Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mircgrextend | Structured version Visualization version GIF version |
Description: Link congruence over a pair of mirror points. cf tgcgrextend 27135. (Contributed by Thierry Arnoux, 4-Oct-2020.) |
Ref | Expression |
---|---|
mirval.p | ⊢ 𝑃 = (Base‘𝐺) |
mirval.d | ⊢ − = (dist‘𝐺) |
mirval.i | ⊢ 𝐼 = (Itv‘𝐺) |
mirval.l | ⊢ 𝐿 = (LineG‘𝐺) |
mirval.s | ⊢ 𝑆 = (pInvG‘𝐺) |
mirval.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
mirtrcgr.e | ⊢ ∼ = (cgrG‘𝐺) |
mirtrcgr.m | ⊢ 𝑀 = (𝑆‘𝐵) |
mirtrcgr.n | ⊢ 𝑁 = (𝑆‘𝑌) |
mirtrcgr.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
mirtrcgr.b | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
mirtrcgr.x | ⊢ (𝜑 → 𝑋 ∈ 𝑃) |
mirtrcgr.y | ⊢ (𝜑 → 𝑌 ∈ 𝑃) |
mircgrextend.1 | ⊢ (𝜑 → (𝐴 − 𝐵) = (𝑋 − 𝑌)) |
Ref | Expression |
---|---|
mircgrextend | ⊢ (𝜑 → (𝐴 − (𝑀‘𝐴)) = (𝑋 − (𝑁‘𝑋))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mirval.p | . 2 ⊢ 𝑃 = (Base‘𝐺) | |
2 | mirval.d | . 2 ⊢ − = (dist‘𝐺) | |
3 | mirval.i | . 2 ⊢ 𝐼 = (Itv‘𝐺) | |
4 | mirval.g | . 2 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
5 | mirtrcgr.a | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
6 | mirtrcgr.b | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
7 | mirval.l | . . 3 ⊢ 𝐿 = (LineG‘𝐺) | |
8 | mirval.s | . . 3 ⊢ 𝑆 = (pInvG‘𝐺) | |
9 | mirtrcgr.m | . . 3 ⊢ 𝑀 = (𝑆‘𝐵) | |
10 | 1, 2, 3, 7, 8, 4, 6, 9, 5 | mircl 27311 | . 2 ⊢ (𝜑 → (𝑀‘𝐴) ∈ 𝑃) |
11 | mirtrcgr.x | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝑃) | |
12 | mirtrcgr.y | . 2 ⊢ (𝜑 → 𝑌 ∈ 𝑃) | |
13 | mirtrcgr.n | . . 3 ⊢ 𝑁 = (𝑆‘𝑌) | |
14 | 1, 2, 3, 7, 8, 4, 12, 13, 11 | mircl 27311 | . 2 ⊢ (𝜑 → (𝑁‘𝑋) ∈ 𝑃) |
15 | 1, 2, 3, 7, 8, 4, 6, 9, 5 | mirbtwn 27308 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ((𝑀‘𝐴)𝐼𝐴)) |
16 | 1, 2, 3, 4, 10, 6, 5, 15 | tgbtwncom 27138 | . 2 ⊢ (𝜑 → 𝐵 ∈ (𝐴𝐼(𝑀‘𝐴))) |
17 | 1, 2, 3, 7, 8, 4, 12, 13, 11 | mirbtwn 27308 | . . 3 ⊢ (𝜑 → 𝑌 ∈ ((𝑁‘𝑋)𝐼𝑋)) |
18 | 1, 2, 3, 4, 14, 12, 11, 17 | tgbtwncom 27138 | . 2 ⊢ (𝜑 → 𝑌 ∈ (𝑋𝐼(𝑁‘𝑋))) |
19 | mircgrextend.1 | . 2 ⊢ (𝜑 → (𝐴 − 𝐵) = (𝑋 − 𝑌)) | |
20 | 1, 2, 3, 4, 5, 6, 11, 12, 19 | tgcgrcomlr 27130 | . . 3 ⊢ (𝜑 → (𝐵 − 𝐴) = (𝑌 − 𝑋)) |
21 | 1, 2, 3, 7, 8, 4, 6, 9, 5 | mircgr 27307 | . . 3 ⊢ (𝜑 → (𝐵 − (𝑀‘𝐴)) = (𝐵 − 𝐴)) |
22 | 1, 2, 3, 7, 8, 4, 12, 13, 11 | mircgr 27307 | . . 3 ⊢ (𝜑 → (𝑌 − (𝑁‘𝑋)) = (𝑌 − 𝑋)) |
23 | 20, 21, 22 | 3eqtr4d 2786 | . 2 ⊢ (𝜑 → (𝐵 − (𝑀‘𝐴)) = (𝑌 − (𝑁‘𝑋))) |
24 | 1, 2, 3, 4, 5, 6, 10, 11, 12, 14, 16, 18, 19, 23 | tgcgrextend 27135 | 1 ⊢ (𝜑 → (𝐴 − (𝑀‘𝐴)) = (𝑋 − (𝑁‘𝑋))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2105 ‘cfv 6479 (class class class)co 7337 Basecbs 17009 distcds 17068 TarskiGcstrkg 27077 Itvcitv 27083 LineGclng 27084 cgrGccgrg 27160 pInvGcmir 27302 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5229 ax-sep 5243 ax-nul 5250 ax-pr 5372 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3349 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3728 df-csb 3844 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4270 df-if 4474 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4853 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5176 df-id 5518 df-xp 5626 df-rel 5627 df-cnv 5628 df-co 5629 df-dm 5630 df-rn 5631 df-res 5632 df-ima 5633 df-iota 6431 df-fun 6481 df-fn 6482 df-f 6483 df-f1 6484 df-fo 6485 df-f1o 6486 df-fv 6487 df-riota 7293 df-ov 7340 df-trkgc 27098 df-trkgb 27099 df-trkgcb 27100 df-trkg 27103 df-mir 27303 |
This theorem is referenced by: mirtrcgr 27333 |
Copyright terms: Public domain | W3C validator |