Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mircgrextend | Structured version Visualization version GIF version |
Description: Link congruence over a pair of mirror points. cf tgcgrextend 26750. (Contributed by Thierry Arnoux, 4-Oct-2020.) |
Ref | Expression |
---|---|
mirval.p | ⊢ 𝑃 = (Base‘𝐺) |
mirval.d | ⊢ − = (dist‘𝐺) |
mirval.i | ⊢ 𝐼 = (Itv‘𝐺) |
mirval.l | ⊢ 𝐿 = (LineG‘𝐺) |
mirval.s | ⊢ 𝑆 = (pInvG‘𝐺) |
mirval.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
mirtrcgr.e | ⊢ ∼ = (cgrG‘𝐺) |
mirtrcgr.m | ⊢ 𝑀 = (𝑆‘𝐵) |
mirtrcgr.n | ⊢ 𝑁 = (𝑆‘𝑌) |
mirtrcgr.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
mirtrcgr.b | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
mirtrcgr.x | ⊢ (𝜑 → 𝑋 ∈ 𝑃) |
mirtrcgr.y | ⊢ (𝜑 → 𝑌 ∈ 𝑃) |
mircgrextend.1 | ⊢ (𝜑 → (𝐴 − 𝐵) = (𝑋 − 𝑌)) |
Ref | Expression |
---|---|
mircgrextend | ⊢ (𝜑 → (𝐴 − (𝑀‘𝐴)) = (𝑋 − (𝑁‘𝑋))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mirval.p | . 2 ⊢ 𝑃 = (Base‘𝐺) | |
2 | mirval.d | . 2 ⊢ − = (dist‘𝐺) | |
3 | mirval.i | . 2 ⊢ 𝐼 = (Itv‘𝐺) | |
4 | mirval.g | . 2 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
5 | mirtrcgr.a | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
6 | mirtrcgr.b | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
7 | mirval.l | . . 3 ⊢ 𝐿 = (LineG‘𝐺) | |
8 | mirval.s | . . 3 ⊢ 𝑆 = (pInvG‘𝐺) | |
9 | mirtrcgr.m | . . 3 ⊢ 𝑀 = (𝑆‘𝐵) | |
10 | 1, 2, 3, 7, 8, 4, 6, 9, 5 | mircl 26926 | . 2 ⊢ (𝜑 → (𝑀‘𝐴) ∈ 𝑃) |
11 | mirtrcgr.x | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝑃) | |
12 | mirtrcgr.y | . 2 ⊢ (𝜑 → 𝑌 ∈ 𝑃) | |
13 | mirtrcgr.n | . . 3 ⊢ 𝑁 = (𝑆‘𝑌) | |
14 | 1, 2, 3, 7, 8, 4, 12, 13, 11 | mircl 26926 | . 2 ⊢ (𝜑 → (𝑁‘𝑋) ∈ 𝑃) |
15 | 1, 2, 3, 7, 8, 4, 6, 9, 5 | mirbtwn 26923 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ((𝑀‘𝐴)𝐼𝐴)) |
16 | 1, 2, 3, 4, 10, 6, 5, 15 | tgbtwncom 26753 | . 2 ⊢ (𝜑 → 𝐵 ∈ (𝐴𝐼(𝑀‘𝐴))) |
17 | 1, 2, 3, 7, 8, 4, 12, 13, 11 | mirbtwn 26923 | . . 3 ⊢ (𝜑 → 𝑌 ∈ ((𝑁‘𝑋)𝐼𝑋)) |
18 | 1, 2, 3, 4, 14, 12, 11, 17 | tgbtwncom 26753 | . 2 ⊢ (𝜑 → 𝑌 ∈ (𝑋𝐼(𝑁‘𝑋))) |
19 | mircgrextend.1 | . 2 ⊢ (𝜑 → (𝐴 − 𝐵) = (𝑋 − 𝑌)) | |
20 | 1, 2, 3, 4, 5, 6, 11, 12, 19 | tgcgrcomlr 26745 | . . 3 ⊢ (𝜑 → (𝐵 − 𝐴) = (𝑌 − 𝑋)) |
21 | 1, 2, 3, 7, 8, 4, 6, 9, 5 | mircgr 26922 | . . 3 ⊢ (𝜑 → (𝐵 − (𝑀‘𝐴)) = (𝐵 − 𝐴)) |
22 | 1, 2, 3, 7, 8, 4, 12, 13, 11 | mircgr 26922 | . . 3 ⊢ (𝜑 → (𝑌 − (𝑁‘𝑋)) = (𝑌 − 𝑋)) |
23 | 20, 21, 22 | 3eqtr4d 2788 | . 2 ⊢ (𝜑 → (𝐵 − (𝑀‘𝐴)) = (𝑌 − (𝑁‘𝑋))) |
24 | 1, 2, 3, 4, 5, 6, 10, 11, 12, 14, 16, 18, 19, 23 | tgcgrextend 26750 | 1 ⊢ (𝜑 → (𝐴 − (𝑀‘𝐴)) = (𝑋 − (𝑁‘𝑋))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 ‘cfv 6418 (class class class)co 7255 Basecbs 16840 distcds 16897 TarskiGcstrkg 26693 Itvcitv 26699 LineGclng 26700 cgrGccgrg 26775 pInvGcmir 26917 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-trkgc 26713 df-trkgb 26714 df-trkgcb 26715 df-trkg 26718 df-mir 26918 |
This theorem is referenced by: mirtrcgr 26948 |
Copyright terms: Public domain | W3C validator |