MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lnext Structured version   Visualization version   GIF version

Theorem lnext 27509
Description: Extend a line with a missing point. Theorem 4.14 of [Schwabhauser] p. 37. (Contributed by Thierry Arnoux, 27-Apr-2019.)
Hypotheses
Ref Expression
tglngval.p 𝑃 = (Base‘𝐺)
tglngval.l 𝐿 = (LineG‘𝐺)
tglngval.i 𝐼 = (Itv‘𝐺)
tglngval.g (𝜑𝐺 ∈ TarskiG)
tglngval.x (𝜑𝑋𝑃)
tglngval.y (𝜑𝑌𝑃)
tgcolg.z (𝜑𝑍𝑃)
lnxfr.r = (cgrG‘𝐺)
lnxfr.a (𝜑𝐴𝑃)
lnxfr.b (𝜑𝐵𝑃)
lnxfr.d = (dist‘𝐺)
lnext.1 (𝜑 → (𝑌 ∈ (𝑋𝐿𝑍) ∨ 𝑋 = 𝑍))
lnext.2 (𝜑 → (𝑋 𝑌) = (𝐴 𝐵))
Assertion
Ref Expression
lnext (𝜑 → ∃𝑐𝑃 ⟨“𝑋𝑌𝑍”⟩ ⟨“𝐴𝐵𝑐”⟩)
Distinct variable groups:   ,𝑐   ,𝑐   𝐴,𝑐   𝐵,𝑐   𝐼,𝑐   𝑃,𝑐   𝑋,𝑐   𝑌,𝑐   𝑍,𝑐   𝜑,𝑐
Allowed substitution hints:   𝐺(𝑐)   𝐿(𝑐)

Proof of Theorem lnext
StepHypRef Expression
1 tglngval.p . . . . 5 𝑃 = (Base‘𝐺)
2 lnxfr.d . . . . 5 = (dist‘𝐺)
3 tglngval.i . . . . 5 𝐼 = (Itv‘𝐺)
4 tglngval.g . . . . 5 (𝜑𝐺 ∈ TarskiG)
5 lnxfr.a . . . . 5 (𝜑𝐴𝑃)
6 lnxfr.b . . . . 5 (𝜑𝐵𝑃)
7 tglngval.y . . . . 5 (𝜑𝑌𝑃)
8 tgcolg.z . . . . 5 (𝜑𝑍𝑃)
91, 2, 3, 4, 5, 6, 7, 8axtgsegcon 27406 . . . 4 (𝜑 → ∃𝑐𝑃 (𝐵 ∈ (𝐴𝐼𝑐) ∧ (𝐵 𝑐) = (𝑌 𝑍)))
109adantr 481 . . 3 ((𝜑𝑌 ∈ (𝑋𝐼𝑍)) → ∃𝑐𝑃 (𝐵 ∈ (𝐴𝐼𝑐) ∧ (𝐵 𝑐) = (𝑌 𝑍)))
11 lnxfr.r . . . . . 6 = (cgrG‘𝐺)
124ad3antrrr 728 . . . . . 6 ((((𝜑𝑌 ∈ (𝑋𝐼𝑍)) ∧ 𝑐𝑃) ∧ (𝐵 ∈ (𝐴𝐼𝑐) ∧ (𝐵 𝑐) = (𝑌 𝑍))) → 𝐺 ∈ TarskiG)
13 tglngval.x . . . . . . 7 (𝜑𝑋𝑃)
1413ad3antrrr 728 . . . . . 6 ((((𝜑𝑌 ∈ (𝑋𝐼𝑍)) ∧ 𝑐𝑃) ∧ (𝐵 ∈ (𝐴𝐼𝑐) ∧ (𝐵 𝑐) = (𝑌 𝑍))) → 𝑋𝑃)
157ad3antrrr 728 . . . . . 6 ((((𝜑𝑌 ∈ (𝑋𝐼𝑍)) ∧ 𝑐𝑃) ∧ (𝐵 ∈ (𝐴𝐼𝑐) ∧ (𝐵 𝑐) = (𝑌 𝑍))) → 𝑌𝑃)
168ad3antrrr 728 . . . . . 6 ((((𝜑𝑌 ∈ (𝑋𝐼𝑍)) ∧ 𝑐𝑃) ∧ (𝐵 ∈ (𝐴𝐼𝑐) ∧ (𝐵 𝑐) = (𝑌 𝑍))) → 𝑍𝑃)
175ad3antrrr 728 . . . . . 6 ((((𝜑𝑌 ∈ (𝑋𝐼𝑍)) ∧ 𝑐𝑃) ∧ (𝐵 ∈ (𝐴𝐼𝑐) ∧ (𝐵 𝑐) = (𝑌 𝑍))) → 𝐴𝑃)
186ad3antrrr 728 . . . . . 6 ((((𝜑𝑌 ∈ (𝑋𝐼𝑍)) ∧ 𝑐𝑃) ∧ (𝐵 ∈ (𝐴𝐼𝑐) ∧ (𝐵 𝑐) = (𝑌 𝑍))) → 𝐵𝑃)
19 simplr 767 . . . . . 6 ((((𝜑𝑌 ∈ (𝑋𝐼𝑍)) ∧ 𝑐𝑃) ∧ (𝐵 ∈ (𝐴𝐼𝑐) ∧ (𝐵 𝑐) = (𝑌 𝑍))) → 𝑐𝑃)
20 lnext.2 . . . . . . 7 (𝜑 → (𝑋 𝑌) = (𝐴 𝐵))
2120ad3antrrr 728 . . . . . 6 ((((𝜑𝑌 ∈ (𝑋𝐼𝑍)) ∧ 𝑐𝑃) ∧ (𝐵 ∈ (𝐴𝐼𝑐) ∧ (𝐵 𝑐) = (𝑌 𝑍))) → (𝑋 𝑌) = (𝐴 𝐵))
22 simprr 771 . . . . . . 7 ((((𝜑𝑌 ∈ (𝑋𝐼𝑍)) ∧ 𝑐𝑃) ∧ (𝐵 ∈ (𝐴𝐼𝑐) ∧ (𝐵 𝑐) = (𝑌 𝑍))) → (𝐵 𝑐) = (𝑌 𝑍))
2322eqcomd 2742 . . . . . 6 ((((𝜑𝑌 ∈ (𝑋𝐼𝑍)) ∧ 𝑐𝑃) ∧ (𝐵 ∈ (𝐴𝐼𝑐) ∧ (𝐵 𝑐) = (𝑌 𝑍))) → (𝑌 𝑍) = (𝐵 𝑐))
24 simpllr 774 . . . . . . . 8 ((((𝜑𝑌 ∈ (𝑋𝐼𝑍)) ∧ 𝑐𝑃) ∧ (𝐵 ∈ (𝐴𝐼𝑐) ∧ (𝐵 𝑐) = (𝑌 𝑍))) → 𝑌 ∈ (𝑋𝐼𝑍))
25 simprl 769 . . . . . . . 8 ((((𝜑𝑌 ∈ (𝑋𝐼𝑍)) ∧ 𝑐𝑃) ∧ (𝐵 ∈ (𝐴𝐼𝑐) ∧ (𝐵 𝑐) = (𝑌 𝑍))) → 𝐵 ∈ (𝐴𝐼𝑐))
261, 2, 3, 12, 14, 15, 16, 17, 18, 19, 24, 25, 21, 23tgcgrextend 27427 . . . . . . 7 ((((𝜑𝑌 ∈ (𝑋𝐼𝑍)) ∧ 𝑐𝑃) ∧ (𝐵 ∈ (𝐴𝐼𝑐) ∧ (𝐵 𝑐) = (𝑌 𝑍))) → (𝑋 𝑍) = (𝐴 𝑐))
271, 2, 3, 12, 14, 16, 17, 19, 26tgcgrcomlr 27422 . . . . . 6 ((((𝜑𝑌 ∈ (𝑋𝐼𝑍)) ∧ 𝑐𝑃) ∧ (𝐵 ∈ (𝐴𝐼𝑐) ∧ (𝐵 𝑐) = (𝑌 𝑍))) → (𝑍 𝑋) = (𝑐 𝐴))
