![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mircgrextend | Structured version Visualization version GIF version |
Description: Link congruence over a pair of mirror points. cf tgcgrextend 27733. (Contributed by Thierry Arnoux, 4-Oct-2020.) |
Ref | Expression |
---|---|
mirval.p | β’ π = (BaseβπΊ) |
mirval.d | β’ β = (distβπΊ) |
mirval.i | β’ πΌ = (ItvβπΊ) |
mirval.l | β’ πΏ = (LineGβπΊ) |
mirval.s | β’ π = (pInvGβπΊ) |
mirval.g | β’ (π β πΊ β TarskiG) |
mirtrcgr.e | β’ βΌ = (cgrGβπΊ) |
mirtrcgr.m | β’ π = (πβπ΅) |
mirtrcgr.n | β’ π = (πβπ) |
mirtrcgr.a | β’ (π β π΄ β π) |
mirtrcgr.b | β’ (π β π΅ β π) |
mirtrcgr.x | β’ (π β π β π) |
mirtrcgr.y | β’ (π β π β π) |
mircgrextend.1 | β’ (π β (π΄ β π΅) = (π β π)) |
Ref | Expression |
---|---|
mircgrextend | β’ (π β (π΄ β (πβπ΄)) = (π β (πβπ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mirval.p | . 2 β’ π = (BaseβπΊ) | |
2 | mirval.d | . 2 β’ β = (distβπΊ) | |
3 | mirval.i | . 2 β’ πΌ = (ItvβπΊ) | |
4 | mirval.g | . 2 β’ (π β πΊ β TarskiG) | |
5 | mirtrcgr.a | . 2 β’ (π β π΄ β π) | |
6 | mirtrcgr.b | . 2 β’ (π β π΅ β π) | |
7 | mirval.l | . . 3 β’ πΏ = (LineGβπΊ) | |
8 | mirval.s | . . 3 β’ π = (pInvGβπΊ) | |
9 | mirtrcgr.m | . . 3 β’ π = (πβπ΅) | |
10 | 1, 2, 3, 7, 8, 4, 6, 9, 5 | mircl 27909 | . 2 β’ (π β (πβπ΄) β π) |
11 | mirtrcgr.x | . 2 β’ (π β π β π) | |
12 | mirtrcgr.y | . 2 β’ (π β π β π) | |
13 | mirtrcgr.n | . . 3 β’ π = (πβπ) | |
14 | 1, 2, 3, 7, 8, 4, 12, 13, 11 | mircl 27909 | . 2 β’ (π β (πβπ) β π) |
15 | 1, 2, 3, 7, 8, 4, 6, 9, 5 | mirbtwn 27906 | . . 3 β’ (π β π΅ β ((πβπ΄)πΌπ΄)) |
16 | 1, 2, 3, 4, 10, 6, 5, 15 | tgbtwncom 27736 | . 2 β’ (π β π΅ β (π΄πΌ(πβπ΄))) |
17 | 1, 2, 3, 7, 8, 4, 12, 13, 11 | mirbtwn 27906 | . . 3 β’ (π β π β ((πβπ)πΌπ)) |
18 | 1, 2, 3, 4, 14, 12, 11, 17 | tgbtwncom 27736 | . 2 β’ (π β π β (ππΌ(πβπ))) |
19 | mircgrextend.1 | . 2 β’ (π β (π΄ β π΅) = (π β π)) | |
20 | 1, 2, 3, 4, 5, 6, 11, 12, 19 | tgcgrcomlr 27728 | . . 3 β’ (π β (π΅ β π΄) = (π β π)) |
21 | 1, 2, 3, 7, 8, 4, 6, 9, 5 | mircgr 27905 | . . 3 β’ (π β (π΅ β (πβπ΄)) = (π΅ β π΄)) |
22 | 1, 2, 3, 7, 8, 4, 12, 13, 11 | mircgr 27905 | . . 3 β’ (π β (π β (πβπ)) = (π β π)) |
23 | 20, 21, 22 | 3eqtr4d 2782 | . 2 β’ (π β (π΅ β (πβπ΄)) = (π β (πβπ))) |
24 | 1, 2, 3, 4, 5, 6, 10, 11, 12, 14, 16, 18, 19, 23 | tgcgrextend 27733 | 1 β’ (π β (π΄ β (πβπ΄)) = (π β (πβπ))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1541 β wcel 2106 βcfv 6543 (class class class)co 7408 Basecbs 17143 distcds 17205 TarskiGcstrkg 27675 Itvcitv 27681 LineGclng 27682 cgrGccgrg 27758 pInvGcmir 27900 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7364 df-ov 7411 df-trkgc 27696 df-trkgb 27697 df-trkgcb 27698 df-trkg 27701 df-mir 27901 |
This theorem is referenced by: mirtrcgr 27931 |
Copyright terms: Public domain | W3C validator |