Step | Hyp | Ref
| Expression |
1 | | tgjustc1.p |
. . . . 5
⊢ 𝑃 = (Base‘𝐺) |
2 | | fvex 6459 |
. . . . 5
⊢
(Base‘𝐺)
∈ V |
3 | 1, 2 | eqeltri 2855 |
. . . 4
⊢ 𝑃 ∈ V |
4 | 3, 3 | xpex 7240 |
. . 3
⊢ (𝑃 × 𝑃) ∈ V |
5 | | tgjustf 25824 |
. . 3
⊢ ((𝑃 × 𝑃) ∈ V → ∃𝑟(𝑟 Er (𝑃 × 𝑃) ∧ ∀𝑢 ∈ (𝑃 × 𝑃)∀𝑣 ∈ (𝑃 × 𝑃)(𝑢𝑟𝑣 ↔ ( − ‘𝑢) = ( − ‘𝑣)))) |
6 | 4, 5 | ax-mp 5 |
. 2
⊢
∃𝑟(𝑟 Er (𝑃 × 𝑃) ∧ ∀𝑢 ∈ (𝑃 × 𝑃)∀𝑣 ∈ (𝑃 × 𝑃)(𝑢𝑟𝑣 ↔ ( − ‘𝑢) = ( − ‘𝑣))) |
7 | | simplrl 767 |
. . . . . . 7
⊢
(((∀𝑢 ∈
(𝑃 × 𝑃)∀𝑣 ∈ (𝑃 × 𝑃)(𝑢𝑟𝑣 ↔ ( − ‘𝑢) = ( − ‘𝑣)) ∧ (𝑤 ∈ 𝑃 ∧ 𝑥 ∈ 𝑃)) ∧ (𝑦 ∈ 𝑃 ∧ 𝑧 ∈ 𝑃)) → 𝑤 ∈ 𝑃) |
8 | | simplrr 768 |
. . . . . . 7
⊢
(((∀𝑢 ∈
(𝑃 × 𝑃)∀𝑣 ∈ (𝑃 × 𝑃)(𝑢𝑟𝑣 ↔ ( − ‘𝑢) = ( − ‘𝑣)) ∧ (𝑤 ∈ 𝑃 ∧ 𝑥 ∈ 𝑃)) ∧ (𝑦 ∈ 𝑃 ∧ 𝑧 ∈ 𝑃)) → 𝑥 ∈ 𝑃) |
9 | 7, 8 | opelxpd 5393 |
. . . . . 6
⊢
(((∀𝑢 ∈
(𝑃 × 𝑃)∀𝑣 ∈ (𝑃 × 𝑃)(𝑢𝑟𝑣 ↔ ( − ‘𝑢) = ( − ‘𝑣)) ∧ (𝑤 ∈ 𝑃 ∧ 𝑥 ∈ 𝑃)) ∧ (𝑦 ∈ 𝑃 ∧ 𝑧 ∈ 𝑃)) → 〈𝑤, 𝑥〉 ∈ (𝑃 × 𝑃)) |
10 | | simprl 761 |
. . . . . . 7
⊢
(((∀𝑢 ∈
(𝑃 × 𝑃)∀𝑣 ∈ (𝑃 × 𝑃)(𝑢𝑟𝑣 ↔ ( − ‘𝑢) = ( − ‘𝑣)) ∧ (𝑤 ∈ 𝑃 ∧ 𝑥 ∈ 𝑃)) ∧ (𝑦 ∈ 𝑃 ∧ 𝑧 ∈ 𝑃)) → 𝑦 ∈ 𝑃) |
11 | | simprr 763 |
. . . . . . 7
⊢
(((∀𝑢 ∈
(𝑃 × 𝑃)∀𝑣 ∈ (𝑃 × 𝑃)(𝑢𝑟𝑣 ↔ ( − ‘𝑢) = ( − ‘𝑣)) ∧ (𝑤 ∈ 𝑃 ∧ 𝑥 ∈ 𝑃)) ∧ (𝑦 ∈ 𝑃 ∧ 𝑧 ∈ 𝑃)) → 𝑧 ∈ 𝑃) |
12 | 10, 11 | opelxpd 5393 |
. . . . . 6
⊢
(((∀𝑢 ∈
(𝑃 × 𝑃)∀𝑣 ∈ (𝑃 × 𝑃)(𝑢𝑟𝑣 ↔ ( − ‘𝑢) = ( − ‘𝑣)) ∧ (𝑤 ∈ 𝑃 ∧ 𝑥 ∈ 𝑃)) ∧ (𝑦 ∈ 𝑃 ∧ 𝑧 ∈ 𝑃)) → 〈𝑦, 𝑧〉 ∈ (𝑃 × 𝑃)) |
13 | | simpll 757 |
. . . . . 6
⊢
(((∀𝑢 ∈
(𝑃 × 𝑃)∀𝑣 ∈ (𝑃 × 𝑃)(𝑢𝑟𝑣 ↔ ( − ‘𝑢) = ( − ‘𝑣)) ∧ (𝑤 ∈ 𝑃 ∧ 𝑥 ∈ 𝑃)) ∧ (𝑦 ∈ 𝑃 ∧ 𝑧 ∈ 𝑃)) → ∀𝑢 ∈ (𝑃 × 𝑃)∀𝑣 ∈ (𝑃 × 𝑃)(𝑢𝑟𝑣 ↔ ( − ‘𝑢) = ( − ‘𝑣))) |
14 | | breq1 4889 |
. . . . . . . 8
⊢ (𝑢 = 〈𝑤, 𝑥〉 → (𝑢𝑟𝑣 ↔ 〈𝑤, 𝑥〉𝑟𝑣)) |
15 | | fveq2 6446 |
. . . . . . . . . 10
⊢ (𝑢 = 〈𝑤, 𝑥〉 → ( − ‘𝑢) = ( − ‘〈𝑤, 𝑥〉)) |
16 | | df-ov 6925 |
. . . . . . . . . 10
⊢ (𝑤 − 𝑥) = ( − ‘〈𝑤, 𝑥〉) |
17 | 15, 16 | syl6eqr 2832 |
. . . . . . . . 9
⊢ (𝑢 = 〈𝑤, 𝑥〉 → ( − ‘𝑢) = (𝑤 − 𝑥)) |
18 | 17 | eqeq1d 2780 |
. . . . . . . 8
⊢ (𝑢 = 〈𝑤, 𝑥〉 → (( − ‘𝑢) = ( − ‘𝑣) ↔ (𝑤 − 𝑥) = ( − ‘𝑣))) |
19 | 14, 18 | bibi12d 337 |
. . . . . . 7
⊢ (𝑢 = 〈𝑤, 𝑥〉 → ((𝑢𝑟𝑣 ↔ ( − ‘𝑢) = ( − ‘𝑣)) ↔ (〈𝑤, 𝑥〉𝑟𝑣 ↔ (𝑤 − 𝑥) = ( − ‘𝑣)))) |
20 | | breq2 4890 |
. . . . . . . 8
⊢ (𝑣 = 〈𝑦, 𝑧〉 → (〈𝑤, 𝑥〉𝑟𝑣 ↔ 〈𝑤, 𝑥〉𝑟〈𝑦, 𝑧〉)) |
21 | | fveq2 6446 |
. . . . . . . . . 10
⊢ (𝑣 = 〈𝑦, 𝑧〉 → ( − ‘𝑣) = ( − ‘〈𝑦, 𝑧〉)) |
22 | | df-ov 6925 |
. . . . . . . . . 10
⊢ (𝑦 − 𝑧) = ( − ‘〈𝑦, 𝑧〉) |
23 | 21, 22 | syl6eqr 2832 |
. . . . . . . . 9
⊢ (𝑣 = 〈𝑦, 𝑧〉 → ( − ‘𝑣) = (𝑦 − 𝑧)) |
24 | 23 | eqeq2d 2788 |
. . . . . . . 8
