Step | Hyp | Ref
| Expression |
1 | | iscgra.p |
. . 3
β’ π = (BaseβπΊ) |
2 | | eqid 2732 |
. . 3
β’
(distβπΊ) =
(distβπΊ) |
3 | | iscgra.i |
. . 3
β’ πΌ = (ItvβπΊ) |
4 | | iscgra.g |
. . . 4
β’ (π β πΊ β TarskiG) |
5 | 4 | ad3antrrr 728 |
. . 3
β’ ((((π β§ π₯ β π) β§ π¦ β π) β§ (β¨βπ΄π΅πΆββ©(cgrGβπΊ)β¨βπ₯πΈπ¦ββ© β§ π₯(πΎβπΈ)π· β§ π¦(πΎβπΈ)πΉ)) β πΊ β TarskiG) |
6 | | iscgra.e |
. . . 4
β’ (π β πΈ β π) |
7 | 6 | ad3antrrr 728 |
. . 3
β’ ((((π β§ π₯ β π) β§ π¦ β π) β§ (β¨βπ΄π΅πΆββ©(cgrGβπΊ)β¨βπ₯πΈπ¦ββ© β§ π₯(πΎβπΈ)π· β§ π¦(πΎβπΈ)πΉ)) β πΈ β π) |
8 | | simplr 767 |
. . 3
β’ ((((π β§ π₯ β π) β§ π¦ β π) β§ (β¨βπ΄π΅πΆββ©(cgrGβπΊ)β¨βπ₯πΈπ¦ββ© β§ π₯(πΎβπΈ)π· β§ π¦(πΎβπΈ)πΉ)) β π¦ β π) |
9 | | iscgra.b |
. . . 4
β’ (π β π΅ β π) |
10 | 9 | ad3antrrr 728 |
. . 3
β’ ((((π β§ π₯ β π) β§ π¦ β π) β§ (β¨βπ΄π΅πΆββ©(cgrGβπΊ)β¨βπ₯πΈπ¦ββ© β§ π₯(πΎβπΈ)π· β§ π¦(πΎβπΈ)πΉ)) β π΅ β π) |
11 | | iscgra.c |
. . . 4
β’ (π β πΆ β π) |
12 | 11 | ad3antrrr 728 |
. . 3
β’ ((((π β§ π₯ β π) β§ π¦ β π) β§ (β¨βπ΄π΅πΆββ©(cgrGβπΊ)β¨βπ₯πΈπ¦ββ© β§ π₯(πΎβπΈ)π· β§ π¦(πΎβπΈ)πΉ)) β πΆ β π) |
13 | | eqid 2732 |
. . . . 5
β’
(cgrGβπΊ) =
(cgrGβπΊ) |
14 | | iscgra.a |
. . . . . 6
β’ (π β π΄ β π) |
15 | 14 | ad3antrrr 728 |
. . . . 5
β’ ((((π β§ π₯ β π) β§ π¦ β π) β§ (β¨βπ΄π΅πΆββ©(cgrGβπΊ)β¨βπ₯πΈπ¦ββ© β§ π₯(πΎβπΈ)π· β§ π¦(πΎβπΈ)πΉ)) β π΄ β π) |
16 | | simpllr 774 |
. . . . 5
β’ ((((π β§ π₯ β π) β§ π¦ β π) β§ (β¨βπ΄π΅πΆββ©(cgrGβπΊ)β¨βπ₯πΈπ¦ββ© β§ π₯(πΎβπΈ)π· β§ π¦(πΎβπΈ)πΉ)) β π₯ β π) |
17 | | simpr1 1194 |
. . . . 5
β’ ((((π β§ π₯ β π) β§ π¦ β π) β§ (β¨βπ΄π΅πΆββ©(cgrGβπΊ)β¨βπ₯πΈπ¦ββ© β§ π₯(πΎβπΈ)π· β§ π¦(πΎβπΈ)πΉ)) β β¨βπ΄π΅πΆββ©(cgrGβπΊ)β¨βπ₯πΈπ¦ββ©) |
18 | 1, 2, 3, 13, 5, 15, 10, 12, 16, 7, 8, 17 | cgr3simp2 28027 |
