𝐵𝑐”⟩)
321, 2, 3, 4, 6, 5, 13, 8axtgsegcon 26242 . . . 4 (𝜑 → ∃𝑐𝑃 (𝐴 ∈ (𝐵𝐼𝑐) ∧ (𝐴 𝑐) = (𝑋 𝑍)))
3332adantr 483 . . 3 ((𝜑𝑋 ∈ (𝑌𝐼𝑍)) → ∃𝑐𝑃 (𝐴 ∈ (𝐵𝐼𝑐) ∧ (𝐴 𝑐) = (𝑋 𝑍)))
344ad3antrrr 728 . . . . . 6 ((((𝜑𝑋 ∈ (𝑌𝐼𝑍)) ∧ 𝑐𝑃) ∧ (𝐴 ∈ (𝐵𝐼𝑐) ∧ (𝐴 𝑐) = (𝑋 𝑍))) → 𝐺 ∈ TarskiG)
3513ad3antrrr 728 . . . . . 6 ((((𝜑𝑋 ∈ (𝑌𝐼𝑍)) ∧ 𝑐𝑃) ∧ (𝐴 ∈ (𝐵𝐼𝑐) ∧ (𝐴 𝑐) = (𝑋 𝑍))) → 𝑋𝑃)
367ad3antrrr 728 . . . . . 6 ((((𝜑𝑋 ∈ (𝑌𝐼𝑍)) ∧ 𝑐𝑃) ∧ (𝐴 ∈ (𝐵𝐼𝑐) ∧ (𝐴 𝑐) = (𝑋 𝑍))) → 𝑌𝑃)
378ad3antrrr 728 . . . . . 6 ((((𝜑𝑋 ∈ (𝑌𝐼𝑍)) ∧ 𝑐𝑃) ∧ (𝐴 ∈ (𝐵𝐼𝑐) ∧ (𝐴 𝑐) = (𝑋 𝑍))) → 𝑍𝑃)
385ad3antrrr 728 . . . . . 6 ((((𝜑𝑋 ∈ (𝑌𝐼𝑍)) ∧ 𝑐𝑃) ∧ (𝐴 ∈ (𝐵𝐼𝑐) ∧ (𝐴 𝑐) = (𝑋 𝑍))) → 𝐴𝑃)
396ad3antrrr 728 . . . . . 6 ((((𝜑𝑋 ∈ (𝑌𝐼𝑍)) ∧ 𝑐𝑃) ∧ (𝐴 ∈ (𝐵𝐼𝑐) ∧ (𝐴 𝑐) = (𝑋 𝑍))) → 𝐵𝑃)
40 simplr 767 . . . . . 6 ((((𝜑𝑋 ∈ (𝑌𝐼𝑍)) ∧ 𝑐𝑃) ∧ (𝐴 ∈ (𝐵𝐼𝑐) ∧ (𝐴 𝑐) = (𝑋 𝑍))) → 𝑐𝑃)
4120ad3antrrr 728 . . . . . 6 ((((𝜑𝑋 ∈ (𝑌𝐼𝑍)) ∧ 𝑐𝑃) ∧ (𝐴 ∈ (𝐵𝐼𝑐) ∧ (𝐴 𝑐) = (𝑋 𝑍))) → (𝑋 𝑌) = (𝐴 𝐵))
42 simpllr 774 . . . . . . 7 ((((𝜑𝑋 ∈ (𝑌𝐼𝑍)) ∧ 𝑐𝑃) ∧ (𝐴 ∈ (𝐵𝐼𝑐) ∧ (𝐴 𝑐) = (𝑋 𝑍))) → 𝑋 ∈ (𝑌𝐼𝑍))
43 simprl 769 . . . . . . 7 ((((𝜑𝑋 ∈ (𝑌𝐼𝑍)) ∧ 𝑐𝑃) ∧ (𝐴 ∈ (𝐵𝐼𝑐) ∧ (𝐴 𝑐) = (𝑋 𝑍))) → 𝐴 ∈ (𝐵𝐼𝑐))
441, 2, 3, 34, 35, 36, 38, 39, 41tgcgrcomlr 26258 . . . . . . 7 ((((𝜑𝑋 ∈ (𝑌𝐼𝑍)) ∧ 𝑐𝑃) ∧ (𝐴 ∈ (𝐵𝐼𝑐) ∧ (𝐴 𝑐) = (𝑋 𝑍))) → (𝑌 𝑋) = (𝐵 𝐴))
45 simprr 771 . . . . . . . 8 ((((𝜑𝑋 ∈ (𝑌𝐼𝑍)) ∧ 𝑐𝑃) ∧ (𝐴 ∈ (𝐵𝐼𝑐) ∧ (𝐴 𝑐) = (𝑋 𝑍))) → (𝐴 𝑐) = (𝑋 𝑍))
4645eqcomd 2825 . . . . . . 7 ((((𝜑𝑋 ∈ (𝑌𝐼𝑍)) ∧ 𝑐𝑃) ∧ (𝐴 ∈ (𝐵𝐼𝑐) ∧ (𝐴 𝑐) = (𝑋 𝑍))) → (𝑋 𝑍) = (𝐴 𝑐))
471, 2, 3, 34, 36, 35, 37, 39, 38, 40, 42, 43, 44, 46tgcgrextend 26263 . . . . . 6 ((((𝜑𝑋 ∈ (𝑌𝐼𝑍)) ∧ 𝑐𝑃) ∧ (𝐴 ∈ (𝐵𝐼𝑐) ∧ (𝐴 𝑐) = (𝑋 𝑍))) → (𝑌 𝑍) = (𝐵 𝑐))
481, 2, 3, 34, 35, 37, 38, 40, 46tgcgrcomlr 26258 . . . . . 6 ((((𝜑𝑋 ∈ (𝑌𝐼𝑍)) ∧ 𝑐𝑃) ∧ (𝐴 ∈ (𝐵𝐼𝑐) ∧ (𝐴 𝑐) = (𝑋 𝑍))) → (𝑍 𝑋) = (𝑐 𝐴))
491, 2, 11, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48trgcgr 26294 . . . . 5 ((((𝜑𝑋 ∈ (𝑌𝐼𝑍)) ∧ 𝑐𝑃) ∧ (𝐴 ∈ (𝐵𝐼𝑐) ∧ (𝐴 𝑐) = (𝑋 𝑍))) → ⟨“𝑋𝑌𝑍”⟩ ⟨“𝐴𝐵𝑐”⟩)
5049ex 415 . . . 4 (((𝜑𝑋 ∈ (𝑌𝐼𝑍)) ∧ 𝑐𝑃) → ((𝐴 ∈ (𝐵𝐼𝑐) ∧ (𝐴 𝑐) = (𝑋 𝑍)) → ⟨“𝑋𝑌𝑍”⟩ ⟨“𝐴𝐵𝑐”⟩))
5150reximdva 3272 . . 3 ((𝜑𝑋 ∈ (𝑌𝐼𝑍)) → (∃𝑐𝑃 (𝐴 ∈ (𝐵𝐼𝑐) ∧ (𝐴 𝑐) = (𝑋 𝑍)) → ∃𝑐𝑃 ⟨“𝑋𝑌𝑍”⟩ ⟨“𝐴𝐵𝑐”⟩))
5233, 51mpd 15 . 2 ((𝜑𝑋 ∈ (𝑌𝐼𝑍)) → ∃𝑐𝑃 ⟨“𝑋𝑌𝑍”⟩ ⟨“𝐴𝐵𝑐”⟩)
534adantr 483 . . . 4 ((𝜑𝑍 ∈ (𝑋𝐼𝑌)) → 𝐺 ∈ TarskiG)
5413adantr 483 . . . 4 ((𝜑𝑍 ∈ (𝑋𝐼𝑌)) → 𝑋𝑃)
558adantr 483 . . . 4 ((𝜑𝑍 ∈ (𝑋𝐼𝑌)) → 𝑍𝑃)
567adantr 483 . . . 4 ((𝜑𝑍 ∈ (𝑋𝐼𝑌)) → 𝑌𝑃)
575adantr 483 . . . 4 ((𝜑𝑍 ∈ (𝑋𝐼𝑌)) → 𝐴𝑃)
586adantr 483 . . . 4 ((𝜑𝑍 ∈ (𝑋𝐼𝑌)) → 𝐵𝑃)
59 simpr 487 . . . 4 ((𝜑𝑍 ∈ (𝑋𝐼𝑌)) → 𝑍 ∈ (𝑋𝐼𝑌))
6020adantr 483 . . . 4 ((𝜑𝑍 ∈ (𝑋𝐼𝑌)) → (𝑋 𝑌) = (𝐴 𝐵))
611, 2, 3, 11, 53, 54, 55, 56, 57, 58, 59, 60tgcgrxfr 26296 . . 3 ((𝜑𝑍 ∈ (𝑋𝐼𝑌)) → ∃𝑐𝑃 (𝑐 ∈ (𝐴𝐼𝐵) ∧ ⟨“𝑋𝑍𝑌”⟩ ⟨“𝐴𝑐𝐵”⟩))
624ad3antrrr 728 . . . . . 6 ((((𝜑𝑍 ∈ (𝑋𝐼𝑌)) ∧ 𝑐𝑃) ∧ (𝑐 ∈ (𝐴𝐼𝐵) ∧ ⟨“𝑋𝑍𝑌”⟩ ⟨“𝐴𝑐𝐵”⟩)) → 𝐺 ∈ TarskiG)
6313ad3antrrr 728 . . . . . 6 ((((𝜑𝑍 ∈ (𝑋𝐼𝑌)) ∧ 𝑐𝑃) ∧ (𝑐 ∈ (𝐴𝐼𝐵) ∧ ⟨“𝑋𝑍𝑌”⟩ ⟨“𝐴𝑐𝐵”⟩)) → 𝑋𝑃)
648ad3antrrr 728 . . . . . 6 ((((𝜑𝑍 ∈ (𝑋𝐼𝑌)) ∧ 𝑐𝑃) ∧ (𝑐 ∈ (𝐴𝐼𝐵) ∧ ⟨“𝑋𝑍𝑌”⟩ ⟨“𝐴𝑐𝐵”⟩)) → 𝑍𝑃)
657ad3antrrr 728 . . . . . 6 ((((𝜑𝑍 ∈ (𝑋𝐼𝑌)) ∧ 𝑐𝑃) ∧ (𝑐 ∈ (𝐴𝐼𝐵) ∧ ⟨“𝑋𝑍𝑌”⟩ ⟨“𝐴𝑐𝐵”⟩)) → 𝑌𝑃)
665ad3antrrr 728 . . . . . 6 ((((𝜑𝑍 ∈ (𝑋𝐼𝑌)) ∧ 𝑐𝑃) ∧ (𝑐 ∈ (𝐴𝐼𝐵) ∧ ⟨“𝑋𝑍𝑌”⟩ ⟨“𝐴𝑐𝐵”⟩)) → 𝐴𝑃)
67 simplr 767 . . . . . 6 ((((𝜑𝑍 ∈ (𝑋𝐼𝑌)) ∧ 𝑐𝑃) ∧ (𝑐 ∈ (𝐴𝐼𝐵) ∧ ⟨“𝑋𝑍𝑌”⟩ ⟨“𝐴𝑐𝐵”⟩)) → 𝑐𝑃)
686ad3antrrr 728 . . . . . 6 ((((𝜑𝑍 ∈ (𝑋𝐼𝑌)) ∧ 𝑐𝑃) ∧ (𝑐 ∈ (𝐴𝐼𝐵) ∧ ⟨“𝑋𝑍𝑌”⟩ ⟨“𝐴𝑐𝐵”⟩)) → 𝐵𝑃)
69 simprr 771 . . . . . 6 ((((𝜑𝑍 ∈ (𝑋𝐼𝑌)) ∧ 𝑐𝑃) ∧ (𝑐 ∈ (𝐴𝐼𝐵) ∧ ⟨“𝑋𝑍𝑌”⟩ ⟨“𝐴𝑐𝐵”⟩)) → ⟨“𝑋𝑍𝑌”⟩ ⟨“𝐴𝑐𝐵”⟩)
701, 2, 3, 11, 62, 63, 64, 65, 66, 67, 68, 69cgr3swap23 26302 . . . . 5 ((((𝜑𝑍 ∈ (𝑋𝐼𝑌)) ∧ 𝑐𝑃) ∧ (𝑐 ∈ (𝐴𝐼𝐵) ∧ ⟨“𝑋𝑍𝑌”⟩ ⟨“𝐴𝑐𝐵”⟩)) → ⟨“𝑋𝑌𝑍”⟩ ⟨“𝐴𝐵𝑐”⟩)
7170ex 415 . . . 4 (((𝜑𝑍 ∈ (𝑋𝐼𝑌)) ∧ 𝑐𝑃) → ((𝑐 ∈ (𝐴𝐼𝐵) ∧ ⟨“𝑋𝑍𝑌”⟩ ⟨“𝐴𝑐𝐵”⟩) → ⟨“𝑋𝑌𝑍”⟩ ⟨“𝐴𝐵𝑐”⟩))
7271reximdva 3272 . . 3 ((𝜑𝑍 ∈ (𝑋𝐼𝑌)) → (∃𝑐𝑃 (𝑐 ∈ (𝐴𝐼𝐵) ∧ ⟨“𝑋𝑍𝑌”⟩ ⟨“𝐴𝑐𝐵”⟩) → ∃𝑐𝑃 ⟨“𝑋𝑌𝑍”⟩ ⟨“𝐴𝐵𝑐”⟩))
7361, 72mpd 15 . 2 ((𝜑𝑍 ∈ (𝑋𝐼𝑌)) → ∃𝑐𝑃 ⟨“𝑋𝑌𝑍”⟩ ⟨“𝐴𝐵𝑐”⟩)
74 lnext.1 . . 3 (𝜑 → (𝑌 ∈ (𝑋𝐿𝑍) ∨ 𝑋 = 𝑍))
75 tglngval.l . . . 4 𝐿 = (LineG‘𝐺)
761, 75, 3, 4, 13, 8, 7tgcolg 26332 . . 3 (𝜑 → ((𝑌 ∈ (𝑋𝐿𝑍) ∨ 𝑋 = 𝑍) ↔ (𝑌 ∈ (𝑋𝐼𝑍) ∨ 𝑋 ∈ (𝑌𝐼𝑍) ∨ 𝑍 ∈ (𝑋𝐼𝑌))))
7774, 76mpbid 234 . 2 (𝜑 → (𝑌 ∈ (𝑋𝐼𝑍) ∨ 𝑋 ∈ (𝑌𝐼𝑍) ∨ 𝑍 ∈ (𝑋𝐼𝑌)))
7831, 52, 73, 77mpjao3dan 1426 1 (𝜑 → ∃𝑐𝑃 ⟨“𝑋𝑌𝑍”⟩ ⟨“𝐴𝐵𝑐”⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  wo 843  w3o 1081   = wceq 1531  wcel 2108  wrex 3137   class class class wbr 5057  cfv 6348  (class class class)co 7148  ⟨“cs3 14196  Basecbs 16475  distcds 16566  TarskiGcstrkg 26208  Itvcitv 26214  LineGclng 26215  cgrGccgrg 26288
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1905  ax-6 1964  ax-7 2009  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2154  ax-12 2170  ax-ext 2791  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1534  df-ex 1775  df-nf 1779  df-sb 2064  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-nel 3122  df-ral 3141  df-rex 3142  df-reu 3143  df-rmo 3144  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-pss 3952  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4831  df-int 4868  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-om 7573  df-1st 7681  df-2nd 7682  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-1o 8094  df-oadd 8098  df-er 8281  df-pm 8401  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-dju 9322  df-card 9360  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-nn 11631  df-2 11692  df-3 11693  df-n0 11890  df-xnn0 11960  df-z 11974  df-uz 12236  df-fz 12885  df-fzo 13026  df-hash 13683  df-word 13854  df-concat 13915  df-s1 13942  df-s2 14202  df-s3 14203  df-trkgc 26226  df-trkgb 26227  df-trkgcb 26228  df-trkg 26231  df-cgrg 26289
This theorem is referenced by:  legov  26363  legov2  26364  legtrd  26367  symquadlem  26467  trgcopy  26582  cgrg3col4  26631
  Copyright terms: Public domain W3C validator