⊢ (𝑣 = 〈𝑦, 𝑧〉 → ((𝑤 − 𝑥) = ( − ‘𝑣) ↔ (𝑤 − 𝑥) = (𝑦 − 𝑧))) |
25 | 20, 24 | bibi12d 337 |
. . . . . . 7
⊢ (𝑣 = 〈𝑦, 𝑧〉 → ((〈𝑤, 𝑥〉𝑟𝑣 ↔ (𝑤 − 𝑥) = ( − ‘𝑣)) ↔ (〈𝑤, 𝑥〉𝑟〈𝑦, 𝑧〉 ↔ (𝑤 − 𝑥) = (𝑦 − 𝑧)))) |
26 | 19, 25 | rspc2va 3525 |
. . . . . 6
⊢
(((〈𝑤, 𝑥〉 ∈ (𝑃 × 𝑃) ∧ 〈𝑦, 𝑧〉 ∈ (𝑃 × 𝑃)) ∧ ∀𝑢 ∈ (𝑃 × 𝑃)∀𝑣 ∈ (𝑃 × 𝑃)(𝑢𝑟𝑣 ↔ ( − ‘𝑢) = ( − ‘𝑣))) → (〈𝑤, 𝑥〉𝑟〈𝑦, 𝑧〉 ↔ (𝑤 − 𝑥) = (𝑦 − 𝑧))) |
27 | 9, 12, 13, 26 | syl21anc 828 |
. . . . 5
⊢
(((∀𝑢 ∈
(𝑃 × 𝑃)∀𝑣 ∈ (𝑃 × 𝑃)(𝑢𝑟𝑣 ↔ ( − ‘𝑢) = ( − ‘𝑣)) ∧ (𝑤 ∈ 𝑃 ∧ 𝑥 ∈ 𝑃)) ∧ (𝑦 ∈ 𝑃 ∧ 𝑧 ∈ 𝑃)) → (〈𝑤, 𝑥〉𝑟〈𝑦, 𝑧〉 ↔ (𝑤 − 𝑥) = (𝑦 − 𝑧))) |
28 | 27 | ralrimivva 3153 |
. . . 4
⊢
((∀𝑢 ∈
(𝑃 × 𝑃)∀𝑣 ∈ (𝑃 × 𝑃)(𝑢𝑟𝑣 ↔ ( − ‘𝑢) = ( − ‘𝑣)) ∧ (𝑤 ∈ 𝑃 ∧ 𝑥 ∈ 𝑃)) → ∀𝑦 ∈ 𝑃 ∀𝑧 ∈ 𝑃 (〈𝑤, 𝑥〉𝑟〈𝑦, 𝑧〉 ↔ (𝑤 − 𝑥) = (𝑦 − 𝑧))) |
29 | 28 | ralrimivva 3153 |
. . 3
⊢
(∀𝑢 ∈
(𝑃 × 𝑃)∀𝑣 ∈ (𝑃 × 𝑃)(𝑢𝑟𝑣 ↔ ( − ‘𝑢) = ( − ‘𝑣)) → ∀𝑤 ∈ 𝑃 ∀𝑥 ∈ 𝑃 ∀𝑦 ∈ 𝑃 ∀𝑧 ∈ 𝑃 (〈𝑤, 𝑥〉𝑟〈𝑦, 𝑧〉 ↔ (𝑤 − 𝑥) = (𝑦 − 𝑧))) |
30 | 29 | anim2i 610 |
. 2
⊢ ((𝑟 Er (𝑃 × 𝑃) ∧ ∀𝑢 ∈ (𝑃 × 𝑃)∀𝑣 ∈ (𝑃 × 𝑃)(𝑢𝑟𝑣 ↔ ( − ‘𝑢) = ( − ‘𝑣))) → (𝑟 Er (𝑃 × 𝑃) ∧ ∀𝑤 ∈ 𝑃 ∀𝑥 ∈ 𝑃 ∀𝑦 ∈ 𝑃 ∀𝑧 ∈ 𝑃 (〈𝑤, 𝑥〉𝑟〈𝑦, 𝑧〉 ↔ (𝑤 − 𝑥) = (𝑦 − 𝑧)))) |
31 | 6, 30 | eximii 1880 |
1
⊢
∃𝑟(𝑟 Er (𝑃 × 𝑃) ∧ ∀𝑤 ∈ 𝑃 ∀𝑥 ∈ 𝑃 ∀𝑦 ∈ 𝑃 ∀𝑧 ∈ 𝑃 (〈𝑤, 𝑥〉𝑟〈𝑦, 𝑧〉 ↔ (𝑤 − 𝑥) = (𝑦 − 𝑧))) |