. . . 4
β’ ((((π β§ π₯ β π) β§ π¦ β π) β§ (β¨βπ΄π΅πΆββ©(cgrGβπΊ)β¨βπ₯πΈπ¦ββ© β§ π₯(πΎβπΈ)π· β§ π¦(πΎβπΈ)πΉ)) β (π΅(distβπΊ)πΆ) = (πΈ(distβπΊ)π¦)) |
19 | 18 | eqcomd 2738 |
. . 3
β’ ((((π β§ π₯ β π) β§ π¦ β π) β§ (β¨βπ΄π΅πΆββ©(cgrGβπΊ)β¨βπ₯πΈπ¦ββ© β§ π₯(πΎβπΈ)π· β§ π¦(πΎβπΈ)πΉ)) β (πΈ(distβπΊ)π¦) = (π΅(distβπΊ)πΆ)) |
20 | | iscgra.k |
. . . . 5
β’ πΎ = (hlGβπΊ) |
21 | | iscgra.f |
. . . . . 6
β’ (π β πΉ β π) |
22 | 21 | ad3antrrr 728 |
. . . . 5
β’ ((((π β§ π₯ β π) β§ π¦ β π) β§ (β¨βπ΄π΅πΆββ©(cgrGβπΊ)β¨βπ₯πΈπ¦ββ© β§ π₯(πΎβπΈ)π· β§ π¦(πΎβπΈ)πΉ)) β πΉ β π) |
23 | | simpr3 1196 |
. . . . 5
β’ ((((π β§ π₯ β π) β§ π¦ β π) β§ (β¨βπ΄π΅πΆββ©(cgrGβπΊ)β¨βπ₯πΈπ¦ββ© β§ π₯(πΎβπΈ)π· β§ π¦(πΎβπΈ)πΉ)) β π¦(πΎβπΈ)πΉ) |
24 | 1, 3, 20, 8, 22, 7, 5, 23 | hlne1 28111 |
. . . 4
β’ ((((π β§ π₯ β π) β§ π¦ β π) β§ (β¨βπ΄π΅πΆββ©(cgrGβπΊ)β¨βπ₯πΈπ¦ββ© β§ π₯(πΎβπΈ)π· β§ π¦(πΎβπΈ)πΉ)) β π¦ β πΈ) |
25 | 24 | necomd 2996 |
. . 3
β’ ((((π β§ π₯ β π) β§ π¦ β π) β§ (β¨βπ΄π΅πΆββ©(cgrGβπΊ)β¨βπ₯πΈπ¦ββ© β§ π₯(πΎβπΈ)π· β§ π¦(πΎβπΈ)πΉ)) β πΈ β π¦) |
26 | 1, 2, 3, 5, 7, 8, 10, 12, 19, 25 | tgcgrneq 27989 |
. 2
β’ ((((π β§ π₯ β π) β§ π¦ β π) β§ (β¨βπ΄π΅πΆββ©(cgrGβπΊ)β¨βπ₯πΈπ¦ββ© β§ π₯(πΎβπΈ)π· β§ π¦(πΎβπΈ)πΉ)) β π΅ β πΆ) |
27 | | cgrahl1.2 |
. . 3
β’ (π β β¨βπ΄π΅πΆββ©(cgrAβπΊ)β¨βπ·πΈπΉββ©) |
28 | | iscgra.d |
. . . 4
β’ (π β π· β π) |
29 | 1, 3, 20, 4, 14, 9, 11, 28, 6, 21 | iscgra 28315 |
. . 3
β’ (π β (β¨βπ΄π΅πΆββ©(cgrAβπΊ)β¨βπ·πΈπΉββ© β βπ₯ β π βπ¦ β π (β¨βπ΄π΅πΆββ©(cgrGβπΊ)β¨βπ₯πΈπ¦ββ© β§ π₯(πΎβπΈ)π· β§ π¦(πΎβπΈ)πΉ))) |
30 | 27, 29 | mpbid 231 |
. 2
β’ (π β βπ₯ β π βπ¦ β π (β¨βπ΄π΅πΆββ©(cgrGβπΊ)β¨βπ₯πΈπ¦ββ© β§ π₯(πΎβπΈ)π· β§ π¦(πΎβπΈ)πΉ)) |
31 | 26, 30 | r19.29vva 3213 |
1
β’ (π β π΅ β πΆ) |