281, 2, 11, 12, 14, 15, 16, 17, 18, 19, 21, 23, 27trgcgr 27458 . . . . 5 ((((𝜑𝑌 ∈ (𝑋𝐼𝑍)) ∧ 𝑐𝑃) ∧ (𝐵 ∈ (𝐴𝐼𝑐) ∧ (𝐵 𝑐) = (𝑌 𝑍))) → ⟨“𝑋𝑌𝑍”⟩ ⟨“𝐴𝐵𝑐”⟩)
2928ex 413 . . . 4 (((𝜑𝑌 ∈ (𝑋𝐼𝑍)) ∧ 𝑐𝑃) → ((𝐵 ∈ (𝐴𝐼𝑐) ∧ (𝐵 𝑐) = (𝑌 𝑍)) → ⟨“𝑋𝑌𝑍”⟩ ⟨“𝐴𝐵𝑐”⟩))
3029reximdva 3165 . . 3 ((𝜑𝑌 ∈ (𝑋𝐼𝑍)) → (∃𝑐𝑃 (𝐵 ∈ (𝐴𝐼𝑐) ∧ (𝐵 𝑐) = (𝑌 𝑍)) → ∃𝑐𝑃 ⟨“𝑋𝑌𝑍”⟩ ⟨“𝐴𝐵𝑐”⟩))
3110, 30mpd 15 . 2 ((𝜑𝑌 ∈ (𝑋𝐼𝑍)) → ∃𝑐𝑃 ⟨“𝑋𝑌𝑍”⟩ ⟨“𝐴𝐵𝑐”⟩)
321, 2, 3, 4, 6, 5, 13, 8axtgsegcon 27406 . . . 4 (𝜑 → ∃𝑐𝑃 (𝐴 ∈ (𝐵𝐼𝑐) ∧ (𝐴 𝑐) = (𝑋 𝑍)))
3332adantr 481 . . 3 ((𝜑𝑋 ∈ (𝑌𝐼𝑍)) → ∃𝑐𝑃 (𝐴 ∈ (𝐵𝐼𝑐) ∧ (𝐴 𝑐) = (𝑋 𝑍)))
344ad3antrrr 728 . . . . . 6 ((((𝜑𝑋 ∈ (𝑌𝐼𝑍)) ∧ 𝑐𝑃) ∧ (𝐴 ∈ (𝐵𝐼𝑐) ∧ (𝐴 𝑐) = (𝑋 𝑍))) → 𝐺 ∈ TarskiG)
3513ad3antrrr 728 . . . . . 6 ((((𝜑𝑋 ∈ (𝑌𝐼𝑍)) ∧ 𝑐𝑃) ∧ (𝐴 ∈ (𝐵𝐼𝑐) ∧ (𝐴 𝑐) = (𝑋 𝑍))) → 𝑋𝑃)
367ad3antrrr 728 . . . . . 6 ((((𝜑𝑋 ∈ (𝑌𝐼𝑍)) ∧ 𝑐𝑃) ∧ (𝐴 ∈ (𝐵𝐼𝑐) ∧ (𝐴 𝑐) = (𝑋 𝑍))) → 𝑌𝑃)
378ad3antrrr 728 . . . . . 6 ((((𝜑𝑋 ∈ (𝑌𝐼𝑍)) ∧ 𝑐𝑃) ∧ (𝐴 ∈ (𝐵𝐼𝑐) ∧ (𝐴 𝑐) = (𝑋 𝑍))) → 𝑍𝑃)
385ad3antrrr 728 . . . . . 6 ((((𝜑𝑋 ∈ (𝑌𝐼𝑍)) ∧ 𝑐𝑃) ∧ (𝐴 ∈ (𝐵𝐼𝑐) ∧ (𝐴 𝑐) = (𝑋 𝑍))) → 𝐴𝑃)
396ad3antrrr 728 . . . . . 6 ((((𝜑𝑋 ∈ (𝑌𝐼𝑍)) ∧ 𝑐𝑃) ∧ (𝐴 ∈ (𝐵𝐼𝑐) ∧ (𝐴 𝑐) = (𝑋 𝑍))) → 𝐵𝑃)
40 simplr 767 . . . . . 6 ((((𝜑𝑋 ∈ (𝑌𝐼𝑍)) ∧ 𝑐𝑃) ∧ (𝐴 ∈ (𝐵𝐼𝑐) ∧ (𝐴 𝑐) = (𝑋 𝑍))) → 𝑐𝑃)
4120ad3antrrr 728 . . . . . 6 ((((𝜑𝑋 ∈ (𝑌𝐼𝑍)) ∧ 𝑐𝑃) ∧ (𝐴 ∈ (𝐵𝐼𝑐) ∧ (𝐴 𝑐) = (𝑋 𝑍))) → (𝑋 𝑌) = (𝐴 𝐵))
42 simpllr 774 . . . . . . 7 ((((𝜑𝑋 ∈ (𝑌𝐼𝑍)) ∧ 𝑐𝑃) ∧ (𝐴 ∈ (𝐵𝐼𝑐) ∧ (𝐴 𝑐) = (𝑋 𝑍))) → 𝑋 ∈ (𝑌𝐼𝑍))
43 simprl 769 . . . . . . 7 ((((𝜑𝑋 ∈ (𝑌𝐼𝑍)) ∧ 𝑐𝑃) ∧ (𝐴 ∈ (𝐵𝐼𝑐) ∧ (𝐴 𝑐) = (𝑋 𝑍))) → 𝐴 ∈ (𝐵𝐼𝑐))
441, 2, 3, 34, 35, 36, 38, 39, 41tgcgrcomlr 27422 . . . . . . 7 ((((𝜑𝑋 ∈ (𝑌𝐼𝑍)) ∧ 𝑐𝑃) ∧ (𝐴 ∈ (𝐵𝐼𝑐) ∧ (𝐴 𝑐) = (𝑋 𝑍))) → (𝑌 𝑋) = (𝐵 𝐴))
45 simprr 771 . . . . . . . 8 ((((𝜑𝑋 ∈ (𝑌𝐼𝑍)) ∧ 𝑐𝑃) ∧ (𝐴 ∈ (𝐵𝐼𝑐) ∧ (𝐴 𝑐) = (𝑋 𝑍))) → (𝐴 𝑐) = (𝑋 𝑍))
4645eqcomd 2742 . . . . . . 7 ((((𝜑𝑋 ∈ (𝑌𝐼𝑍)) ∧ 𝑐𝑃) ∧ (𝐴 ∈ (𝐵𝐼𝑐) ∧ (𝐴 𝑐) = (𝑋 𝑍))) → (𝑋 𝑍) = (𝐴 𝑐))
471, 2, 3, 34, 36, 35, 37, 39, 38, 40, 42, 43, 44, 46tgcgrextend 27427 . . . . . 6 ((((𝜑𝑋 ∈ (𝑌𝐼𝑍)) ∧ 𝑐𝑃) ∧ (𝐴 ∈ (𝐵𝐼𝑐) ∧ (𝐴 𝑐) = (𝑋 𝑍))) → (𝑌 𝑍) = (𝐵 𝑐))
481, 2, 3, 34, 35, 37, 38, 40, 46tgcgrcomlr 27422 . . . . . 6 ((((𝜑𝑋 ∈ (𝑌𝐼𝑍)) ∧ 𝑐𝑃) ∧ (𝐴 ∈ (𝐵𝐼𝑐) ∧ (𝐴 𝑐) = (𝑋 𝑍))) → (𝑍 𝑋) = (𝑐 𝐴))
491, 2, 11, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48trgcgr 27458 . . . . 5 ((((𝜑𝑋 ∈ (𝑌𝐼𝑍)) ∧ 𝑐𝑃) ∧ (𝐴 ∈ (𝐵𝐼𝑐) ∧ (𝐴 𝑐) = (𝑋 𝑍))) → ⟨“𝑋𝑌𝑍”⟩ ⟨“𝐴𝐵𝑐”⟩)
5049ex 413 . . . 4 (((𝜑𝑋 ∈ (𝑌𝐼𝑍)) ∧ 𝑐𝑃) → ((𝐴 ∈ (𝐵𝐼𝑐) ∧ (𝐴 𝑐) = (𝑋 𝑍)) → ⟨“𝑋𝑌𝑍”⟩ ⟨“𝐴𝐵𝑐”⟩))
5150reximdva 3165 . . 3 ((𝜑𝑋 ∈ (𝑌𝐼𝑍)) → (∃𝑐𝑃 (𝐴 ∈ (𝐵𝐼𝑐) ∧ (𝐴 𝑐) = (𝑋 𝑍)) → ∃𝑐𝑃 ⟨“𝑋𝑌𝑍”⟩ ⟨“𝐴𝐵𝑐”⟩))
5233, 51mpd 15 . 2 ((𝜑𝑋 ∈ (𝑌𝐼𝑍)) → ∃𝑐𝑃 ⟨“𝑋𝑌𝑍”⟩ ⟨“𝐴𝐵𝑐”⟩)
534adantr 481 . . . 4 ((𝜑𝑍 ∈ (𝑋𝐼𝑌)) → 𝐺 ∈ TarskiG)
5413adantr 481 . . . 4 ((𝜑𝑍 ∈ (𝑋𝐼𝑌)) → 𝑋𝑃)
558adantr 481 . . . 4 ((𝜑𝑍 ∈ (𝑋𝐼𝑌)) → 𝑍𝑃)
567adantr 481 . . . 4 ((𝜑𝑍 ∈ (𝑋𝐼𝑌)) → 𝑌𝑃)
