MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgjustc1 Structured version   Visualization version   GIF version

Theorem tgjustc1 28501
Description: A justification for using distance equality instead of the textbook relation on pairs of points for congruence. (Contributed by Thierry Arnoux, 29-Jan-2023.)
Hypotheses
Ref Expression
tgjustc1.p 𝑃 = (Base‘𝐺)
tgjustc1.d = (dist‘𝐺)
Assertion
Ref Expression
tgjustc1 𝑟(𝑟 Er (𝑃 × 𝑃) ∧ ∀𝑤𝑃𝑥𝑃𝑦𝑃𝑧𝑃 (⟨𝑤, 𝑥𝑟𝑦, 𝑧⟩ ↔ (𝑤 𝑥) = (𝑦 𝑧)))
Distinct variable groups:   ,𝑟,𝑤,𝑥,𝑦,𝑧   𝑃,𝑟,𝑤,𝑥,𝑦,𝑧
Allowed substitution hints:   𝐺(𝑥,𝑦,𝑧,𝑤,𝑟)

Proof of Theorem tgjustc1
Dummy variables 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tgjustc1.p . . . . 5 𝑃 = (Base‘𝐺)
21fvexi 6934 . . . 4 𝑃 ∈ V
32, 2xpex 7788 . . 3 (𝑃 × 𝑃) ∈ V
4 tgjustf 28499 . . 3 ((𝑃 × 𝑃) ∈ V → ∃𝑟(𝑟 Er (𝑃 × 𝑃) ∧ ∀𝑢 ∈ (𝑃 × 𝑃)∀𝑣 ∈ (𝑃 × 𝑃)(𝑢𝑟𝑣 ↔ ( 𝑢) = ( 𝑣))))
53, 4ax-mp 5 . 2 𝑟(𝑟 Er (𝑃 × 𝑃) ∧ ∀𝑢 ∈ (𝑃 × 𝑃)∀𝑣 ∈ (𝑃 × 𝑃)(𝑢𝑟𝑣 ↔ ( 𝑢) = ( 𝑣)))
6 simplrl 776 . . . . . . 7 (((∀𝑢 ∈ (𝑃 × 𝑃)∀𝑣 ∈ (𝑃 × 𝑃)(𝑢𝑟𝑣 ↔ ( 𝑢) = ( 𝑣)) ∧ (𝑤𝑃𝑥𝑃)) ∧ (𝑦𝑃𝑧𝑃)) → 𝑤𝑃)
7 simplrr 777 . . . . . . 7 (((∀𝑢 ∈ (𝑃 × 𝑃)∀𝑣 ∈ (𝑃 × 𝑃)(𝑢𝑟𝑣 ↔ ( 𝑢) = ( 𝑣)) ∧ (𝑤𝑃𝑥𝑃)) ∧ (𝑦𝑃𝑧𝑃)) → 𝑥𝑃)
86, 7opelxpd 5739 . . . . . 6 (((∀𝑢 ∈ (𝑃 × 𝑃)∀𝑣 ∈ (𝑃 × 𝑃)(𝑢𝑟𝑣 ↔ ( 𝑢) = ( 𝑣)) ∧ (𝑤𝑃𝑥𝑃)) ∧ (𝑦𝑃𝑧𝑃)) → ⟨𝑤, 𝑥⟩ ∈ (𝑃 × 𝑃))
9 simprl 770 . . . . . . 7 (((∀𝑢 ∈ (𝑃 × 𝑃)∀𝑣 ∈ (𝑃 × 𝑃)(𝑢𝑟𝑣 ↔ ( 𝑢) = ( 𝑣)) ∧ (𝑤𝑃𝑥𝑃)) ∧ (𝑦𝑃𝑧𝑃)) → 𝑦𝑃)
10 simprr 772 . . . . . . 7 (((∀𝑢 ∈ (𝑃 × 𝑃)∀𝑣 ∈ (𝑃 × 𝑃)(𝑢𝑟𝑣 ↔ ( 𝑢) = ( 𝑣)) ∧ (𝑤𝑃𝑥𝑃)) ∧ (𝑦𝑃𝑧𝑃)) → 𝑧𝑃)
119, 10opelxpd 5739 . . . . . 6 (((∀𝑢 ∈ (𝑃 × 𝑃)∀𝑣 ∈ (𝑃 × 𝑃)(𝑢𝑟𝑣 ↔ ( 𝑢) = ( 𝑣)) ∧ (𝑤𝑃𝑥𝑃)) ∧ (𝑦𝑃𝑧𝑃)) → ⟨𝑦, 𝑧⟩ ∈ (𝑃 × 𝑃))
12 simpll 766 . . . . . 6 (((∀𝑢 ∈ (𝑃 × 𝑃)∀𝑣 ∈ (𝑃 × 𝑃)(𝑢𝑟𝑣 ↔ ( 𝑢) = ( 𝑣)) ∧ (𝑤𝑃𝑥𝑃)) ∧ (𝑦𝑃𝑧𝑃)) → ∀𝑢 ∈ (𝑃 × 𝑃)∀𝑣 ∈ (𝑃 × 𝑃)(𝑢𝑟𝑣 ↔ ( 𝑢) = ( 𝑣)))
13 breq1 5169 . . . . . . . 8 (𝑢 = ⟨𝑤, 𝑥⟩ → (𝑢𝑟𝑣 ↔ ⟨𝑤, 𝑥𝑟𝑣))
14 fveq2 6920 . . . . . . . . . 10 (𝑢 = ⟨𝑤, 𝑥⟩ → ( 𝑢) = ( ‘⟨𝑤, 𝑥⟩))
15 df-ov 7451 . . . . . . . . . 10 (𝑤 𝑥) = ( ‘⟨𝑤, 𝑥⟩)
1614, 15eqtr4di 2798 . . . . . . . . 9 (𝑢 = ⟨𝑤, 𝑥⟩ → ( 𝑢) = (𝑤 𝑥))
1716eqeq1d 2742 . . . . . . . 8 (𝑢 = ⟨𝑤, 𝑥⟩ → (( 𝑢) = ( 𝑣) ↔ (𝑤 𝑥) = ( 𝑣)))
1813, 17bibi12d 345 . . . . . . 7 (𝑢 = ⟨𝑤, 𝑥⟩ → ((𝑢𝑟𝑣 ↔ ( 𝑢) = ( 𝑣)) ↔ (⟨𝑤, 𝑥𝑟𝑣 ↔ (𝑤 𝑥) = ( 𝑣))))
19 breq2 5170 . . . . . . . 8 (𝑣 = ⟨𝑦, 𝑧⟩ → (⟨𝑤, 𝑥𝑟𝑣 ↔ ⟨𝑤, 𝑥𝑟𝑦, 𝑧⟩))
20 fveq2 6920 . . . . . . . . . 10 (𝑣 = ⟨𝑦, 𝑧⟩ → ( 𝑣) = ( ‘⟨𝑦, 𝑧⟩))
21 df-ov 7451 . . . . . . . . . 10 (𝑦 𝑧) = ( ‘⟨𝑦, 𝑧⟩)
2220, 21eqtr4di 2798 . . . . . . . . 9 (𝑣 = ⟨𝑦, 𝑧⟩ → ( 𝑣) = (𝑦 𝑧))
2322eqeq2d 2751 . . . . . . . 8 (𝑣 = ⟨𝑦, 𝑧⟩ → ((𝑤 𝑥) = ( 𝑣) ↔ (𝑤 𝑥) = (𝑦 𝑧)))
2419, 23bibi12d 345 . . . . . . 7 (𝑣 = ⟨𝑦, 𝑧⟩ → ((⟨𝑤, 𝑥𝑟𝑣 ↔ (𝑤 𝑥) = ( 𝑣)) ↔ (⟨𝑤, 𝑥𝑟𝑦, 𝑧⟩ ↔ (𝑤 𝑥) = (𝑦 𝑧))))
2518, 24rspc2va 3647 . . . . . 6 (((⟨𝑤, 𝑥⟩ ∈ (𝑃 × 𝑃) ∧ ⟨𝑦, 𝑧⟩ ∈ (𝑃 × 𝑃)) ∧ ∀𝑢 ∈ (𝑃 × 𝑃)∀𝑣 ∈ (𝑃 × 𝑃)(𝑢𝑟𝑣 ↔ ( 𝑢) = ( 𝑣))) → (⟨𝑤, 𝑥𝑟𝑦, 𝑧⟩ ↔ (𝑤 𝑥) = (𝑦 𝑧)))
268, 11, 12, 25syl21anc 837 . . . . 5 (((∀𝑢 ∈ (𝑃 × 𝑃)∀𝑣 ∈ (𝑃 × 𝑃)(𝑢𝑟𝑣 ↔ ( 𝑢) = ( 𝑣)) ∧ (𝑤𝑃𝑥𝑃)) ∧ (𝑦𝑃𝑧𝑃)) → (⟨𝑤, 𝑥𝑟𝑦, 𝑧⟩ ↔ (𝑤 𝑥) = (𝑦 𝑧)))
2726ralrimivva 3208 . . . 4 ((∀𝑢 ∈ (𝑃 × 𝑃)∀𝑣 ∈ (𝑃 × 𝑃)(𝑢𝑟𝑣 ↔ ( 𝑢) = ( 𝑣)) ∧ (𝑤𝑃𝑥𝑃)) → ∀𝑦𝑃𝑧𝑃 (⟨𝑤, 𝑥𝑟𝑦, 𝑧⟩ ↔ (𝑤 𝑥) = (𝑦 𝑧)))
2827ralrimivva 3208 . . 3 (∀𝑢 ∈ (𝑃 × 𝑃)∀𝑣 ∈ (𝑃 × 𝑃)(𝑢𝑟𝑣 ↔ ( 𝑢) = ( 𝑣)) → ∀𝑤𝑃𝑥𝑃𝑦𝑃𝑧𝑃 (⟨𝑤, 𝑥𝑟𝑦, 𝑧⟩ ↔ (𝑤 𝑥) = (𝑦 𝑧)))
2928anim2i 616 . 2 ((𝑟 Er (𝑃 × 𝑃) ∧ ∀𝑢 ∈ (𝑃 × 𝑃)∀𝑣 ∈ (𝑃 × 𝑃)(𝑢𝑟𝑣 ↔ ( 𝑢) = ( 𝑣))) → (𝑟 Er (𝑃 × 𝑃) ∧ ∀𝑤𝑃𝑥𝑃𝑦𝑃𝑧𝑃 (⟨𝑤, 𝑥𝑟𝑦, 𝑧⟩ ↔ (𝑤 𝑥) = (𝑦 𝑧))))
305, 29eximii 1835 1 𝑟(𝑟 Er (𝑃 × 𝑃) ∧ ∀𝑤𝑃𝑥𝑃𝑦𝑃𝑧𝑃 (⟨𝑤, 𝑥𝑟𝑦, 𝑧⟩ ↔ (𝑤 𝑥) = (𝑦 𝑧)))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1537  wex 1777  wcel 2108  wral 3067  Vcvv 3488  cop 4654   class class class wbr 5166   × cxp 5698  cfv 6573  (class class class)co 7448   Er wer 8760  Basecbs 17258  distcds 17320
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-iota 6525  df-fv 6581  df-ov 7451  df-er 8763
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator