MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mircgrextend Structured version   Visualization version   GIF version

Theorem mircgrextend 28666
Description: Link congruence over a pair of mirror points. cf tgcgrextend 28469. (Contributed by Thierry Arnoux, 4-Oct-2020.)
Hypotheses
Ref Expression
mirval.p 𝑃 = (Base‘𝐺)
mirval.d = (dist‘𝐺)
mirval.i 𝐼 = (Itv‘𝐺)
mirval.l 𝐿 = (LineG‘𝐺)
mirval.s 𝑆 = (pInvG‘𝐺)
mirval.g (𝜑𝐺 ∈ TarskiG)
mirtrcgr.e = (cgrG‘𝐺)
mirtrcgr.m 𝑀 = (𝑆𝐵)
mirtrcgr.n 𝑁 = (𝑆𝑌)
mirtrcgr.a (𝜑𝐴𝑃)
mirtrcgr.b (𝜑𝐵𝑃)
mirtrcgr.x (𝜑𝑋𝑃)
mirtrcgr.y (𝜑𝑌𝑃)
mircgrextend.1 (𝜑 → (𝐴 𝐵) = (𝑋 𝑌))
Assertion
Ref Expression
mircgrextend (𝜑 → (𝐴 (𝑀𝐴)) = (𝑋 (𝑁𝑋)))

Proof of Theorem mircgrextend
StepHypRef Expression
1 mirval.p . 2 𝑃 = (Base‘𝐺)
2 mirval.d . 2 = (dist‘𝐺)
3 mirval.i . 2 𝐼 = (Itv‘𝐺)
4 mirval.g . 2 (𝜑𝐺 ∈ TarskiG)
5 mirtrcgr.a . 2 (𝜑𝐴𝑃)
6 mirtrcgr.b . 2 (𝜑𝐵𝑃)
7 mirval.l . . 3 𝐿 = (LineG‘𝐺)
8 mirval.s . . 3 𝑆 = (pInvG‘𝐺)
9 mirtrcgr.m . . 3 𝑀 = (𝑆𝐵)
101, 2, 3, 7, 8, 4, 6, 9, 5mircl 28645 . 2 (𝜑 → (𝑀𝐴) ∈ 𝑃)
11 mirtrcgr.x . 2 (𝜑𝑋𝑃)
12 mirtrcgr.y . 2 (𝜑𝑌𝑃)
13 mirtrcgr.n . . 3 𝑁 = (𝑆𝑌)
141, 2, 3, 7, 8, 4, 12, 13, 11mircl 28645 . 2 (𝜑 → (𝑁𝑋) ∈ 𝑃)
151, 2, 3, 7, 8, 4, 6, 9, 5mirbtwn 28642 . . 3 (𝜑𝐵 ∈ ((𝑀𝐴)𝐼𝐴))
161, 2, 3, 4, 10, 6, 5, 15tgbtwncom 28472 . 2 (𝜑𝐵 ∈ (𝐴𝐼(𝑀𝐴)))
171, 2, 3, 7, 8, 4, 12, 13, 11mirbtwn 28642 . . 3 (𝜑𝑌 ∈ ((𝑁𝑋)𝐼𝑋))
181, 2, 3, 4, 14, 12, 11, 17tgbtwncom 28472 . 2 (𝜑𝑌 ∈ (𝑋𝐼(𝑁𝑋)))
19 mircgrextend.1 . 2 (𝜑 → (𝐴 𝐵) = (𝑋 𝑌))
201, 2, 3, 4, 5, 6, 11, 12, 19tgcgrcomlr 28464 . . 3 (𝜑 → (𝐵 𝐴) = (𝑌 𝑋))
211, 2, 3, 7, 8, 4, 6, 9, 5mircgr 28641 . . 3 (𝜑 → (𝐵 (𝑀𝐴)) = (𝐵 𝐴))
221, 2, 3, 7, 8, 4, 12, 13, 11mircgr 28641 . . 3 (𝜑 → (𝑌 (𝑁𝑋)) = (𝑌 𝑋))
2320, 21, 223eqtr4d 2781 . 2 (𝜑 → (𝐵 (𝑀𝐴)) = (𝑌 (𝑁𝑋)))
241, 2, 3, 4, 5, 6, 10, 11, 12, 14, 16, 18, 19, 23tgcgrextend 28469 1 (𝜑 → (𝐴 (𝑀𝐴)) = (𝑋 (𝑁𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  cfv 6536  (class class class)co 7410  Basecbs 17233  distcds 17285  TarskiGcstrkg 28411  Itvcitv 28417  LineGclng 28418  cgrGccgrg 28494  pInvGcmir 28636
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-trkgc 28432  df-trkgb 28433  df-trkgcb 28434  df-trkg 28437  df-mir 28637
This theorem is referenced by:  mirtrcgr  28667
  Copyright terms: Public domain W3C validator