MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgjustc1 Structured version   Visualization version   GIF version

Theorem tgjustc1 27723
Description: A justification for using distance equality instead of the textbook relation on pairs of points for congruence. (Contributed by Thierry Arnoux, 29-Jan-2023.)
Hypotheses
Ref Expression
tgjustc1.p 𝑃 = (Baseβ€˜πΊ)
tgjustc1.d βˆ’ = (distβ€˜πΊ)
Assertion
Ref Expression
tgjustc1 βˆƒπ‘Ÿ(π‘Ÿ Er (𝑃 Γ— 𝑃) ∧ βˆ€π‘€ ∈ 𝑃 βˆ€π‘₯ ∈ 𝑃 βˆ€π‘¦ ∈ 𝑃 βˆ€π‘§ ∈ 𝑃 (βŸ¨π‘€, π‘₯βŸ©π‘ŸβŸ¨π‘¦, π‘§βŸ© ↔ (𝑀 βˆ’ π‘₯) = (𝑦 βˆ’ 𝑧)))
Distinct variable groups:   βˆ’ ,π‘Ÿ,𝑀,π‘₯,𝑦,𝑧   𝑃,π‘Ÿ,𝑀,π‘₯,𝑦,𝑧
Allowed substitution hints:   𝐺(π‘₯,𝑦,𝑧,𝑀,π‘Ÿ)

Proof of Theorem tgjustc1
Dummy variables 𝑒 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tgjustc1.p . . . . 5 𝑃 = (Baseβ€˜πΊ)
21fvexi 6905 . . . 4 𝑃 ∈ V
32, 2xpex 7739 . . 3 (𝑃 Γ— 𝑃) ∈ V
4 tgjustf 27721 . . 3 ((𝑃 Γ— 𝑃) ∈ V β†’ βˆƒπ‘Ÿ(π‘Ÿ Er (𝑃 Γ— 𝑃) ∧ βˆ€π‘’ ∈ (𝑃 Γ— 𝑃)βˆ€π‘£ ∈ (𝑃 Γ— 𝑃)(π‘’π‘Ÿπ‘£ ↔ ( βˆ’ β€˜π‘’) = ( βˆ’ β€˜π‘£))))
53, 4ax-mp 5 . 2 βˆƒπ‘Ÿ(π‘Ÿ Er (𝑃 Γ— 𝑃) ∧ βˆ€π‘’ ∈ (𝑃 Γ— 𝑃)βˆ€π‘£ ∈ (𝑃 Γ— 𝑃)(π‘’π‘Ÿπ‘£ ↔ ( βˆ’ β€˜π‘’) = ( βˆ’ β€˜π‘£)))
6 simplrl 775 . . . . . . 7 (((βˆ€π‘’ ∈ (𝑃 Γ— 𝑃)βˆ€π‘£ ∈ (𝑃 Γ— 𝑃)(π‘’π‘Ÿπ‘£ ↔ ( βˆ’ β€˜π‘’) = ( βˆ’ β€˜π‘£)) ∧ (𝑀 ∈ 𝑃 ∧ π‘₯ ∈ 𝑃)) ∧ (𝑦 ∈ 𝑃 ∧ 𝑧 ∈ 𝑃)) β†’ 𝑀 ∈ 𝑃)
7 simplrr 776 . . . . . . 7 (((βˆ€π‘’ ∈ (𝑃 Γ— 𝑃)βˆ€π‘£ ∈ (𝑃 Γ— 𝑃)(π‘’π‘Ÿπ‘£ ↔ ( βˆ’ β€˜π‘’) = ( βˆ’ β€˜π‘£)) ∧ (𝑀 ∈ 𝑃 ∧ π‘₯ ∈ 𝑃)) ∧ (𝑦 ∈ 𝑃 ∧ 𝑧 ∈ 𝑃)) β†’ π‘₯ ∈ 𝑃)
86, 7opelxpd 5715 . . . . . 6 (((βˆ€π‘’ ∈ (𝑃 Γ— 𝑃)βˆ€π‘£ ∈ (𝑃 Γ— 𝑃)(π‘’π‘Ÿπ‘£ ↔ ( βˆ’ β€˜π‘’) = ( βˆ’ β€˜π‘£)) ∧ (𝑀 ∈ 𝑃 ∧ π‘₯ ∈ 𝑃)) ∧ (𝑦 ∈ 𝑃 ∧ 𝑧 ∈ 𝑃)) β†’ βŸ¨π‘€, π‘₯⟩ ∈ (𝑃 Γ— 𝑃))
9 simprl 769 . . . . . . 7 (((βˆ€π‘’ ∈ (𝑃 Γ— 𝑃)βˆ€π‘£ ∈ (𝑃 Γ— 𝑃)(π‘’π‘Ÿπ‘£ ↔ ( βˆ’ β€˜π‘’) = ( βˆ’ β€˜π‘£)) ∧ (𝑀 ∈ 𝑃 ∧ π‘₯ ∈ 𝑃)) ∧ (𝑦 ∈ 𝑃 ∧ 𝑧 ∈ 𝑃)) β†’ 𝑦 ∈ 𝑃)
10 simprr 771 . . . . . . 7 (((βˆ€π‘’ ∈ (𝑃 Γ— 𝑃)βˆ€π‘£ ∈ (𝑃 Γ— 𝑃)(π‘’π‘Ÿπ‘£ ↔ ( βˆ’ β€˜π‘’) = ( βˆ’ β€˜π‘£)) ∧ (𝑀 ∈ 𝑃 ∧ π‘₯ ∈ 𝑃)) ∧ (𝑦 ∈ 𝑃 ∧ 𝑧 ∈ 𝑃)) β†’ 𝑧 ∈ 𝑃)
119, 10opelxpd 5715 . . . . . 6 (((βˆ€π‘’ ∈ (𝑃 Γ— 𝑃)βˆ€π‘£ ∈ (𝑃 Γ— 𝑃)(π‘’π‘Ÿπ‘£ ↔ ( βˆ’ β€˜π‘’) = ( βˆ’ β€˜π‘£)) ∧ (𝑀 ∈ 𝑃 ∧ π‘₯ ∈ 𝑃)) ∧ (𝑦 ∈ 𝑃 ∧ 𝑧 ∈ 𝑃)) β†’ βŸ¨π‘¦, π‘§βŸ© ∈ (𝑃 Γ— 𝑃))
12 simpll 765 . . . . . 6 (((βˆ€π‘’ ∈ (𝑃 Γ— 𝑃)βˆ€π‘£ ∈ (𝑃 Γ— 𝑃)(π‘’π‘Ÿπ‘£ ↔ ( βˆ’ β€˜π‘’) = ( βˆ’ β€˜π‘£)) ∧ (𝑀 ∈ 𝑃 ∧ π‘₯ ∈ 𝑃)) ∧ (𝑦 ∈ 𝑃 ∧ 𝑧 ∈ 𝑃)) β†’ βˆ€π‘’ ∈ (𝑃 Γ— 𝑃)βˆ€π‘£ ∈ (𝑃 Γ— 𝑃)(π‘’π‘Ÿπ‘£ ↔ ( βˆ’ β€˜π‘’) = ( βˆ’ β€˜π‘£)))
13 breq1 5151 . . . . . . . 8 (𝑒 = βŸ¨π‘€, π‘₯⟩ β†’ (π‘’π‘Ÿπ‘£ ↔ βŸ¨π‘€, π‘₯βŸ©π‘Ÿπ‘£))
14 fveq2 6891 . . . . . . . . . 10 (𝑒 = βŸ¨π‘€, π‘₯⟩ β†’ ( βˆ’ β€˜π‘’) = ( βˆ’ β€˜βŸ¨π‘€, π‘₯⟩))
15 df-ov 7411 . . . . . . . . . 10 (𝑀 βˆ’ π‘₯) = ( βˆ’ β€˜βŸ¨π‘€, π‘₯⟩)
1614, 15eqtr4di 2790 . . . . . . . . 9 (𝑒 = βŸ¨π‘€, π‘₯⟩ β†’ ( βˆ’ β€˜π‘’) = (𝑀 βˆ’ π‘₯))
1716eqeq1d 2734 . . . . . . . 8 (𝑒 = βŸ¨π‘€, π‘₯⟩ β†’ (( βˆ’ β€˜π‘’) = ( βˆ’ β€˜π‘£) ↔ (𝑀 βˆ’ π‘₯) = ( βˆ’ β€˜π‘£)))
1813, 17bibi12d 345 . . . . . . 7 (𝑒 = βŸ¨π‘€, π‘₯⟩ β†’ ((π‘’π‘Ÿπ‘£ ↔ ( βˆ’ β€˜π‘’) = ( βˆ’ β€˜π‘£)) ↔ (βŸ¨π‘€, π‘₯βŸ©π‘Ÿπ‘£ ↔ (𝑀 βˆ’ π‘₯) = ( βˆ’ β€˜π‘£))))
19 breq2 5152 . . . . . . . 8 (𝑣 = βŸ¨π‘¦, π‘§βŸ© β†’ (βŸ¨π‘€, π‘₯βŸ©π‘Ÿπ‘£ ↔ βŸ¨π‘€, π‘₯βŸ©π‘ŸβŸ¨π‘¦, π‘§βŸ©))
20 fveq2 6891 . . . . . . . . . 10 (𝑣 = βŸ¨π‘¦, π‘§βŸ© β†’ ( βˆ’ β€˜π‘£) = ( βˆ’ β€˜βŸ¨π‘¦, π‘§βŸ©))
21 df-ov 7411 . . . . . . . . . 10 (𝑦 βˆ’ 𝑧) = ( βˆ’ β€˜βŸ¨π‘¦, π‘§βŸ©)
2220, 21eqtr4di 2790 . . . . . . . . 9 (𝑣 = βŸ¨π‘¦, π‘§βŸ© β†’ ( βˆ’ β€˜π‘£) = (𝑦 βˆ’ 𝑧))
2322eqeq2d 2743 . . . . . . . 8 (𝑣 = βŸ¨π‘¦, π‘§βŸ© β†’ ((𝑀 βˆ’ π‘₯) = ( βˆ’ β€˜π‘£) ↔ (𝑀 βˆ’ π‘₯) = (𝑦 βˆ’ 𝑧)))
2419, 23bibi12d 345 . . . . . . 7 (𝑣 = βŸ¨π‘¦, π‘§βŸ© β†’ ((βŸ¨π‘€, π‘₯βŸ©π‘Ÿπ‘£ ↔ (𝑀 βˆ’ π‘₯) = ( βˆ’ β€˜π‘£)) ↔ (βŸ¨π‘€, π‘₯βŸ©π‘ŸβŸ¨π‘¦, π‘§βŸ© ↔ (𝑀 βˆ’ π‘₯) = (𝑦 βˆ’ 𝑧))))
2518, 24rspc2va 3623 . . . . . 6 (((βŸ¨π‘€, π‘₯⟩ ∈ (𝑃 Γ— 𝑃) ∧ βŸ¨π‘¦, π‘§βŸ© ∈ (𝑃 Γ— 𝑃)) ∧ βˆ€π‘’ ∈ (𝑃 Γ— 𝑃)βˆ€π‘£ ∈ (𝑃 Γ— 𝑃)(π‘’π‘Ÿπ‘£ ↔ ( βˆ’ β€˜π‘’) = ( βˆ’ β€˜π‘£))) β†’ (βŸ¨π‘€, π‘₯βŸ©π‘ŸβŸ¨π‘¦, π‘§βŸ© ↔ (𝑀 βˆ’ π‘₯) = (𝑦 βˆ’ 𝑧)))
268, 11, 12, 25syl21anc 836 . . . . 5 (((βˆ€π‘’ ∈ (𝑃 Γ— 𝑃)βˆ€π‘£ ∈ (𝑃 Γ— 𝑃)(π‘’π‘Ÿπ‘£ ↔ ( βˆ’ β€˜π‘’) = ( βˆ’ β€˜π‘£)) ∧ (𝑀 ∈ 𝑃 ∧ π‘₯ ∈ 𝑃)) ∧ (𝑦 ∈ 𝑃 ∧ 𝑧 ∈ 𝑃)) β†’ (βŸ¨π‘€, π‘₯βŸ©π‘ŸβŸ¨π‘¦, π‘§βŸ© ↔ (𝑀 βˆ’ π‘₯) = (𝑦 βˆ’ 𝑧)))
2726ralrimivva 3200 . . . 4 ((βˆ€π‘’ ∈ (𝑃 Γ— 𝑃)βˆ€π‘£ ∈ (𝑃 Γ— 𝑃)(π‘’π‘Ÿπ‘£ ↔ ( βˆ’ β€˜π‘’) = ( βˆ’ β€˜π‘£)) ∧ (𝑀 ∈ 𝑃 ∧ π‘₯ ∈ 𝑃)) β†’ βˆ€π‘¦ ∈ 𝑃 βˆ€π‘§ ∈ 𝑃 (βŸ¨π‘€, π‘₯βŸ©π‘ŸβŸ¨π‘¦, π‘§βŸ© ↔ (𝑀 βˆ’ π‘₯) = (𝑦 βˆ’ 𝑧)))
2827ralrimivva 3200 . . 3 (βˆ€π‘’ ∈ (𝑃 Γ— 𝑃)βˆ€π‘£ ∈ (𝑃 Γ— 𝑃)(π‘’π‘Ÿπ‘£ ↔ ( βˆ’ β€˜π‘’) = ( βˆ’ β€˜π‘£)) β†’ βˆ€π‘€ ∈ 𝑃 βˆ€π‘₯ ∈ 𝑃 βˆ€π‘¦ ∈ 𝑃 βˆ€π‘§ ∈ 𝑃 (βŸ¨π‘€, π‘₯βŸ©π‘ŸβŸ¨π‘¦, π‘§βŸ© ↔ (𝑀 βˆ’ π‘₯) = (𝑦 βˆ’ 𝑧)))
2928anim2i 617 . 2 ((π‘Ÿ Er (𝑃 Γ— 𝑃) ∧ βˆ€π‘’ ∈ (𝑃 Γ— 𝑃)βˆ€π‘£ ∈ (𝑃 Γ— 𝑃)(π‘’π‘Ÿπ‘£ ↔ ( βˆ’ β€˜π‘’) = ( βˆ’ β€˜π‘£))) β†’ (π‘Ÿ Er (𝑃 Γ— 𝑃) ∧ βˆ€π‘€ ∈ 𝑃 βˆ€π‘₯ ∈ 𝑃 βˆ€π‘¦ ∈ 𝑃 βˆ€π‘§ ∈ 𝑃 (βŸ¨π‘€, π‘₯βŸ©π‘ŸβŸ¨π‘¦, π‘§βŸ© ↔ (𝑀 βˆ’ π‘₯) = (𝑦 βˆ’ 𝑧))))
305, 29eximii 1839 1 βˆƒπ‘Ÿ(π‘Ÿ Er (𝑃 Γ— 𝑃) ∧ βˆ€π‘€ ∈ 𝑃 βˆ€π‘₯ ∈ 𝑃 βˆ€π‘¦ ∈ 𝑃 βˆ€π‘§ ∈ 𝑃 (βŸ¨π‘€, π‘₯βŸ©π‘ŸβŸ¨π‘¦, π‘§βŸ© ↔ (𝑀 βˆ’ π‘₯) = (𝑦 βˆ’ 𝑧)))
Colors of variables: wff setvar class
Syntax hints:   ↔ wb 205   ∧ wa 396   = wceq 1541  βˆƒwex 1781   ∈ wcel 2106  βˆ€wral 3061  Vcvv 3474  βŸ¨cop 4634   class class class wbr 5148   Γ— cxp 5674  β€˜cfv 6543  (class class class)co 7408   Er wer 8699  Basecbs 17143  distcds 17205
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-iota 6495  df-fv 6551  df-ov 7411  df-er 8702
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator