| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mircgrextend | Structured version Visualization version GIF version | ||
| Description: Link congruence over a pair of mirror points. cf tgcgrextend 28430. (Contributed by Thierry Arnoux, 4-Oct-2020.) |
| Ref | Expression |
|---|---|
| mirval.p | ⊢ 𝑃 = (Base‘𝐺) |
| mirval.d | ⊢ − = (dist‘𝐺) |
| mirval.i | ⊢ 𝐼 = (Itv‘𝐺) |
| mirval.l | ⊢ 𝐿 = (LineG‘𝐺) |
| mirval.s | ⊢ 𝑆 = (pInvG‘𝐺) |
| mirval.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
| mirtrcgr.e | ⊢ ∼ = (cgrG‘𝐺) |
| mirtrcgr.m | ⊢ 𝑀 = (𝑆‘𝐵) |
| mirtrcgr.n | ⊢ 𝑁 = (𝑆‘𝑌) |
| mirtrcgr.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
| mirtrcgr.b | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
| mirtrcgr.x | ⊢ (𝜑 → 𝑋 ∈ 𝑃) |
| mirtrcgr.y | ⊢ (𝜑 → 𝑌 ∈ 𝑃) |
| mircgrextend.1 | ⊢ (𝜑 → (𝐴 − 𝐵) = (𝑋 − 𝑌)) |
| Ref | Expression |
|---|---|
| mircgrextend | ⊢ (𝜑 → (𝐴 − (𝑀‘𝐴)) = (𝑋 − (𝑁‘𝑋))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mirval.p | . 2 ⊢ 𝑃 = (Base‘𝐺) | |
| 2 | mirval.d | . 2 ⊢ − = (dist‘𝐺) | |
| 3 | mirval.i | . 2 ⊢ 𝐼 = (Itv‘𝐺) | |
| 4 | mirval.g | . 2 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
| 5 | mirtrcgr.a | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
| 6 | mirtrcgr.b | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
| 7 | mirval.l | . . 3 ⊢ 𝐿 = (LineG‘𝐺) | |
| 8 | mirval.s | . . 3 ⊢ 𝑆 = (pInvG‘𝐺) | |
| 9 | mirtrcgr.m | . . 3 ⊢ 𝑀 = (𝑆‘𝐵) | |
| 10 | 1, 2, 3, 7, 8, 4, 6, 9, 5 | mircl 28606 | . 2 ⊢ (𝜑 → (𝑀‘𝐴) ∈ 𝑃) |
| 11 | mirtrcgr.x | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝑃) | |
| 12 | mirtrcgr.y | . 2 ⊢ (𝜑 → 𝑌 ∈ 𝑃) | |
| 13 | mirtrcgr.n | . . 3 ⊢ 𝑁 = (𝑆‘𝑌) | |
| 14 | 1, 2, 3, 7, 8, 4, 12, 13, 11 | mircl 28606 | . 2 ⊢ (𝜑 → (𝑁‘𝑋) ∈ 𝑃) |
| 15 | 1, 2, 3, 7, 8, 4, 6, 9, 5 | mirbtwn 28603 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ((𝑀‘𝐴)𝐼𝐴)) |
| 16 | 1, 2, 3, 4, 10, 6, 5, 15 | tgbtwncom 28433 | . 2 ⊢ (𝜑 → 𝐵 ∈ (𝐴𝐼(𝑀‘𝐴))) |
| 17 | 1, 2, 3, 7, 8, 4, 12, 13, 11 | mirbtwn 28603 | . . 3 ⊢ (𝜑 → 𝑌 ∈ ((𝑁‘𝑋)𝐼𝑋)) |
| 18 | 1, 2, 3, 4, 14, 12, 11, 17 | tgbtwncom 28433 | . 2 ⊢ (𝜑 → 𝑌 ∈ (𝑋𝐼(𝑁‘𝑋))) |
| 19 | mircgrextend.1 | . 2 ⊢ (𝜑 → (𝐴 − 𝐵) = (𝑋 − 𝑌)) | |
| 20 | 1, 2, 3, 4, 5, 6, 11, 12, 19 | tgcgrcomlr 28425 | . . 3 ⊢ (𝜑 → (𝐵 − 𝐴) = (𝑌 − 𝑋)) |
| 21 | 1, 2, 3, 7, 8, 4, 6, 9, 5 | mircgr 28602 | . . 3 ⊢ (𝜑 → (𝐵 − (𝑀‘𝐴)) = (𝐵 − 𝐴)) |
| 22 | 1, 2, 3, 7, 8, 4, 12, 13, 11 | mircgr 28602 | . . 3 ⊢ (𝜑 → (𝑌 − (𝑁‘𝑋)) = (𝑌 − 𝑋)) |
| 23 | 20, 21, 22 | 3eqtr4d 2779 | . 2 ⊢ (𝜑 → (𝐵 − (𝑀‘𝐴)) = (𝑌 − (𝑁‘𝑋))) |
| 24 | 1, 2, 3, 4, 5, 6, 10, 11, 12, 14, 16, 18, 19, 23 | tgcgrextend 28430 | 1 ⊢ (𝜑 → (𝐴 − (𝑀‘𝐴)) = (𝑋 − (𝑁‘𝑋))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 ‘cfv 6541 (class class class)co 7413 Basecbs 17230 distcds 17283 TarskiGcstrkg 28372 Itvcitv 28378 LineGclng 28379 cgrGccgrg 28455 pInvGcmir 28597 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pr 5412 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-riota 7370 df-ov 7416 df-trkgc 28393 df-trkgb 28394 df-trkgcb 28395 df-trkg 28398 df-mir 28598 |
| This theorem is referenced by: mirtrcgr 28628 |
| Copyright terms: Public domain | W3C validator |