MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cgrane1 Structured version   Visualization version   GIF version

Theorem cgrane1 28318
Description: Angles imply inequality. (Contributed by Thierry Arnoux, 1-Aug-2020.)
Hypotheses
Ref Expression
iscgra.p 𝑃 = (Baseβ€˜πΊ)
iscgra.i 𝐼 = (Itvβ€˜πΊ)
iscgra.k 𝐾 = (hlGβ€˜πΊ)
iscgra.g (πœ‘ β†’ 𝐺 ∈ TarskiG)
iscgra.a (πœ‘ β†’ 𝐴 ∈ 𝑃)
iscgra.b (πœ‘ β†’ 𝐡 ∈ 𝑃)
iscgra.c (πœ‘ β†’ 𝐢 ∈ 𝑃)
iscgra.d (πœ‘ β†’ 𝐷 ∈ 𝑃)
iscgra.e (πœ‘ β†’ 𝐸 ∈ 𝑃)
iscgra.f (πœ‘ β†’ 𝐹 ∈ 𝑃)
cgrahl1.2 (πœ‘ β†’ βŸ¨β€œπ΄π΅πΆβ€βŸ©(cgrAβ€˜πΊ)βŸ¨β€œπ·πΈπΉβ€βŸ©)
Assertion
Ref Expression
cgrane1 (πœ‘ β†’ 𝐴 β‰  𝐡)

Proof of Theorem cgrane1
Dummy variables π‘₯ 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iscgra.p . . 3 𝑃 = (Baseβ€˜πΊ)
2 eqid 2732 . . 3 (distβ€˜πΊ) = (distβ€˜πΊ)
3 iscgra.i . . 3 𝐼 = (Itvβ€˜πΊ)
4 iscgra.g . . . 4 (πœ‘ β†’ 𝐺 ∈ TarskiG)
54ad3antrrr 728 . . 3 ((((πœ‘ ∧ π‘₯ ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (βŸ¨β€œπ΄π΅πΆβ€βŸ©(cgrGβ€˜πΊ)βŸ¨β€œπ‘₯πΈπ‘¦β€βŸ© ∧ π‘₯(πΎβ€˜πΈ)𝐷 ∧ 𝑦(πΎβ€˜πΈ)𝐹)) β†’ 𝐺 ∈ TarskiG)
6 simpllr 774 . . 3 ((((πœ‘ ∧ π‘₯ ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (βŸ¨β€œπ΄π΅πΆβ€βŸ©(cgrGβ€˜πΊ)βŸ¨β€œπ‘₯πΈπ‘¦β€βŸ© ∧ π‘₯(πΎβ€˜πΈ)𝐷 ∧ 𝑦(πΎβ€˜πΈ)𝐹)) β†’ π‘₯ ∈ 𝑃)
7 iscgra.e . . . 4 (πœ‘ β†’ 𝐸 ∈ 𝑃)
87ad3antrrr 728 . . 3 ((((πœ‘ ∧ π‘₯ ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (βŸ¨β€œπ΄π΅πΆβ€βŸ©(cgrGβ€˜πΊ)βŸ¨β€œπ‘₯πΈπ‘¦β€βŸ© ∧ π‘₯(πΎβ€˜πΈ)𝐷 ∧ 𝑦(πΎβ€˜πΈ)𝐹)) β†’ 𝐸 ∈ 𝑃)
9 iscgra.a . . . 4 (πœ‘ β†’ 𝐴 ∈ 𝑃)
109ad3antrrr 728 . . 3 ((((πœ‘ ∧ π‘₯ ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (βŸ¨β€œπ΄π΅πΆβ€βŸ©(cgrGβ€˜πΊ)βŸ¨β€œπ‘₯πΈπ‘¦β€βŸ© ∧ π‘₯(πΎβ€˜πΈ)𝐷 ∧ 𝑦(πΎβ€˜πΈ)𝐹)) β†’ 𝐴 ∈ 𝑃)
11 iscgra.b . . . 4 (πœ‘ β†’ 𝐡 ∈ 𝑃)
1211ad3antrrr 728 . . 3 ((((πœ‘ ∧ π‘₯ ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (βŸ¨β€œπ΄π΅πΆβ€βŸ©(cgrGβ€˜πΊ)βŸ¨β€œπ‘₯πΈπ‘¦β€βŸ© ∧ π‘₯(πΎβ€˜πΈ)𝐷 ∧ 𝑦(πΎβ€˜πΈ)𝐹)) β†’ 𝐡 ∈ 𝑃)
13 eqid 2732 . . . . 5 (cgrGβ€˜πΊ) = (cgrGβ€˜πΊ)
14 iscgra.c . . . . . 6 (πœ‘ β†’ 𝐢 ∈ 𝑃)
1514ad3antrrr 728 . . . . 5 ((((πœ‘ ∧ π‘₯ ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (βŸ¨β€œπ΄π΅πΆβ€βŸ©(cgrGβ€˜πΊ)βŸ¨β€œπ‘₯πΈπ‘¦β€βŸ© ∧ π‘₯(πΎβ€˜πΈ)𝐷 ∧ 𝑦(πΎβ€˜πΈ)𝐹)) β†’ 𝐢 ∈ 𝑃)
16 simplr 767 . . . . 5 ((((πœ‘ ∧ π‘₯ ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (βŸ¨β€œπ΄π΅πΆβ€βŸ©(cgrGβ€˜πΊ)βŸ¨β€œπ‘₯πΈπ‘¦β€βŸ© ∧ π‘₯(πΎβ€˜πΈ)𝐷 ∧ 𝑦(πΎβ€˜πΈ)𝐹)) β†’ 𝑦 ∈ 𝑃)
17 simpr1 1194 . . . . 5 ((((πœ‘ ∧ π‘₯ ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (βŸ¨β€œπ΄π΅πΆβ€βŸ©(cgrGβ€˜πΊ)βŸ¨β€œπ‘₯πΈπ‘¦β€βŸ© ∧ π‘₯(πΎβ€˜πΈ)𝐷 ∧ 𝑦(πΎβ€˜πΈ)𝐹)) β†’ βŸ¨β€œπ΄π΅πΆβ€βŸ©(cgrGβ€˜πΊ)βŸ¨β€œπ‘₯πΈπ‘¦β€βŸ©)
181, 2, 3, 13, 5, 10, 12, 15, 6, 8, 16, 17cgr3simp1 28026 . . . 4 ((((πœ‘ ∧ π‘₯ ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (βŸ¨β€œπ΄π΅πΆβ€βŸ©(cgrGβ€˜πΊ)βŸ¨β€œπ‘₯πΈπ‘¦β€βŸ© ∧ π‘₯(πΎβ€˜πΈ)𝐷 ∧ 𝑦(πΎβ€˜πΈ)𝐹)) β†’ (𝐴(distβ€˜πΊ)𝐡) = (π‘₯(distβ€˜πΊ)𝐸))
1918eqcomd 2738 . . 3 ((((πœ‘ ∧ π‘₯ ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (βŸ¨β€œπ΄π΅πΆβ€βŸ©(cgrGβ€˜πΊ)βŸ¨β€œπ‘₯πΈπ‘¦β€βŸ© ∧ π‘₯(πΎβ€˜πΈ)𝐷 ∧ 𝑦(πΎβ€˜πΈ)𝐹)) β†’ (π‘₯(distβ€˜πΊ)𝐸) = (𝐴(distβ€˜πΊ)𝐡))
20 iscgra.k . . . 4 𝐾 = (hlGβ€˜πΊ)
21 iscgra.d . . . . 5 (πœ‘ β†’ 𝐷 ∈ 𝑃)
2221ad3antrrr 728 . . . 4 ((((πœ‘ ∧ π‘₯ ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (βŸ¨β€œπ΄π΅πΆβ€βŸ©(cgrGβ€˜πΊ)βŸ¨β€œπ‘₯πΈπ‘¦β€βŸ© ∧ π‘₯(πΎβ€˜πΈ)𝐷 ∧ 𝑦(πΎβ€˜πΈ)𝐹)) β†’ 𝐷 ∈ 𝑃)
23 simpr2 1195 . . . 4 ((((πœ‘ ∧ π‘₯ ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (βŸ¨β€œπ΄π΅πΆβ€βŸ©(cgrGβ€˜πΊ)βŸ¨β€œπ‘₯πΈπ‘¦β€βŸ© ∧ π‘₯(πΎβ€˜πΈ)𝐷 ∧ 𝑦(πΎβ€˜πΈ)𝐹)) β†’ π‘₯(πΎβ€˜πΈ)𝐷)
241, 3, 20, 6, 22, 8, 5, 23hlne1 28111 . . 3 ((((πœ‘ ∧ π‘₯ ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (βŸ¨β€œπ΄π΅πΆβ€βŸ©(cgrGβ€˜πΊ)βŸ¨β€œπ‘₯πΈπ‘¦β€βŸ© ∧ π‘₯(πΎβ€˜πΈ)𝐷 ∧ 𝑦(πΎβ€˜πΈ)𝐹)) β†’ π‘₯ β‰  𝐸)
251, 2, 3, 5, 6, 8, 10, 12, 19, 24tgcgrneq 27989 . 2 ((((πœ‘ ∧ π‘₯ ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (βŸ¨β€œπ΄π΅πΆβ€βŸ©(cgrGβ€˜πΊ)βŸ¨β€œπ‘₯πΈπ‘¦β€βŸ© ∧ π‘₯(πΎβ€˜πΈ)𝐷 ∧ 𝑦(πΎβ€˜πΈ)𝐹)) β†’ 𝐴 β‰  𝐡)
26 cgrahl1.2 . . 3 (πœ‘ β†’ βŸ¨β€œπ΄π΅πΆβ€βŸ©(cgrAβ€˜πΊ)βŸ¨β€œπ·πΈπΉβ€βŸ©)
27 iscgra.f . . . 4 (πœ‘ β†’ 𝐹 ∈ 𝑃)
281, 3, 20, 4, 9, 11, 14, 21, 7, 27iscgra 28315 . . 3 (πœ‘ β†’ (βŸ¨β€œπ΄π΅πΆβ€βŸ©(cgrAβ€˜πΊ)βŸ¨β€œπ·πΈπΉβ€βŸ© ↔ βˆƒπ‘₯ ∈ 𝑃 βˆƒπ‘¦ ∈ 𝑃 (βŸ¨β€œπ΄π΅πΆβ€βŸ©(cgrGβ€˜πΊ)βŸ¨β€œπ‘₯πΈπ‘¦β€βŸ© ∧ π‘₯(πΎβ€˜πΈ)𝐷 ∧ 𝑦(πΎβ€˜πΈ)𝐹)))
2926, 28mpbid 231 . 2 (πœ‘ β†’ βˆƒπ‘₯ ∈ 𝑃 βˆƒπ‘¦ ∈ 𝑃 (βŸ¨β€œπ΄π΅πΆβ€βŸ©(cgrGβ€˜πΊ)βŸ¨β€œπ‘₯πΈπ‘¦β€βŸ© ∧ π‘₯(πΎβ€˜πΈ)𝐷 ∧ 𝑦(πΎβ€˜πΈ)𝐹))
3025, 29r19.29vva 3213 1 (πœ‘ β†’ 𝐴 β‰  𝐡)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 396   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106   β‰  wne 2940  βˆƒwrex 3070   class class class wbr 5148  β€˜cfv 6543  (class class class)co 7411  βŸ¨β€œcs3 14797  Basecbs 17148  distcds 17210  TarskiGcstrkg 27933  Itvcitv 27939  cgrGccgrg 28016  hlGchlg 28106  cgrAccgra 28313
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7727  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-tp 4633  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7367  df-ov 7414  df-oprab 7415  df-mpo 7416  df-om 7858  df-1st 7977  df-2nd 7978  df-frecs 8268  df-wrecs 8299  df-recs 8373  df-rdg 8412  df-1o 8468  df-er 8705  df-map 8824  df-pm 8825  df-en 8942  df-dom 8943  df-sdom 8944  df-fin 8945  df-card 9936  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-sub 11450  df-neg 11451  df-nn 12217  df-2 12279  df-3 12280  df-n0 12477  df-z 12563  df-uz 12827  df-fz 13489  df-fzo 13632  df-hash 14295  df-word 14469  df-concat 14525  df-s1 14550  df-s2 14803  df-s3 14804  df-trkgc 27954  df-trkgcb 27956  df-trkg 27959  df-cgrg 28017  df-hlg 28107  df-cgra 28314
This theorem is referenced by:  cgracom  28328  cgratr  28329  cgraswaplr  28331  cgracol  28334  dfcgra2  28336  sacgr  28337  leagne1  28355  tgsas1  28360  tgasa1  28364
  Copyright terms: Public domain W3C validator