| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mircgrextend | Structured version Visualization version GIF version | ||
| Description: Link congruence over a pair of mirror points. cf tgcgrextend 28456. (Contributed by Thierry Arnoux, 4-Oct-2020.) |
| Ref | Expression |
|---|---|
| mirval.p | ⊢ 𝑃 = (Base‘𝐺) |
| mirval.d | ⊢ − = (dist‘𝐺) |
| mirval.i | ⊢ 𝐼 = (Itv‘𝐺) |
| mirval.l | ⊢ 𝐿 = (LineG‘𝐺) |
| mirval.s | ⊢ 𝑆 = (pInvG‘𝐺) |
| mirval.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
| mirtrcgr.e | ⊢ ∼ = (cgrG‘𝐺) |
| mirtrcgr.m | ⊢ 𝑀 = (𝑆‘𝐵) |
| mirtrcgr.n | ⊢ 𝑁 = (𝑆‘𝑌) |
| mirtrcgr.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
| mirtrcgr.b | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
| mirtrcgr.x | ⊢ (𝜑 → 𝑋 ∈ 𝑃) |
| mirtrcgr.y | ⊢ (𝜑 → 𝑌 ∈ 𝑃) |
| mircgrextend.1 | ⊢ (𝜑 → (𝐴 − 𝐵) = (𝑋 − 𝑌)) |
| Ref | Expression |
|---|---|
| mircgrextend | ⊢ (𝜑 → (𝐴 − (𝑀‘𝐴)) = (𝑋 − (𝑁‘𝑋))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mirval.p | . 2 ⊢ 𝑃 = (Base‘𝐺) | |
| 2 | mirval.d | . 2 ⊢ − = (dist‘𝐺) | |
| 3 | mirval.i | . 2 ⊢ 𝐼 = (Itv‘𝐺) | |
| 4 | mirval.g | . 2 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
| 5 | mirtrcgr.a | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
| 6 | mirtrcgr.b | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
| 7 | mirval.l | . . 3 ⊢ 𝐿 = (LineG‘𝐺) | |
| 8 | mirval.s | . . 3 ⊢ 𝑆 = (pInvG‘𝐺) | |
| 9 | mirtrcgr.m | . . 3 ⊢ 𝑀 = (𝑆‘𝐵) | |
| 10 | 1, 2, 3, 7, 8, 4, 6, 9, 5 | mircl 28632 | . 2 ⊢ (𝜑 → (𝑀‘𝐴) ∈ 𝑃) |
| 11 | mirtrcgr.x | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝑃) | |
| 12 | mirtrcgr.y | . 2 ⊢ (𝜑 → 𝑌 ∈ 𝑃) | |
| 13 | mirtrcgr.n | . . 3 ⊢ 𝑁 = (𝑆‘𝑌) | |
| 14 | 1, 2, 3, 7, 8, 4, 12, 13, 11 | mircl 28632 | . 2 ⊢ (𝜑 → (𝑁‘𝑋) ∈ 𝑃) |
| 15 | 1, 2, 3, 7, 8, 4, 6, 9, 5 | mirbtwn 28629 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ((𝑀‘𝐴)𝐼𝐴)) |
| 16 | 1, 2, 3, 4, 10, 6, 5, 15 | tgbtwncom 28459 | . 2 ⊢ (𝜑 → 𝐵 ∈ (𝐴𝐼(𝑀‘𝐴))) |
| 17 | 1, 2, 3, 7, 8, 4, 12, 13, 11 | mirbtwn 28629 | . . 3 ⊢ (𝜑 → 𝑌 ∈ ((𝑁‘𝑋)𝐼𝑋)) |
| 18 | 1, 2, 3, 4, 14, 12, 11, 17 | tgbtwncom 28459 | . 2 ⊢ (𝜑 → 𝑌 ∈ (𝑋𝐼(𝑁‘𝑋))) |
| 19 | mircgrextend.1 | . 2 ⊢ (𝜑 → (𝐴 − 𝐵) = (𝑋 − 𝑌)) | |
| 20 | 1, 2, 3, 4, 5, 6, 11, 12, 19 | tgcgrcomlr 28451 | . . 3 ⊢ (𝜑 → (𝐵 − 𝐴) = (𝑌 − 𝑋)) |
| 21 | 1, 2, 3, 7, 8, 4, 6, 9, 5 | mircgr 28628 | . . 3 ⊢ (𝜑 → (𝐵 − (𝑀‘𝐴)) = (𝐵 − 𝐴)) |
| 22 | 1, 2, 3, 7, 8, 4, 12, 13, 11 | mircgr 28628 | . . 3 ⊢ (𝜑 → (𝑌 − (𝑁‘𝑋)) = (𝑌 − 𝑋)) |
| 23 | 20, 21, 22 | 3eqtr4d 2775 | . 2 ⊢ (𝜑 → (𝐵 − (𝑀‘𝐴)) = (𝑌 − (𝑁‘𝑋))) |
| 24 | 1, 2, 3, 4, 5, 6, 10, 11, 12, 14, 16, 18, 19, 23 | tgcgrextend 28456 | 1 ⊢ (𝜑 → (𝐴 − (𝑀‘𝐴)) = (𝑋 − (𝑁‘𝑋))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2110 ‘cfv 6477 (class class class)co 7341 Basecbs 17112 distcds 17162 TarskiGcstrkg 28398 Itvcitv 28404 LineGclng 28405 cgrGccgrg 28481 pInvGcmir 28623 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3344 df-reu 3345 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-riota 7298 df-ov 7344 df-trkgc 28419 df-trkgb 28420 df-trkgcb 28421 df-trkg 28424 df-mir 28624 |
| This theorem is referenced by: mirtrcgr 28654 |
| Copyright terms: Public domain | W3C validator |