Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mircgrextend | Structured version Visualization version GIF version |
Description: Link congruence over a pair of mirror points. cf tgcgrextend 26874. (Contributed by Thierry Arnoux, 4-Oct-2020.) |
Ref | Expression |
---|---|
mirval.p | ⊢ 𝑃 = (Base‘𝐺) |
mirval.d | ⊢ − = (dist‘𝐺) |
mirval.i | ⊢ 𝐼 = (Itv‘𝐺) |
mirval.l | ⊢ 𝐿 = (LineG‘𝐺) |
mirval.s | ⊢ 𝑆 = (pInvG‘𝐺) |
mirval.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
mirtrcgr.e | ⊢ ∼ = (cgrG‘𝐺) |
mirtrcgr.m | ⊢ 𝑀 = (𝑆‘𝐵) |
mirtrcgr.n | ⊢ 𝑁 = (𝑆‘𝑌) |
mirtrcgr.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
mirtrcgr.b | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
mirtrcgr.x | ⊢ (𝜑 → 𝑋 ∈ 𝑃) |
mirtrcgr.y | ⊢ (𝜑 → 𝑌 ∈ 𝑃) |
mircgrextend.1 | ⊢ (𝜑 → (𝐴 − 𝐵) = (𝑋 − 𝑌)) |
Ref | Expression |
---|---|
mircgrextend | ⊢ (𝜑 → (𝐴 − (𝑀‘𝐴)) = (𝑋 − (𝑁‘𝑋))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mirval.p | . 2 ⊢ 𝑃 = (Base‘𝐺) | |
2 | mirval.d | . 2 ⊢ − = (dist‘𝐺) | |
3 | mirval.i | . 2 ⊢ 𝐼 = (Itv‘𝐺) | |
4 | mirval.g | . 2 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
5 | mirtrcgr.a | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
6 | mirtrcgr.b | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
7 | mirval.l | . . 3 ⊢ 𝐿 = (LineG‘𝐺) | |
8 | mirval.s | . . 3 ⊢ 𝑆 = (pInvG‘𝐺) | |
9 | mirtrcgr.m | . . 3 ⊢ 𝑀 = (𝑆‘𝐵) | |
10 | 1, 2, 3, 7, 8, 4, 6, 9, 5 | mircl 27050 | . 2 ⊢ (𝜑 → (𝑀‘𝐴) ∈ 𝑃) |
11 | mirtrcgr.x | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝑃) | |
12 | mirtrcgr.y | . 2 ⊢ (𝜑 → 𝑌 ∈ 𝑃) | |
13 | mirtrcgr.n | . . 3 ⊢ 𝑁 = (𝑆‘𝑌) | |
14 | 1, 2, 3, 7, 8, 4, 12, 13, 11 | mircl 27050 | . 2 ⊢ (𝜑 → (𝑁‘𝑋) ∈ 𝑃) |
15 | 1, 2, 3, 7, 8, 4, 6, 9, 5 | mirbtwn 27047 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ((𝑀‘𝐴)𝐼𝐴)) |
16 | 1, 2, 3, 4, 10, 6, 5, 15 | tgbtwncom 26877 | . 2 ⊢ (𝜑 → 𝐵 ∈ (𝐴𝐼(𝑀‘𝐴))) |
17 | 1, 2, 3, 7, 8, 4, 12, 13, 11 | mirbtwn 27047 | . . 3 ⊢ (𝜑 → 𝑌 ∈ ((𝑁‘𝑋)𝐼𝑋)) |
18 | 1, 2, 3, 4, 14, 12, 11, 17 | tgbtwncom 26877 | . 2 ⊢ (𝜑 → 𝑌 ∈ (𝑋𝐼(𝑁‘𝑋))) |
19 | mircgrextend.1 | . 2 ⊢ (𝜑 → (𝐴 − 𝐵) = (𝑋 − 𝑌)) | |
20 | 1, 2, 3, 4, 5, 6, 11, 12, 19 | tgcgrcomlr 26869 | . . 3 ⊢ (𝜑 → (𝐵 − 𝐴) = (𝑌 − 𝑋)) |
21 | 1, 2, 3, 7, 8, 4, 6, 9, 5 | mircgr 27046 | . . 3 ⊢ (𝜑 → (𝐵 − (𝑀‘𝐴)) = (𝐵 − 𝐴)) |
22 | 1, 2, 3, 7, 8, 4, 12, 13, 11 | mircgr 27046 | . . 3 ⊢ (𝜑 → (𝑌 − (𝑁‘𝑋)) = (𝑌 − 𝑋)) |
23 | 20, 21, 22 | 3eqtr4d 2783 | . 2 ⊢ (𝜑 → (𝐵 − (𝑀‘𝐴)) = (𝑌 − (𝑁‘𝑋))) |
24 | 1, 2, 3, 4, 5, 6, 10, 11, 12, 14, 16, 18, 19, 23 | tgcgrextend 26874 | 1 ⊢ (𝜑 → (𝐴 − (𝑀‘𝐴)) = (𝑋 − (𝑁‘𝑋))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2101 ‘cfv 6447 (class class class)co 7295 Basecbs 16940 distcds 16999 TarskiGcstrkg 26816 Itvcitv 26822 LineGclng 26823 cgrGccgrg 26899 pInvGcmir 27041 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2103 ax-9 2111 ax-10 2132 ax-11 2149 ax-12 2166 ax-ext 2704 ax-rep 5212 ax-sep 5226 ax-nul 5233 ax-pr 5355 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2063 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2884 df-ne 2939 df-ral 3060 df-rex 3069 df-rmo 3222 df-reu 3223 df-rab 3224 df-v 3436 df-sbc 3719 df-csb 3835 df-dif 3892 df-un 3894 df-in 3896 df-ss 3906 df-nul 4260 df-if 4463 df-pw 4538 df-sn 4565 df-pr 4567 df-op 4571 df-uni 4842 df-iun 4929 df-br 5078 df-opab 5140 df-mpt 5161 df-id 5491 df-xp 5597 df-rel 5598 df-cnv 5599 df-co 5600 df-dm 5601 df-rn 5602 df-res 5603 df-ima 5604 df-iota 6399 df-fun 6449 df-fn 6450 df-f 6451 df-f1 6452 df-fo 6453 df-f1o 6454 df-fv 6455 df-riota 7252 df-ov 7298 df-trkgc 26837 df-trkgb 26838 df-trkgcb 26839 df-trkg 26842 df-mir 27042 |
This theorem is referenced by: mirtrcgr 27072 |
Copyright terms: Public domain | W3C validator |