| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | tgjustc1.p | . . . . 5
⊢ 𝑃 = (Base‘𝐺) | 
| 2 | 1 | fvexi 6920 | . . . 4
⊢ 𝑃 ∈ V | 
| 3 | 2, 2 | xpex 7773 | . . 3
⊢ (𝑃 × 𝑃) ∈ V | 
| 4 |  | tgjustf 28481 | . . 3
⊢ ((𝑃 × 𝑃) ∈ V → ∃𝑟(𝑟 Er (𝑃 × 𝑃) ∧ ∀𝑢 ∈ (𝑃 × 𝑃)∀𝑣 ∈ (𝑃 × 𝑃)(𝑢𝑟𝑣 ↔ ( − ‘𝑢) = ( − ‘𝑣)))) | 
| 5 | 3, 4 | ax-mp 5 | . 2
⊢
∃𝑟(𝑟 Er (𝑃 × 𝑃) ∧ ∀𝑢 ∈ (𝑃 × 𝑃)∀𝑣 ∈ (𝑃 × 𝑃)(𝑢𝑟𝑣 ↔ ( − ‘𝑢) = ( − ‘𝑣))) | 
| 6 |  | simplrl 777 | . . . . . . 7
⊢
(((∀𝑢 ∈
(𝑃 × 𝑃)∀𝑣 ∈ (𝑃 × 𝑃)(𝑢𝑟𝑣 ↔ ( − ‘𝑢) = ( − ‘𝑣)) ∧ (𝑤 ∈ 𝑃 ∧ 𝑥 ∈ 𝑃)) ∧ (𝑦 ∈ 𝑃 ∧ 𝑧 ∈ 𝑃)) → 𝑤 ∈ 𝑃) | 
| 7 |  | simplrr 778 | . . . . . . 7
⊢
(((∀𝑢 ∈
(𝑃 × 𝑃)∀𝑣 ∈ (𝑃 × 𝑃)(𝑢𝑟𝑣 ↔ ( − ‘𝑢) = ( − ‘𝑣)) ∧ (𝑤 ∈ 𝑃 ∧ 𝑥 ∈ 𝑃)) ∧ (𝑦 ∈ 𝑃 ∧ 𝑧 ∈ 𝑃)) → 𝑥 ∈ 𝑃) | 
| 8 | 6, 7 | opelxpd 5724 | . . . . . 6
⊢
(((∀𝑢 ∈
(𝑃 × 𝑃)∀𝑣 ∈ (𝑃 × 𝑃)(𝑢𝑟𝑣 ↔ ( − ‘𝑢) = ( − ‘𝑣)) ∧ (𝑤 ∈ 𝑃 ∧ 𝑥 ∈ 𝑃)) ∧ (𝑦 ∈ 𝑃 ∧ 𝑧 ∈ 𝑃)) → 〈𝑤, 𝑥〉 ∈ (𝑃 × 𝑃)) | 
| 9 |  | simprl 771 | . . . . . . 7
⊢
(((∀𝑢 ∈
(𝑃 × 𝑃)∀𝑣 ∈ (𝑃 × 𝑃)(𝑢𝑟𝑣 ↔ ( − ‘𝑢) = ( − ‘𝑣)) ∧ (𝑤 ∈ 𝑃 ∧ 𝑥 ∈ 𝑃)) ∧ (𝑦 ∈ 𝑃 ∧ 𝑧 ∈ 𝑃)) → 𝑦 ∈ 𝑃) | 
| 10 |  | simprr 773 | . . . . . . 7
⊢
(((∀𝑢 ∈
(𝑃 × 𝑃)∀𝑣 ∈ (𝑃 × 𝑃)(𝑢𝑟𝑣 ↔ ( − ‘𝑢) = ( − ‘𝑣)) ∧ (𝑤 ∈ 𝑃 ∧ 𝑥 ∈ 𝑃)) ∧ (𝑦 ∈ 𝑃 ∧ 𝑧 ∈ 𝑃)) → 𝑧 ∈ 𝑃) | 
| 11 | 9, 10 | opelxpd 5724 | . . . . . 6
⊢
(((∀𝑢 ∈
(𝑃 × 𝑃)∀𝑣 ∈ (𝑃 × 𝑃)(𝑢𝑟𝑣 ↔ ( − ‘𝑢) = ( − ‘𝑣)) ∧ (𝑤 ∈ 𝑃 ∧ 𝑥 ∈ 𝑃)) ∧ (𝑦 ∈ 𝑃 ∧ 𝑧 ∈ 𝑃)) → 〈𝑦, 𝑧〉 ∈ (𝑃 × 𝑃)) | 
| 12 |  | simpll 767 | . . . . . 6
⊢
(((∀𝑢 ∈
(𝑃 × 𝑃)∀𝑣 ∈ (𝑃 × 𝑃)(𝑢𝑟𝑣 ↔ ( − ‘𝑢) = ( − ‘𝑣)) ∧ (𝑤 ∈ 𝑃 ∧ 𝑥 ∈ 𝑃)) ∧ (𝑦 ∈ 𝑃 ∧ 𝑧 ∈ 𝑃)) → ∀𝑢 ∈ (𝑃 × 𝑃)∀𝑣 ∈ (𝑃 × 𝑃)(𝑢𝑟𝑣 ↔ ( − ‘𝑢) = ( − ‘𝑣))) | 
| 13 |  | breq1 5146 | . . . . . . . 8
⊢ (𝑢 = 〈𝑤, 𝑥〉 → (𝑢𝑟𝑣 ↔ 〈𝑤, 𝑥〉𝑟𝑣)) | 
| 14 |  | fveq2 6906 | . . . . . . . . . 10
⊢ (𝑢 = 〈𝑤, 𝑥〉 → ( − ‘𝑢) = ( − ‘〈𝑤, 𝑥〉)) | 
| 15 |  | df-ov 7434 | . . . . . . . . . 10
⊢ (𝑤 − 𝑥) = ( − ‘〈𝑤, 𝑥〉) | 
| 16 | 14, 15 | eqtr4di 2795 | . . . . . . . . 9
⊢ (𝑢 = 〈𝑤, 𝑥〉 → ( − ‘𝑢) = (𝑤 − 𝑥)) | 
| 17 | 16 | eqeq1d 2739 | . . . . . . . 8
⊢ (𝑢 = 〈𝑤, 𝑥〉 → (( − ‘𝑢) = ( − ‘𝑣) ↔ (𝑤 − 𝑥) = ( − ‘𝑣))) | 
| 18 | 13, 17 | bibi12d 345 | . . . . . . 7
⊢ (𝑢 = 〈𝑤, 𝑥〉 → ((𝑢𝑟𝑣 ↔ ( − ‘𝑢) = ( − ‘𝑣)) ↔ (〈𝑤, 𝑥〉𝑟𝑣 ↔ (𝑤 − 𝑥) = ( − ‘𝑣)))) | 
| 19 |  | breq2 5147 | . . . . . . . 8
⊢ (𝑣 = 〈𝑦, 𝑧〉 → (〈𝑤, 𝑥〉𝑟𝑣 ↔ 〈𝑤, 𝑥〉𝑟〈𝑦, 𝑧〉)) | 
| 20 |  | fveq2 6906 | . . . . . . . . . 10
⊢ (𝑣 = 〈𝑦, 𝑧〉 → ( − ‘𝑣) = ( − ‘〈𝑦, 𝑧〉)) | 
| 21 |  | df-ov 7434 | . . . . . . . . . 10
⊢ (𝑦 − 𝑧) = ( − ‘〈𝑦, 𝑧〉) | 
| 22 | 20, 21 | eqtr4di 2795 | . . . . . . . . 9
⊢ (𝑣 = 〈𝑦, 𝑧〉 → ( − ‘𝑣) = (𝑦 − 𝑧)) | 
| 23 | 22 | eqeq2d 2748 | . . . . . . . 8
