| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mircgrextend | Structured version Visualization version GIF version | ||
| Description: Link congruence over a pair of mirror points. cf tgcgrextend 28412. (Contributed by Thierry Arnoux, 4-Oct-2020.) |
| Ref | Expression |
|---|---|
| mirval.p | ⊢ 𝑃 = (Base‘𝐺) |
| mirval.d | ⊢ − = (dist‘𝐺) |
| mirval.i | ⊢ 𝐼 = (Itv‘𝐺) |
| mirval.l | ⊢ 𝐿 = (LineG‘𝐺) |
| mirval.s | ⊢ 𝑆 = (pInvG‘𝐺) |
| mirval.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
| mirtrcgr.e | ⊢ ∼ = (cgrG‘𝐺) |
| mirtrcgr.m | ⊢ 𝑀 = (𝑆‘𝐵) |
| mirtrcgr.n | ⊢ 𝑁 = (𝑆‘𝑌) |
| mirtrcgr.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
| mirtrcgr.b | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
| mirtrcgr.x | ⊢ (𝜑 → 𝑋 ∈ 𝑃) |
| mirtrcgr.y | ⊢ (𝜑 → 𝑌 ∈ 𝑃) |
| mircgrextend.1 | ⊢ (𝜑 → (𝐴 − 𝐵) = (𝑋 − 𝑌)) |
| Ref | Expression |
|---|---|
| mircgrextend | ⊢ (𝜑 → (𝐴 − (𝑀‘𝐴)) = (𝑋 − (𝑁‘𝑋))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mirval.p | . 2 ⊢ 𝑃 = (Base‘𝐺) | |
| 2 | mirval.d | . 2 ⊢ − = (dist‘𝐺) | |
| 3 | mirval.i | . 2 ⊢ 𝐼 = (Itv‘𝐺) | |
| 4 | mirval.g | . 2 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
| 5 | mirtrcgr.a | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
| 6 | mirtrcgr.b | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
| 7 | mirval.l | . . 3 ⊢ 𝐿 = (LineG‘𝐺) | |
| 8 | mirval.s | . . 3 ⊢ 𝑆 = (pInvG‘𝐺) | |
| 9 | mirtrcgr.m | . . 3 ⊢ 𝑀 = (𝑆‘𝐵) | |
| 10 | 1, 2, 3, 7, 8, 4, 6, 9, 5 | mircl 28588 | . 2 ⊢ (𝜑 → (𝑀‘𝐴) ∈ 𝑃) |
| 11 | mirtrcgr.x | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝑃) | |
| 12 | mirtrcgr.y | . 2 ⊢ (𝜑 → 𝑌 ∈ 𝑃) | |
| 13 | mirtrcgr.n | . . 3 ⊢ 𝑁 = (𝑆‘𝑌) | |
| 14 | 1, 2, 3, 7, 8, 4, 12, 13, 11 | mircl 28588 | . 2 ⊢ (𝜑 → (𝑁‘𝑋) ∈ 𝑃) |
| 15 | 1, 2, 3, 7, 8, 4, 6, 9, 5 | mirbtwn 28585 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ((𝑀‘𝐴)𝐼𝐴)) |
| 16 | 1, 2, 3, 4, 10, 6, 5, 15 | tgbtwncom 28415 | . 2 ⊢ (𝜑 → 𝐵 ∈ (𝐴𝐼(𝑀‘𝐴))) |
| 17 | 1, 2, 3, 7, 8, 4, 12, 13, 11 | mirbtwn 28585 | . . 3 ⊢ (𝜑 → 𝑌 ∈ ((𝑁‘𝑋)𝐼𝑋)) |
| 18 | 1, 2, 3, 4, 14, 12, 11, 17 | tgbtwncom 28415 | . 2 ⊢ (𝜑 → 𝑌 ∈ (𝑋𝐼(𝑁‘𝑋))) |
| 19 | mircgrextend.1 | . 2 ⊢ (𝜑 → (𝐴 − 𝐵) = (𝑋 − 𝑌)) | |
| 20 | 1, 2, 3, 4, 5, 6, 11, 12, 19 | tgcgrcomlr 28407 | . . 3 ⊢ (𝜑 → (𝐵 − 𝐴) = (𝑌 − 𝑋)) |
| 21 | 1, 2, 3, 7, 8, 4, 6, 9, 5 | mircgr 28584 | . . 3 ⊢ (𝜑 → (𝐵 − (𝑀‘𝐴)) = (𝐵 − 𝐴)) |
| 22 | 1, 2, 3, 7, 8, 4, 12, 13, 11 | mircgr 28584 | . . 3 ⊢ (𝜑 → (𝑌 − (𝑁‘𝑋)) = (𝑌 − 𝑋)) |
| 23 | 20, 21, 22 | 3eqtr4d 2774 | . 2 ⊢ (𝜑 → (𝐵 − (𝑀‘𝐴)) = (𝑌 − (𝑁‘𝑋))) |
| 24 | 1, 2, 3, 4, 5, 6, 10, 11, 12, 14, 16, 18, 19, 23 | tgcgrextend 28412 | 1 ⊢ (𝜑 → (𝐴 − (𝑀‘𝐴)) = (𝑋 − (𝑁‘𝑋))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ‘cfv 6511 (class class class)co 7387 Basecbs 17179 distcds 17229 TarskiGcstrkg 28354 Itvcitv 28360 LineGclng 28361 cgrGccgrg 28437 pInvGcmir 28579 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-trkgc 28375 df-trkgb 28376 df-trkgcb 28377 df-trkg 28380 df-mir 28580 |
| This theorem is referenced by: mirtrcgr 28610 |
| Copyright terms: Public domain | W3C validator |