Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > tgsas3 | Structured version Visualization version GIF version |
Description: First congruence theorem: SAS. Theorem 11.49 of [Schwabhauser] p. 107. (Contributed by Thierry Arnoux, 1-Aug-2020.) |
Ref | Expression |
---|---|
tgsas.p | ⊢ 𝑃 = (Base‘𝐺) |
tgsas.m | ⊢ − = (dist‘𝐺) |
tgsas.i | ⊢ 𝐼 = (Itv‘𝐺) |
tgsas.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
tgsas.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
tgsas.b | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
tgsas.c | ⊢ (𝜑 → 𝐶 ∈ 𝑃) |
tgsas.d | ⊢ (𝜑 → 𝐷 ∈ 𝑃) |
tgsas.e | ⊢ (𝜑 → 𝐸 ∈ 𝑃) |
tgsas.f | ⊢ (𝜑 → 𝐹 ∈ 𝑃) |
tgsas.1 | ⊢ (𝜑 → (𝐴 − 𝐵) = (𝐷 − 𝐸)) |
tgsas.2 | ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉(cgrA‘𝐺)〈“𝐷𝐸𝐹”〉) |
tgsas.3 | ⊢ (𝜑 → (𝐵 − 𝐶) = (𝐸 − 𝐹)) |
tgsas2.4 | ⊢ (𝜑 → 𝐴 ≠ 𝐶) |
Ref | Expression |
---|---|
tgsas3 | ⊢ (𝜑 → 〈“𝐵𝐶𝐴”〉(cgrA‘𝐺)〈“𝐸𝐹𝐷”〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tgsas.p | . 2 ⊢ 𝑃 = (Base‘𝐺) | |
2 | tgsas.i | . 2 ⊢ 𝐼 = (Itv‘𝐺) | |
3 | eqid 2738 | . 2 ⊢ (hlG‘𝐺) = (hlG‘𝐺) | |
4 | tgsas.g | . 2 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
5 | tgsas.b | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
6 | tgsas.c | . 2 ⊢ (𝜑 → 𝐶 ∈ 𝑃) | |
7 | tgsas.a | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
8 | tgsas.e | . 2 ⊢ (𝜑 → 𝐸 ∈ 𝑃) | |
9 | tgsas.f | . 2 ⊢ (𝜑 → 𝐹 ∈ 𝑃) | |
10 | tgsas.d | . 2 ⊢ (𝜑 → 𝐷 ∈ 𝑃) | |
11 | tgsas.m | . . 3 ⊢ − = (dist‘𝐺) | |
12 | eqid 2738 | . . 3 ⊢ (cgrG‘𝐺) = (cgrG‘𝐺) | |
13 | tgsas.1 | . . . 4 ⊢ (𝜑 → (𝐴 − 𝐵) = (𝐷 − 𝐸)) | |
14 | tgsas.2 | . . . 4 ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉(cgrA‘𝐺)〈“𝐷𝐸𝐹”〉) | |
15 | tgsas.3 | . . . 4 ⊢ (𝜑 → (𝐵 − 𝐶) = (𝐸 − 𝐹)) | |
16 | 1, 11, 2, 4, 7, 5, 6, 10, 8, 9, 13, 14, 15 | tgsas 27120 | . . 3 ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝐷𝐸𝐹”〉) |
17 | 1, 11, 2, 12, 4, 7, 5, 6, 10, 8, 9, 16 | cgr3rotl 26792 | . 2 ⊢ (𝜑 → 〈“𝐵𝐶𝐴”〉(cgrG‘𝐺)〈“𝐸𝐹𝐷”〉) |
18 | 1, 2, 3, 4, 7, 5, 6, 10, 8, 9, 14 | cgrane4 27080 | . . 3 ⊢ (𝜑 → 𝐸 ≠ 𝐹) |
19 | 1, 2, 3, 8, 7, 9, 4, 18 | hlid 26874 | . 2 ⊢ (𝜑 → 𝐸((hlG‘𝐺)‘𝐹)𝐸) |
20 | 1, 11, 2, 4, 7, 5, 6, 10, 8, 9, 13, 14, 15 | tgsas1 27119 | . . . . 5 ⊢ (𝜑 → (𝐶 − 𝐴) = (𝐹 − 𝐷)) |
21 | 1, 11, 2, 4, 6, 7, 9, 10, 20 | tgcgrcomlr 26745 | . . . 4 ⊢ (𝜑 → (𝐴 − 𝐶) = (𝐷 − 𝐹)) |
22 | tgsas2.4 | . . . 4 ⊢ (𝜑 → 𝐴 ≠ 𝐶) | |
23 | 1, 11, 2, 4, 7, 6, 10, 9, 21, 22 | tgcgrneq 26748 | . . 3 ⊢ (𝜑 → 𝐷 ≠ 𝐹) |
24 | 1, 2, 3, 10, 7, 9, 4, 23 | hlid 26874 | . 2 ⊢ (𝜑 → 𝐷((hlG‘𝐺)‘𝐹)𝐷) |
25 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 8, 10, 17, 19, 24 | iscgrad 27076 | 1 ⊢ (𝜑 → 〈“𝐵𝐶𝐴”〉(cgrA‘𝐺)〈“𝐸𝐹𝐷”〉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 class class class wbr 5070 ‘cfv 6418 (class class class)co 7255 〈“cs3 14483 Basecbs 16840 distcds 16897 TarskiGcstrkg 26693 Itvcitv 26699 cgrGccgrg 26775 hlGchlg 26865 cgrAccgra 27072 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-oadd 8271 df-er 8456 df-map 8575 df-pm 8576 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-dju 9590 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-3 11967 df-n0 12164 df-xnn0 12236 df-z 12250 df-uz 12512 df-fz 13169 df-fzo 13312 df-hash 13973 df-word 14146 df-concat 14202 df-s1 14229 df-s2 14489 df-s3 14490 df-trkgc 26713 df-trkgb 26714 df-trkgcb 26715 df-trkg 26718 df-cgrg 26776 df-leg 26848 df-hlg 26866 df-cgra 27073 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |