MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgjustc1 Structured version   Visualization version   GIF version

Theorem tgjustc1 26261
Description: A justification for using distance equality instead of the textbook relation on pairs of points for congruence. (Contributed by Thierry Arnoux, 29-Jan-2023.)
Hypotheses
Ref Expression
tgjustc1.p 𝑃 = (Base‘𝐺)
tgjustc1.d = (dist‘𝐺)
Assertion
Ref Expression
tgjustc1 𝑟(𝑟 Er (𝑃 × 𝑃) ∧ ∀𝑤𝑃𝑥𝑃𝑦𝑃𝑧𝑃 (⟨𝑤, 𝑥𝑟𝑦, 𝑧⟩ ↔ (𝑤 𝑥) = (𝑦 𝑧)))
Distinct variable groups:   ,𝑟,𝑤,𝑥,𝑦,𝑧   𝑃,𝑟,𝑤,𝑥,𝑦,𝑧
Allowed substitution hints:   𝐺(𝑥,𝑦,𝑧,𝑤,𝑟)

Proof of Theorem tgjustc1
Dummy variables 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tgjustc1.p . . . . 5 𝑃 = (Base‘𝐺)
21fvexi 6684 . . . 4 𝑃 ∈ V
32, 2xpex 7476 . . 3 (𝑃 × 𝑃) ∈ V
4 tgjustf 26259 . . 3 ((𝑃 × 𝑃) ∈ V → ∃𝑟(𝑟 Er (𝑃 × 𝑃) ∧ ∀𝑢 ∈ (𝑃 × 𝑃)∀𝑣 ∈ (𝑃 × 𝑃)(𝑢𝑟𝑣 ↔ ( 𝑢) = ( 𝑣))))
53, 4ax-mp 5 . 2 𝑟(𝑟 Er (𝑃 × 𝑃) ∧ ∀𝑢 ∈ (𝑃 × 𝑃)∀𝑣 ∈ (𝑃 × 𝑃)(𝑢𝑟𝑣 ↔ ( 𝑢) = ( 𝑣)))
6 simplrl 775 . . . . . . 7 (((∀𝑢 ∈ (𝑃 × 𝑃)∀𝑣 ∈ (𝑃 × 𝑃)(𝑢𝑟𝑣 ↔ ( 𝑢) = ( 𝑣)) ∧ (𝑤𝑃𝑥𝑃)) ∧ (𝑦𝑃𝑧𝑃)) → 𝑤𝑃)
7 simplrr 776 . . . . . . 7 (((∀𝑢 ∈ (𝑃 × 𝑃)∀𝑣 ∈ (𝑃 × 𝑃)(𝑢𝑟𝑣 ↔ ( 𝑢) = ( 𝑣)) ∧ (𝑤𝑃𝑥𝑃)) ∧ (𝑦𝑃𝑧𝑃)) → 𝑥𝑃)
86, 7opelxpd 5593 . . . . . 6 (((∀𝑢 ∈ (𝑃 × 𝑃)∀𝑣 ∈ (𝑃 × 𝑃)(𝑢𝑟𝑣 ↔ ( 𝑢) = ( 𝑣)) ∧ (𝑤𝑃𝑥𝑃)) ∧ (𝑦𝑃𝑧𝑃)) → ⟨𝑤, 𝑥⟩ ∈ (𝑃 × 𝑃))
9 simprl 769 . . . . . . 7 (((∀𝑢 ∈ (𝑃 × 𝑃)∀𝑣 ∈ (𝑃 × 𝑃)(𝑢𝑟𝑣 ↔ ( 𝑢) = ( 𝑣)) ∧ (𝑤𝑃𝑥𝑃)) ∧ (𝑦𝑃𝑧𝑃)) → 𝑦𝑃)
10 simprr 771 . . . . . . 7 (((∀𝑢 ∈ (𝑃 × 𝑃)∀𝑣 ∈ (𝑃 × 𝑃)(𝑢𝑟𝑣 ↔ ( 𝑢) = ( 𝑣)) ∧ (𝑤𝑃𝑥𝑃)) ∧ (𝑦𝑃𝑧𝑃)) → 𝑧𝑃)
119, 10opelxpd 5593 . . . . . 6 (((∀𝑢 ∈ (𝑃 × 𝑃)∀𝑣 ∈ (𝑃 × 𝑃)(𝑢𝑟𝑣 ↔ ( 𝑢) = ( 𝑣)) ∧ (𝑤𝑃𝑥𝑃)) ∧ (𝑦𝑃𝑧𝑃)) → ⟨𝑦, 𝑧⟩ ∈ (𝑃 × 𝑃))
12 simpll 765 . . . . . 6 (((∀𝑢 ∈ (𝑃 × 𝑃)∀𝑣 ∈ (𝑃 × 𝑃)(𝑢𝑟𝑣 ↔ ( 𝑢) = ( 𝑣)) ∧ (𝑤𝑃𝑥𝑃)) ∧ (𝑦𝑃𝑧𝑃)) → ∀𝑢 ∈ (𝑃 × 𝑃)∀𝑣 ∈ (𝑃 × 𝑃)(𝑢𝑟𝑣 ↔ ( 𝑢) = ( 𝑣)))
13 breq1 5069 . . . . . . . 8 (𝑢 = ⟨𝑤, 𝑥⟩ → (𝑢𝑟𝑣 ↔ ⟨𝑤, 𝑥𝑟𝑣))
14 fveq2 6670 . . . . . . . . . 10 (𝑢 = ⟨𝑤, 𝑥⟩ → ( 𝑢) = ( ‘⟨𝑤, 𝑥⟩))
15 df-ov 7159 . . . . . . . . . 10 (𝑤 𝑥) = ( ‘⟨𝑤, 𝑥⟩)
1614, 15syl6eqr 2874 . . . . . . . . 9 (𝑢 = ⟨𝑤, 𝑥⟩ → ( 𝑢) = (𝑤 𝑥))
1716eqeq1d 2823 . . . . . . . 8 (𝑢 = ⟨𝑤, 𝑥⟩ → (( 𝑢) = ( 𝑣) ↔ (𝑤 𝑥) = ( 𝑣)))
1813, 17bibi12d 348 . . . . . . 7 (𝑢 = ⟨𝑤, 𝑥⟩ → ((𝑢𝑟𝑣 ↔ ( 𝑢) = ( 𝑣)) ↔ (⟨𝑤, 𝑥𝑟𝑣 ↔ (𝑤 𝑥) = ( 𝑣))))
19 breq2 5070 . . . . . . . 8 (𝑣 = ⟨𝑦, 𝑧⟩ → (⟨𝑤, 𝑥𝑟𝑣 ↔ ⟨𝑤, 𝑥𝑟𝑦, 𝑧⟩))
20 fveq2 6670 . . . . . . . . . 10 (𝑣 = ⟨𝑦, 𝑧⟩ → ( 𝑣) = ( ‘⟨𝑦, 𝑧⟩))
21 df-ov 7159 . . . . . . . . . 10 (𝑦 𝑧) = ( ‘⟨𝑦, 𝑧⟩)
2220, 21syl6eqr 2874 . . . . . . . . 9 (𝑣 = ⟨𝑦, 𝑧⟩ → ( 𝑣) = (𝑦 𝑧))
2322eqeq2d 2832 . . . . . . . 8 (𝑣 = ⟨𝑦, 𝑧⟩ → ((𝑤 𝑥) = ( 𝑣) ↔ (𝑤 𝑥) = (𝑦 𝑧)))
2419, 23bibi12d 348 . . . . . . 7 (𝑣 = ⟨𝑦, 𝑧⟩ → ((⟨𝑤, 𝑥𝑟𝑣 ↔ (𝑤 𝑥) = ( 𝑣)) ↔ (⟨𝑤, 𝑥𝑟𝑦, 𝑧⟩ ↔ (𝑤 𝑥) = (𝑦 𝑧))))
2518, 24rspc2va 3634 . . . . . 6 (((⟨𝑤, 𝑥⟩ ∈ (𝑃 × 𝑃) ∧ ⟨𝑦, 𝑧⟩ ∈ (𝑃 × 𝑃)) ∧ ∀𝑢 ∈ (𝑃 × 𝑃)∀𝑣 ∈ (𝑃 × 𝑃)(𝑢𝑟𝑣 ↔ ( 𝑢) = ( 𝑣))) → (⟨𝑤, 𝑥𝑟𝑦, 𝑧⟩ ↔ (𝑤 𝑥) = (𝑦 𝑧)))
268, 11, 12, 25syl21anc 835 . . . . 5 (((∀𝑢 ∈ (𝑃 × 𝑃)∀𝑣 ∈ (𝑃 × 𝑃)(𝑢𝑟𝑣 ↔ ( 𝑢) = ( 𝑣)) ∧ (𝑤𝑃𝑥𝑃)) ∧ (𝑦𝑃𝑧𝑃)) → (⟨𝑤, 𝑥𝑟𝑦, 𝑧⟩ ↔ (𝑤 𝑥) = (𝑦 𝑧)))
2726ralrimivva 3191 . . . 4 ((∀𝑢 ∈ (𝑃 × 𝑃)∀𝑣 ∈ (𝑃 × 𝑃)(𝑢𝑟𝑣 ↔ ( 𝑢) = ( 𝑣)) ∧ (𝑤𝑃𝑥𝑃)) → ∀𝑦𝑃𝑧𝑃 (⟨𝑤, 𝑥𝑟𝑦, 𝑧⟩ ↔ (𝑤 𝑥) = (𝑦 𝑧)))
2827ralrimivva 3191 . . 3 (∀𝑢 ∈ (𝑃 × 𝑃)∀𝑣 ∈ (𝑃 × 𝑃)(𝑢𝑟𝑣 ↔ ( 𝑢) = ( 𝑣)) → ∀𝑤𝑃𝑥𝑃𝑦𝑃𝑧𝑃 (⟨𝑤, 𝑥𝑟𝑦, 𝑧⟩ ↔ (𝑤 𝑥) = (𝑦 𝑧)))
2928anim2i 618 . 2 ((𝑟 Er (𝑃 × 𝑃) ∧ ∀𝑢 ∈ (𝑃 × 𝑃)∀𝑣 ∈ (𝑃 × 𝑃)(𝑢𝑟𝑣 ↔ ( 𝑢) = ( 𝑣))) → (𝑟 Er (𝑃 × 𝑃) ∧ ∀𝑤𝑃𝑥𝑃𝑦𝑃𝑧𝑃 (⟨𝑤, 𝑥𝑟𝑦, 𝑧⟩ ↔ (𝑤 𝑥) = (𝑦 𝑧))))
305, 29eximii 1837 1 𝑟(𝑟 Er (𝑃 × 𝑃) ∧ ∀𝑤𝑃𝑥𝑃𝑦𝑃𝑧𝑃 (⟨𝑤, 𝑥𝑟𝑦, 𝑧⟩ ↔ (𝑤 𝑥) = (𝑦 𝑧)))
Colors of variables: wff setvar class
Syntax hints:  wb 208  wa 398   = wceq 1537  wex 1780  wcel 2114  wral 3138  Vcvv 3494  cop 4573   class class class wbr 5066   × cxp 5553  cfv 6355  (class class class)co 7156   Er wer 8286  Basecbs 16483  distcds 16574
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3773  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-br 5067  df-opab 5129  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-iota 6314  df-fv 6363  df-ov 7159  df-er 8289
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator