MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mircgrextend Structured version   Visualization version   GIF version

Theorem mircgrextend 26773
Description: Link congruence over a pair of mirror points. cf tgcgrextend 26576. (Contributed by Thierry Arnoux, 4-Oct-2020.)
Hypotheses
Ref Expression
mirval.p 𝑃 = (Base‘𝐺)
mirval.d = (dist‘𝐺)
mirval.i 𝐼 = (Itv‘𝐺)
mirval.l 𝐿 = (LineG‘𝐺)
mirval.s 𝑆 = (pInvG‘𝐺)
mirval.g (𝜑𝐺 ∈ TarskiG)
mirtrcgr.e = (cgrG‘𝐺)
mirtrcgr.m 𝑀 = (𝑆𝐵)
mirtrcgr.n 𝑁 = (𝑆𝑌)
mirtrcgr.a (𝜑𝐴𝑃)
mirtrcgr.b (𝜑𝐵𝑃)
mirtrcgr.x (𝜑𝑋𝑃)
mirtrcgr.y (𝜑𝑌𝑃)
mircgrextend.1 (𝜑 → (𝐴 𝐵) = (𝑋 𝑌))
Assertion
Ref Expression
mircgrextend (𝜑 → (𝐴 (𝑀𝐴)) = (𝑋 (𝑁𝑋)))

Proof of Theorem mircgrextend
StepHypRef Expression
1 mirval.p . 2 𝑃 = (Base‘𝐺)
2 mirval.d . 2 = (dist‘𝐺)
3 mirval.i . 2 𝐼 = (Itv‘𝐺)
4 mirval.g . 2 (𝜑𝐺 ∈ TarskiG)
5 mirtrcgr.a . 2 (𝜑𝐴𝑃)
6 mirtrcgr.b . 2 (𝜑𝐵𝑃)
7 mirval.l . . 3 𝐿 = (LineG‘𝐺)
8 mirval.s . . 3 𝑆 = (pInvG‘𝐺)
9 mirtrcgr.m . . 3 𝑀 = (𝑆𝐵)
101, 2, 3, 7, 8, 4, 6, 9, 5mircl 26752 . 2 (𝜑 → (𝑀𝐴) ∈ 𝑃)
11 mirtrcgr.x . 2 (𝜑𝑋𝑃)
12 mirtrcgr.y . 2 (𝜑𝑌𝑃)
13 mirtrcgr.n . . 3 𝑁 = (𝑆𝑌)
141, 2, 3, 7, 8, 4, 12, 13, 11mircl 26752 . 2 (𝜑 → (𝑁𝑋) ∈ 𝑃)
151, 2, 3, 7, 8, 4, 6, 9, 5mirbtwn 26749 . . 3 (𝜑𝐵 ∈ ((𝑀𝐴)𝐼𝐴))
161, 2, 3, 4, 10, 6, 5, 15tgbtwncom 26579 . 2 (𝜑𝐵 ∈ (𝐴𝐼(𝑀𝐴)))
171, 2, 3, 7, 8, 4, 12, 13, 11mirbtwn 26749 . . 3 (𝜑𝑌 ∈ ((𝑁𝑋)𝐼𝑋))
181, 2, 3, 4, 14, 12, 11, 17tgbtwncom 26579 . 2 (𝜑𝑌 ∈ (𝑋𝐼(𝑁𝑋)))
19 mircgrextend.1 . 2 (𝜑 → (𝐴 𝐵) = (𝑋 𝑌))
201, 2, 3, 4, 5, 6, 11, 12, 19tgcgrcomlr 26571 . . 3 (𝜑 → (𝐵 𝐴) = (𝑌 𝑋))
211, 2, 3, 7, 8, 4, 6, 9, 5mircgr 26748 . . 3 (𝜑 → (𝐵 (𝑀𝐴)) = (𝐵 𝐴))
221, 2, 3, 7, 8, 4, 12, 13, 11mircgr 26748 . . 3 (𝜑 → (𝑌 (𝑁𝑋)) = (𝑌 𝑋))
2320, 21, 223eqtr4d 2787 . 2 (𝜑 → (𝐵 (𝑀𝐴)) = (𝑌 (𝑁𝑋)))
241, 2, 3, 4, 5, 6, 10, 11, 12, 14, 16, 18, 19, 23tgcgrextend 26576 1 (𝜑 → (𝐴 (𝑀𝐴)) = (𝑋 (𝑁𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1543  wcel 2110  cfv 6380  (class class class)co 7213  Basecbs 16760  distcds 16811  TarskiGcstrkg 26521  Itvcitv 26527  LineGclng 26528  cgrGccgrg 26601  pInvGcmir 26743
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pr 5322
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-op 4548  df-uni 4820  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-id 5455  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-riota 7170  df-ov 7216  df-trkgc 26539  df-trkgb 26540  df-trkgcb 26541  df-trkg 26544  df-mir 26744
This theorem is referenced by:  mirtrcgr  26774
  Copyright terms: Public domain W3C validator