MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgjustc1 Structured version   Visualization version   GIF version

Theorem tgjustc1 28420
Description: A justification for using distance equality instead of the textbook relation on pairs of points for congruence. (Contributed by Thierry Arnoux, 29-Jan-2023.)
Hypotheses
Ref Expression
tgjustc1.p 𝑃 = (Base‘𝐺)
tgjustc1.d = (dist‘𝐺)
Assertion
Ref Expression
tgjustc1 𝑟(𝑟 Er (𝑃 × 𝑃) ∧ ∀𝑤𝑃𝑥𝑃𝑦𝑃𝑧𝑃 (⟨𝑤, 𝑥𝑟𝑦, 𝑧⟩ ↔ (𝑤 𝑥) = (𝑦 𝑧)))
Distinct variable groups:   ,𝑟,𝑤,𝑥,𝑦,𝑧   𝑃,𝑟,𝑤,𝑥,𝑦,𝑧
Allowed substitution hints:   𝐺(𝑥,𝑦,𝑧,𝑤,𝑟)

Proof of Theorem tgjustc1
Dummy variables 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tgjustc1.p . . . . 5 𝑃 = (Base‘𝐺)
21fvexi 6836 . . . 4 𝑃 ∈ V
32, 2xpex 7689 . . 3 (𝑃 × 𝑃) ∈ V
4 tgjustf 28418 . . 3 ((𝑃 × 𝑃) ∈ V → ∃𝑟(𝑟 Er (𝑃 × 𝑃) ∧ ∀𝑢 ∈ (𝑃 × 𝑃)∀𝑣 ∈ (𝑃 × 𝑃)(𝑢𝑟𝑣 ↔ ( 𝑢) = ( 𝑣))))
53, 4ax-mp 5 . 2 𝑟(𝑟 Er (𝑃 × 𝑃) ∧ ∀𝑢 ∈ (𝑃 × 𝑃)∀𝑣 ∈ (𝑃 × 𝑃)(𝑢𝑟𝑣 ↔ ( 𝑢) = ( 𝑣)))
6 simplrl 776 . . . . . . 7 (((∀𝑢 ∈ (𝑃 × 𝑃)∀𝑣 ∈ (𝑃 × 𝑃)(𝑢𝑟𝑣 ↔ ( 𝑢) = ( 𝑣)) ∧ (𝑤𝑃𝑥𝑃)) ∧ (𝑦𝑃𝑧𝑃)) → 𝑤𝑃)
7 simplrr 777 . . . . . . 7 (((∀𝑢 ∈ (𝑃 × 𝑃)∀𝑣 ∈ (𝑃 × 𝑃)(𝑢𝑟𝑣 ↔ ( 𝑢) = ( 𝑣)) ∧ (𝑤𝑃𝑥𝑃)) ∧ (𝑦𝑃𝑧𝑃)) → 𝑥𝑃)
86, 7opelxpd 5658 . . . . . 6 (((∀𝑢 ∈ (𝑃 × 𝑃)∀𝑣 ∈ (𝑃 × 𝑃)(𝑢𝑟𝑣 ↔ ( 𝑢) = ( 𝑣)) ∧ (𝑤𝑃𝑥𝑃)) ∧ (𝑦𝑃𝑧𝑃)) → ⟨𝑤, 𝑥⟩ ∈ (𝑃 × 𝑃))
9 simprl 770 . . . . . . 7 (((∀𝑢 ∈ (𝑃 × 𝑃)∀𝑣 ∈ (𝑃 × 𝑃)(𝑢𝑟𝑣 ↔ ( 𝑢) = ( 𝑣)) ∧ (𝑤𝑃𝑥𝑃)) ∧ (𝑦𝑃𝑧𝑃)) → 𝑦𝑃)
10 simprr 772 . . . . . . 7 (((∀𝑢 ∈ (𝑃 × 𝑃)∀𝑣 ∈ (𝑃 × 𝑃)(𝑢𝑟𝑣 ↔ ( 𝑢) = ( 𝑣)) ∧ (𝑤𝑃𝑥𝑃)) ∧ (𝑦𝑃𝑧𝑃)) → 𝑧𝑃)
119, 10opelxpd 5658 . . . . . 6 (((∀𝑢 ∈ (𝑃 × 𝑃)∀𝑣 ∈ (𝑃 × 𝑃)(𝑢𝑟𝑣 ↔ ( 𝑢) = ( 𝑣)) ∧ (𝑤𝑃𝑥𝑃)) ∧ (𝑦𝑃𝑧𝑃)) → ⟨𝑦, 𝑧⟩ ∈ (𝑃 × 𝑃))
12 simpll 766 . . . . . 6 (((∀𝑢 ∈ (𝑃 × 𝑃)∀𝑣 ∈ (𝑃 × 𝑃)(𝑢𝑟𝑣 ↔ ( 𝑢) = ( 𝑣)) ∧ (𝑤𝑃𝑥𝑃)) ∧ (𝑦𝑃𝑧𝑃)) → ∀𝑢 ∈ (𝑃 × 𝑃)∀𝑣 ∈ (𝑃 × 𝑃)(𝑢𝑟𝑣 ↔ ( 𝑢) = ( 𝑣)))
13 breq1 5095 . . . . . . . 8 (𝑢 = ⟨𝑤, 𝑥⟩ → (𝑢𝑟𝑣 ↔ ⟨𝑤, 𝑥𝑟𝑣))
14 fveq2 6822 . . . . . . . . . 10 (𝑢 = ⟨𝑤, 𝑥⟩ → ( 𝑢) = ( ‘⟨𝑤, 𝑥⟩))
15 df-ov 7352 . . . . . . . . . 10 (𝑤 𝑥) = ( ‘⟨𝑤, 𝑥⟩)
1614, 15eqtr4di 2782 . . . . . . . . 9 (𝑢 = ⟨𝑤, 𝑥⟩ → ( 𝑢) = (𝑤 𝑥))
1716eqeq1d 2731 . . . . . . . 8 (𝑢 = ⟨𝑤, 𝑥⟩ → (( 𝑢) = ( 𝑣) ↔ (𝑤 𝑥) = ( 𝑣)))
1813, 17bibi12d 345 . . . . . . 7 (𝑢 = ⟨𝑤, 𝑥⟩ → ((𝑢𝑟𝑣 ↔ ( 𝑢) = ( 𝑣)) ↔ (⟨𝑤, 𝑥𝑟𝑣 ↔ (𝑤 𝑥) = ( 𝑣))))
19 breq2 5096 . . . . . . . 8 (𝑣 = ⟨𝑦, 𝑧⟩ → (⟨𝑤, 𝑥𝑟𝑣 ↔ ⟨𝑤, 𝑥𝑟𝑦, 𝑧⟩))
20 fveq2 6822 . . . . . . . . . 10 (𝑣 = ⟨𝑦, 𝑧⟩ → ( 𝑣) = ( ‘⟨𝑦, 𝑧⟩))
21 df-ov 7352 . . . . . . . . . 10 (𝑦 𝑧) = ( ‘⟨𝑦, 𝑧⟩)
2220, 21eqtr4di 2782 . . . . . . . . 9 (𝑣 = ⟨𝑦, 𝑧⟩ → ( 𝑣) = (𝑦 𝑧))
2322eqeq2d 2740 . . . . . . . 8 (𝑣 = ⟨𝑦, 𝑧⟩ → ((𝑤 𝑥) = ( 𝑣) ↔ (𝑤 𝑥) = (𝑦 𝑧)))
2419, 23bibi12d 345 . . . . . . 7 (𝑣 = ⟨𝑦, 𝑧⟩ → ((⟨𝑤, 𝑥𝑟𝑣 ↔ (𝑤 𝑥) = ( 𝑣)) ↔ (⟨𝑤, 𝑥𝑟𝑦, 𝑧⟩ ↔ (𝑤 𝑥) = (𝑦 𝑧))))
2518, 24rspc2va 3589 . . . . . 6 (((⟨𝑤, 𝑥⟩ ∈ (𝑃 × 𝑃) ∧ ⟨𝑦, 𝑧⟩ ∈ (𝑃 × 𝑃)) ∧ ∀𝑢 ∈ (𝑃 × 𝑃)∀𝑣 ∈ (𝑃 × 𝑃)(𝑢𝑟𝑣 ↔ ( 𝑢) = ( 𝑣))) → (⟨𝑤, 𝑥𝑟𝑦, 𝑧⟩ ↔ (𝑤 𝑥) = (𝑦 𝑧)))
268, 11, 12, 25syl21anc 837 . . . . 5 (((∀𝑢 ∈ (𝑃 × 𝑃)∀𝑣 ∈ (𝑃 × 𝑃)(𝑢𝑟𝑣 ↔ ( 𝑢) = ( 𝑣)) ∧ (𝑤𝑃𝑥𝑃)) ∧ (𝑦𝑃𝑧𝑃)) → (⟨𝑤, 𝑥𝑟𝑦, 𝑧⟩ ↔ (𝑤 𝑥) = (𝑦 𝑧)))
2726ralrimivva 3172 . . . 4 ((∀𝑢 ∈ (𝑃 × 𝑃)∀𝑣 ∈ (𝑃 × 𝑃)(𝑢𝑟𝑣 ↔ ( 𝑢) = ( 𝑣)) ∧ (𝑤𝑃𝑥𝑃)) → ∀𝑦𝑃𝑧𝑃 (⟨𝑤, 𝑥𝑟𝑦, 𝑧⟩ ↔ (𝑤 𝑥) = (𝑦 𝑧)))
2827ralrimivva 3172 . . 3 (∀𝑢 ∈ (𝑃 × 𝑃)∀𝑣 ∈ (𝑃 × 𝑃)(𝑢𝑟𝑣 ↔ ( 𝑢) = ( 𝑣)) → ∀𝑤𝑃𝑥𝑃𝑦𝑃𝑧𝑃 (⟨𝑤, 𝑥𝑟𝑦, 𝑧⟩ ↔ (𝑤 𝑥) = (𝑦 𝑧)))
2928anim2i 617 . 2 ((𝑟 Er (𝑃 × 𝑃) ∧ ∀𝑢 ∈ (𝑃 × 𝑃)∀𝑣 ∈ (𝑃 × 𝑃)(𝑢𝑟𝑣 ↔ ( 𝑢) = ( 𝑣))) → (𝑟 Er (𝑃 × 𝑃) ∧ ∀𝑤𝑃𝑥𝑃𝑦𝑃𝑧𝑃 (⟨𝑤, 𝑥𝑟𝑦, 𝑧⟩ ↔ (𝑤 𝑥) = (𝑦 𝑧))))
305, 29eximii 1837 1 𝑟(𝑟 Er (𝑃 × 𝑃) ∧ ∀𝑤𝑃𝑥𝑃𝑦𝑃𝑧𝑃 (⟨𝑤, 𝑥𝑟𝑦, 𝑧⟩ ↔ (𝑤 𝑥) = (𝑦 𝑧)))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2109  wral 3044  Vcvv 3436  cop 4583   class class class wbr 5092   × cxp 5617  cfv 6482  (class class class)co 7349   Er wer 8622  Basecbs 17120  distcds 17170
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-iota 6438  df-fv 6490  df-ov 7352  df-er 8625
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator