Colors of
variables: wff
setvar class |
Syntax hints:
โ wi 4 = wceq 1542
โ wcel 2107 (class class class)co 7358
โcc 11050 + caddc 11055 ยท cmul 11057
2c2 12209 |
This theorem was proved from axioms:
ax-mp 5 ax-1 6 ax-2 7
ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914
ax-6 1972 ax-7 2012 ax-8 2109
ax-9 2117 ax-ext 2708 ax-resscn 11109 ax-1cn 11110 ax-icn 11111 ax-addcl 11112 ax-mulcl 11114 ax-mulcom 11116 ax-mulass 11118 ax-distr 11119 ax-1rid 11122 ax-cnre 11125 |
This theorem depends on definitions:
df-bi 206 df-an 398
df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2715 df-cleq 2729 df-clel 2815 df-rex 3075 df-rab 3409 df-v 3448 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4284 df-if 4488 df-sn 4588 df-pr 4590 df-op 4594 df-uni 4867 df-br 5107 df-iota 6449 df-fv 6505 df-ov 7361 df-2 12217 |
This theorem is referenced by: lt2addmuld
12404 fzctr
13554 flhalf
13736 2submod
13838 modaddmodup
13840 m1expeven
14016 expmulnbnd
14139 discr
14144 crre
15000 imval2
15037 abslem2
15225 sqreulem
15245 amgm2
15255 caucvgrlem
15558 iseraltlem2
15568 iseraltlem3
15569 arisum2
15747 fallrisefac
15909 efival
16035 sinadd
16047 cosadd
16048 addsin
16053 subsin
16054 cosmul
16056 addcos
16057 subcos
16058 sin2t
16060 cos2t
16061 eirrlem
16087 sadadd2lem2
16331 pythagtriplem12
16699 pythagtriplem15
16702 pythagtriplem17
16704 difsqpwdvds
16760 prmreclem6
16794 4sqlem11
16828 4sqlem12
16829 vdwlem3
16856 vdwlem8
16861 vdwlem9
16862 vdwlem10
16863 bl2in
23756 tcphcphlem1
24602 nmparlem
24606 cphipval2
24608 minveclem2
24793 minveclem4
24799 ovolunlem1
24864 uniioombllem5
24954 sineq0
25883 cosordlem
25889 tanarg
25977 heron
26191 dcubic1
26198 dquartlem1
26204 quart1lem
26208 sinasin
26242 asinsin
26245 cosasin
26257 efiatan2
26270 2efiatan
26271 atantan
26276 atantayl2
26291 leibpi
26295 log2cnv
26297 lgamgulmlem2
26382 lgamgulmlem3
26383 basellem5
26437 basellem6
26438 ppiub
26555 chtublem
26562 chtub
26563 bcctr
26626 pcbcctr
26627 bcmono
26628 bcmax
26629 bcp1ctr
26630 bposlem1
26635 bposlem2
26636 bposlem9
26643 gausslemma2d
26725 lgsquadlem1
26731 chebbnd1lem2
26821 dchrisumlem2
26841 dchrisum0lem1b
26866 mulog2sumlem1
26885 logdivbnd
26907 selberg3lem1
26908 pntrsumbnd2
26918 selbergr
26919 selberg3r
26920 selberg34r
26922 pntpbnd1a
26936 pntpbnd2
26938 pntlemg
26949 pntlemr
26953 pntlemo
26958 ostth2lem1
26969 ostth3
26989 finsumvtxdg2ssteplem4
28499 nvge0
29618 minvecolem2
29820 minvecolem4
29825 cdj3lem1
31379 sqsscirc1
32492 bcprod
34314 unbdqndv2lem1
34975 irrdifflemf
35799 mblfinlem3
36120 ftc1anclem7
36160 areacirclem1
36169 areacirc
36174 isbnd3
36246 lcmineqlem18
40506 2xp3dxp2ge1d
40617 3cubeslem2
41011 3cubeslem3r
41013 pellfundex
41212 rmxluc
41263 rmyluc
41264 rmxdbl
41266 rmydbl
41267 jm2.24nn
41286 acongeq
41310 jm2.16nn0
41331 jm3.1lem1
41344 jm3.1lem2
41345 sqrtcval
41920 imo72b2lem0
42445 sineq0ALT
43226 sinmulcos
44113 stirlinglem5
44326 fourierdlem79
44433 fouriercnp
44474 hoicvrrex
44804 2leaddle2
45537 lighneallem4a
45807 nnpw2pmod
46676 itschlc0yqe
46853 sinhpcosh
47192 |