575adantr 481 . . . 4 ((𝜑𝑍 ∈ (𝑋𝐼𝑌)) → 𝐴𝑃)
586adantr 481 . . . 4 ((𝜑𝑍 ∈ (𝑋𝐼𝑌)) → 𝐵𝑃)
59 simpr 485 . . . 4 ((𝜑𝑍 ∈ (𝑋𝐼𝑌)) → 𝑍 ∈ (𝑋𝐼𝑌))
6020adantr 481 . . . 4 ((𝜑𝑍 ∈ (𝑋𝐼𝑌)) → (𝑋 𝑌) = (𝐴 𝐵))
611, 2, 3, 11, 53, 54, 55, 56, 57, 58, 59, 60tgcgrxfr 27460 . . 3 ((𝜑𝑍 ∈ (𝑋𝐼𝑌)) → ∃𝑐𝑃 (𝑐 ∈ (𝐴𝐼𝐵) ∧ ⟨“𝑋𝑍𝑌”⟩ ⟨“𝐴𝑐𝐵”⟩))
624ad3antrrr 728 . . . . . 6 ((((𝜑𝑍 ∈ (𝑋𝐼𝑌)) ∧ 𝑐𝑃) ∧ (𝑐 ∈ (𝐴𝐼𝐵) ∧ ⟨“𝑋𝑍𝑌”⟩ ⟨“𝐴𝑐𝐵”⟩)) → 𝐺 ∈ TarskiG)
6313ad3antrrr 728 . . . . . 6 ((((𝜑𝑍 ∈ (𝑋𝐼𝑌)) ∧ 𝑐𝑃) ∧ (𝑐 ∈ (𝐴𝐼𝐵) ∧ ⟨“𝑋𝑍𝑌”⟩ ⟨“𝐴𝑐𝐵”⟩)) → 𝑋𝑃)
648ad3antrrr 728 . . . . . 6 ((((𝜑𝑍 ∈ (𝑋𝐼𝑌)) ∧ 𝑐𝑃) ∧ (𝑐 ∈ (𝐴𝐼𝐵) ∧ ⟨“𝑋𝑍𝑌”⟩ ⟨“𝐴𝑐𝐵”⟩)) → 𝑍𝑃)
657ad3antrrr 728 . . . . . 6 ((((𝜑𝑍 ∈ (𝑋𝐼𝑌)) ∧ 𝑐𝑃) ∧ (𝑐 ∈ (𝐴𝐼𝐵) ∧ ⟨“𝑋𝑍𝑌”⟩ ⟨“𝐴𝑐𝐵”⟩)) → 𝑌𝑃)
665ad3antrrr 728 . . . . . 6 ((((𝜑𝑍 ∈ (𝑋𝐼𝑌)) ∧ 𝑐𝑃) ∧ (𝑐 ∈ (𝐴𝐼𝐵) ∧ ⟨“𝑋𝑍𝑌”⟩ ⟨“𝐴𝑐𝐵”⟩)) → 𝐴𝑃)
67 simplr 767 . . . . . 6 ((((𝜑𝑍 ∈ (𝑋𝐼𝑌)) ∧ 𝑐𝑃) ∧ (𝑐 ∈ (𝐴𝐼𝐵) ∧ ⟨“𝑋𝑍𝑌”⟩ ⟨“𝐴𝑐𝐵”⟩)) → 𝑐𝑃)
686ad3antrrr 728 . . . . . 6 ((((𝜑𝑍 ∈ (𝑋𝐼𝑌)) ∧ 𝑐𝑃) ∧ (𝑐 ∈ (𝐴𝐼𝐵) ∧ ⟨“𝑋𝑍𝑌”⟩ ⟨“𝐴𝑐𝐵”⟩)) → 𝐵𝑃)
69 simprr 771 . . . . . 6 ((((𝜑𝑍 ∈ (𝑋𝐼𝑌)) ∧ 𝑐𝑃) ∧ (𝑐 ∈ (𝐴𝐼𝐵) ∧ ⟨“𝑋𝑍𝑌”⟩ ⟨“𝐴𝑐𝐵”⟩)) → ⟨“𝑋𝑍𝑌”⟩ ⟨“𝐴𝑐𝐵”⟩)
701, 2, 3, 11, 62, 63, 64, 65, 66, 67, 68, 69cgr3swap23 27466 . . . . 5 ((((𝜑𝑍 ∈ (𝑋𝐼𝑌)) ∧ 𝑐𝑃) ∧ (𝑐 ∈ (𝐴𝐼𝐵) ∧ ⟨“𝑋𝑍𝑌”⟩ ⟨“𝐴𝑐𝐵”⟩)) → ⟨“𝑋𝑌𝑍”⟩ ⟨“𝐴𝐵𝑐”⟩)
7170ex 413 . . . 4 (((𝜑𝑍 ∈ (𝑋𝐼𝑌)) ∧ 𝑐𝑃) → ((𝑐 ∈ (𝐴𝐼𝐵) ∧ ⟨“𝑋𝑍𝑌”⟩ ⟨“𝐴𝑐𝐵”⟩) → ⟨“𝑋𝑌𝑍”⟩ ⟨“𝐴𝐵𝑐”⟩))
7271reximdva 3165 . . 3 ((𝜑𝑍 ∈ (𝑋𝐼𝑌)) → (∃𝑐𝑃 (𝑐 ∈ (𝐴𝐼𝐵) ∧ ⟨“𝑋𝑍𝑌”⟩ ⟨“𝐴𝑐𝐵”⟩) → ∃𝑐𝑃 ⟨“𝑋𝑌𝑍”⟩ ⟨“𝐴𝐵𝑐”⟩))
7361, 72mpd 15 . 2 ((𝜑𝑍 ∈ (𝑋𝐼𝑌)) → ∃𝑐𝑃 ⟨“𝑋𝑌𝑍”⟩ ⟨“𝐴𝐵𝑐”⟩)
74 lnext.1 . . 3 (𝜑 → (𝑌 ∈ (𝑋𝐿𝑍) ∨ 𝑋 = 𝑍))
75 tglngval.l . . . 4 𝐿 = (LineG‘𝐺)
761, 75, 3, 4, 13, 8, 7tgcolg 27496 . . 3 (𝜑 → ((𝑌 ∈ (𝑋𝐿𝑍) ∨ 𝑋 = 𝑍) ↔ (𝑌 ∈ (𝑋𝐼𝑍) ∨ 𝑋 ∈ (𝑌𝐼𝑍) ∨ 𝑍 ∈ (𝑋𝐼𝑌))))
7774, 76mpbid 231 . 2 (𝜑 → (𝑌 ∈ (𝑋𝐼𝑍) ∨ 𝑋 ∈ (𝑌𝐼𝑍) ∨ 𝑍 ∈ (𝑋𝐼𝑌)))
7831, 52, 73, 77mpjao3dan 1431 1 (𝜑 → ∃𝑐𝑃 ⟨“𝑋𝑌𝑍”⟩ ⟨“𝐴𝐵𝑐”⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wo 845  w3o 1086   = wceq 1541  wcel 2106  wrex 3073   class class class wbr 5105  cfv 6496  (class class class)co 7357  ⟨“cs3 14731  Basecbs 17083  distcds 17142  TarskiGcstrkg 27369  Itvcitv 27375  LineGclng 27376  cgrGccgrg 27452
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-oadd 8416  df-er 8648  df-pm 8768  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-dju 9837  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-2 12216  df-3 12217  df-n0 12414  df-xnn0 12486  df-z 12500  df-uz 12764  df-fz 13425  df-fzo 13568  df-hash 14231  df-word 14403  df-concat 14459  df-s1 14484  df-s2 14737  df-s3 14738  df-trkgc 27390  df-trkgb 27391  df-trkgcb 27392  df-trkg 27395  df-cgrg 27453
This theorem is referenced by:  legov  27527  legov2  27528  legtrd  27531  symquadlem  27631  trgcopy  27746  cgrg3col4  27795
  Copyright terms: Public domain W3C validator