⊢ (𝑣 = 〈𝑦, 𝑧〉 → ((𝑤 − 𝑥) = ( − ‘𝑣) ↔ (𝑤 − 𝑥) = (𝑦 − 𝑧))) | 
| 24 | 19, 23 | bibi12d 345 | . . . . . . 7
⊢ (𝑣 = 〈𝑦, 𝑧〉 → ((〈𝑤, 𝑥〉𝑟𝑣 ↔ (𝑤 − 𝑥) = ( − ‘𝑣)) ↔ (〈𝑤, 𝑥〉𝑟〈𝑦, 𝑧〉 ↔ (𝑤 − 𝑥) = (𝑦 − 𝑧)))) | 
| 25 | 18, 24 | rspc2va 3634 | . . . . . 6
⊢
(((〈𝑤, 𝑥〉 ∈ (𝑃 × 𝑃) ∧ 〈𝑦, 𝑧〉 ∈ (𝑃 × 𝑃)) ∧ ∀𝑢 ∈ (𝑃 × 𝑃)∀𝑣 ∈ (𝑃 × 𝑃)(𝑢𝑟𝑣 ↔ ( − ‘𝑢) = ( − ‘𝑣))) → (〈𝑤, 𝑥〉𝑟〈𝑦, 𝑧〉 ↔ (𝑤 − 𝑥) = (𝑦 − 𝑧))) | 
| 26 | 8, 11, 12, 25 | syl21anc 838 | . . . . 5
⊢
(((∀𝑢 ∈
(𝑃 × 𝑃)∀𝑣 ∈ (𝑃 × 𝑃)(𝑢𝑟𝑣 ↔ ( − ‘𝑢) = ( − ‘𝑣)) ∧ (𝑤 ∈ 𝑃 ∧ 𝑥 ∈ 𝑃)) ∧ (𝑦 ∈ 𝑃 ∧ 𝑧 ∈ 𝑃)) → (〈𝑤, 𝑥〉𝑟〈𝑦, 𝑧〉 ↔ (𝑤 − 𝑥) = (𝑦 − 𝑧))) | 
| 27 | 26 | ralrimivva 3202 | . . . 4
⊢
((∀𝑢 ∈
(𝑃 × 𝑃)∀𝑣 ∈ (𝑃 × 𝑃)(𝑢𝑟𝑣 ↔ ( − ‘𝑢) = ( − ‘𝑣)) ∧ (𝑤 ∈ 𝑃 ∧ 𝑥 ∈ 𝑃)) → ∀𝑦 ∈ 𝑃 ∀𝑧 ∈ 𝑃 (〈𝑤, 𝑥〉𝑟〈𝑦, 𝑧〉 ↔ (𝑤 − 𝑥) = (𝑦 − 𝑧))) | 
| 28 | 27 | ralrimivva 3202 | . . 3
⊢
(∀𝑢 ∈
(𝑃 × 𝑃)∀𝑣 ∈ (𝑃 × 𝑃)(𝑢𝑟𝑣 ↔ ( − ‘𝑢) = ( − ‘𝑣)) → ∀𝑤 ∈ 𝑃 ∀𝑥 ∈ 𝑃 ∀𝑦 ∈ 𝑃 ∀𝑧 ∈ 𝑃 (〈𝑤, 𝑥〉𝑟〈𝑦, 𝑧〉 ↔ (𝑤 − 𝑥) = (𝑦 − 𝑧))) | 
| 29 | 28 | anim2i 617 | . 2
⊢ ((𝑟 Er (𝑃 × 𝑃) ∧ ∀𝑢 ∈ (𝑃 × 𝑃)∀𝑣 ∈ (𝑃 × 𝑃)(𝑢𝑟𝑣 ↔ ( − ‘𝑢) = ( − ‘𝑣))) → (𝑟 Er (𝑃 × 𝑃) ∧ ∀𝑤 ∈ 𝑃 ∀𝑥 ∈ 𝑃 ∀𝑦 ∈ 𝑃 ∀𝑧 ∈ 𝑃 (〈𝑤, 𝑥〉𝑟〈𝑦, 𝑧〉 ↔ (𝑤 − 𝑥) = (𝑦 − 𝑧)))) | 
| 30 | 5, 29 | eximii 1837 | 1
⊢
∃𝑟(𝑟 Er (𝑃 × 𝑃) ∧ ∀𝑤 ∈ 𝑃 ∀𝑥 ∈ 𝑃 ∀𝑦 ∈ 𝑃 ∀𝑧 ∈ 𝑃 (〈𝑤, 𝑥〉𝑟〈𝑦, 𝑧〉 ↔ (𝑤 − 𝑥) = (𝑦 − 𝑧))) |