MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mircgrextend Structured version   Visualization version   GIF version

Theorem mircgrextend 27930
Description: Link congruence over a pair of mirror points. cf tgcgrextend 27733. (Contributed by Thierry Arnoux, 4-Oct-2020.)
Hypotheses
Ref Expression
mirval.p 𝑃 = (Baseβ€˜πΊ)
mirval.d βˆ’ = (distβ€˜πΊ)
mirval.i 𝐼 = (Itvβ€˜πΊ)
mirval.l 𝐿 = (LineGβ€˜πΊ)
mirval.s 𝑆 = (pInvGβ€˜πΊ)
mirval.g (πœ‘ β†’ 𝐺 ∈ TarskiG)
mirtrcgr.e ∼ = (cgrGβ€˜πΊ)
mirtrcgr.m 𝑀 = (π‘†β€˜π΅)
mirtrcgr.n 𝑁 = (π‘†β€˜π‘Œ)
mirtrcgr.a (πœ‘ β†’ 𝐴 ∈ 𝑃)
mirtrcgr.b (πœ‘ β†’ 𝐡 ∈ 𝑃)
mirtrcgr.x (πœ‘ β†’ 𝑋 ∈ 𝑃)
mirtrcgr.y (πœ‘ β†’ π‘Œ ∈ 𝑃)
mircgrextend.1 (πœ‘ β†’ (𝐴 βˆ’ 𝐡) = (𝑋 βˆ’ π‘Œ))
Assertion
Ref Expression
mircgrextend (πœ‘ β†’ (𝐴 βˆ’ (π‘€β€˜π΄)) = (𝑋 βˆ’ (π‘β€˜π‘‹)))

Proof of Theorem mircgrextend
StepHypRef Expression
1 mirval.p . 2 𝑃 = (Baseβ€˜πΊ)
2 mirval.d . 2 βˆ’ = (distβ€˜πΊ)
3 mirval.i . 2 𝐼 = (Itvβ€˜πΊ)
4 mirval.g . 2 (πœ‘ β†’ 𝐺 ∈ TarskiG)
5 mirtrcgr.a . 2 (πœ‘ β†’ 𝐴 ∈ 𝑃)
6 mirtrcgr.b . 2 (πœ‘ β†’ 𝐡 ∈ 𝑃)
7 mirval.l . . 3 𝐿 = (LineGβ€˜πΊ)
8 mirval.s . . 3 𝑆 = (pInvGβ€˜πΊ)
9 mirtrcgr.m . . 3 𝑀 = (π‘†β€˜π΅)
101, 2, 3, 7, 8, 4, 6, 9, 5mircl 27909 . 2 (πœ‘ β†’ (π‘€β€˜π΄) ∈ 𝑃)
11 mirtrcgr.x . 2 (πœ‘ β†’ 𝑋 ∈ 𝑃)
12 mirtrcgr.y . 2 (πœ‘ β†’ π‘Œ ∈ 𝑃)
13 mirtrcgr.n . . 3 𝑁 = (π‘†β€˜π‘Œ)
141, 2, 3, 7, 8, 4, 12, 13, 11mircl 27909 . 2 (πœ‘ β†’ (π‘β€˜π‘‹) ∈ 𝑃)
151, 2, 3, 7, 8, 4, 6, 9, 5mirbtwn 27906 . . 3 (πœ‘ β†’ 𝐡 ∈ ((π‘€β€˜π΄)𝐼𝐴))
161, 2, 3, 4, 10, 6, 5, 15tgbtwncom 27736 . 2 (πœ‘ β†’ 𝐡 ∈ (𝐴𝐼(π‘€β€˜π΄)))
171, 2, 3, 7, 8, 4, 12, 13, 11mirbtwn 27906 . . 3 (πœ‘ β†’ π‘Œ ∈ ((π‘β€˜π‘‹)𝐼𝑋))
181, 2, 3, 4, 14, 12, 11, 17tgbtwncom 27736 . 2 (πœ‘ β†’ π‘Œ ∈ (𝑋𝐼(π‘β€˜π‘‹)))
19 mircgrextend.1 . 2 (πœ‘ β†’ (𝐴 βˆ’ 𝐡) = (𝑋 βˆ’ π‘Œ))
201, 2, 3, 4, 5, 6, 11, 12, 19tgcgrcomlr 27728 . . 3 (πœ‘ β†’ (𝐡 βˆ’ 𝐴) = (π‘Œ βˆ’ 𝑋))
211, 2, 3, 7, 8, 4, 6, 9, 5mircgr 27905 . . 3 (πœ‘ β†’ (𝐡 βˆ’ (π‘€β€˜π΄)) = (𝐡 βˆ’ 𝐴))
221, 2, 3, 7, 8, 4, 12, 13, 11mircgr 27905 . . 3 (πœ‘ β†’ (π‘Œ βˆ’ (π‘β€˜π‘‹)) = (π‘Œ βˆ’ 𝑋))
2320, 21, 223eqtr4d 2782 . 2 (πœ‘ β†’ (𝐡 βˆ’ (π‘€β€˜π΄)) = (π‘Œ βˆ’ (π‘β€˜π‘‹)))
241, 2, 3, 4, 5, 6, 10, 11, 12, 14, 16, 18, 19, 23tgcgrextend 27733 1 (πœ‘ β†’ (𝐴 βˆ’ (π‘€β€˜π΄)) = (𝑋 βˆ’ (π‘β€˜π‘‹)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   = wceq 1541   ∈ wcel 2106  β€˜cfv 6543  (class class class)co 7408  Basecbs 17143  distcds 17205  TarskiGcstrkg 27675  Itvcitv 27681  LineGclng 27682  cgrGccgrg 27758  pInvGcmir 27900
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7364  df-ov 7411  df-trkgc 27696  df-trkgb 27697  df-trkgcb 27698  df-trkg 27701  df-mir 27901
This theorem is referenced by:  mirtrcgr  27931
  Copyright terms: Public domain W3C validator