Step | Hyp | Ref
| Expression |
1 | | elznn0nn 12333 |
. 2
⊢ (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℕ0 ∨
(𝑁 ∈ ℝ ∧
-𝑁 ∈
ℕ))) |
2 | | cnelprrecn 10964 |
. . . . . 6
⊢ ℂ
∈ {ℝ, ℂ} |
3 | 2 | a1i 11 |
. . . . 5
⊢ (𝑁 ∈ ℕ0
→ ℂ ∈ {ℝ, ℂ}) |
4 | | expcl 13800 |
. . . . . 6
⊢ ((𝑥 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
→ (𝑥↑𝑁) ∈
ℂ) |
5 | 4 | ancoms 459 |
. . . . 5
⊢ ((𝑁 ∈ ℕ0
∧ 𝑥 ∈ ℂ)
→ (𝑥↑𝑁) ∈
ℂ) |
6 | | c0ex 10969 |
. . . . . . 7
⊢ 0 ∈
V |
7 | | ovex 7308 |
. . . . . . 7
⊢ (𝑁 · (𝑥↑(𝑁 − 1))) ∈ V |
8 | 6, 7 | ifex 4509 |
. . . . . 6
⊢ if(𝑁 = 0, 0, (𝑁 · (𝑥↑(𝑁 − 1)))) ∈ V |
9 | 8 | a1i 11 |
. . . . 5
⊢ ((𝑁 ∈ ℕ0
∧ 𝑥 ∈ ℂ)
→ if(𝑁 = 0, 0, (𝑁 · (𝑥↑(𝑁 − 1)))) ∈ V) |
10 | | dvexp2 25118 |
. . . . 5
⊢ (𝑁 ∈ ℕ0
→ (ℂ D (𝑥 ∈
ℂ ↦ (𝑥↑𝑁))) = (𝑥 ∈ ℂ ↦ if(𝑁 = 0, 0, (𝑁 · (𝑥↑(𝑁 − 1)))))) |
11 | | difssd 4067 |
. . . . 5
⊢ (𝑁 ∈ ℕ0
→ (ℂ ∖ {0}) ⊆ ℂ) |
12 | | eqid 2738 |
. . . . . . 7
⊢
(TopOpen‘ℂfld) =
(TopOpen‘ℂfld) |
13 | 12 | cnfldtopon 23946 |
. . . . . 6
⊢
(TopOpen‘ℂfld) ∈
(TopOn‘ℂ) |
14 | 13 | toponrestid 22070 |
. . . . 5
⊢
(TopOpen‘ℂfld) =
((TopOpen‘ℂfld) ↾t
ℂ) |
15 | 12 | cnfldhaus 23948 |
. . . . . . . 8
⊢
(TopOpen‘ℂfld) ∈ Haus |
16 | | 0cn 10967 |
. . . . . . . 8
⊢ 0 ∈
ℂ |
17 | | unicntop 23949 |
. . . . . . . . 9
⊢ ℂ =
∪
(TopOpen‘ℂfld) |
18 | 17 | sncld 22522 |
. . . . . . . 8
⊢
(((TopOpen‘ℂfld) ∈ Haus ∧ 0 ∈
ℂ) → {0} ∈
(Clsd‘(TopOpen‘ℂfld))) |
19 | 15, 16, 18 | mp2an 689 |
. . . . . . 7
⊢ {0}
∈ (Clsd‘(TopOpen‘ℂfld)) |
20 | 17 | cldopn 22182 |
. . . . . . 7
⊢ ({0}
∈ (Clsd‘(TopOpen‘ℂfld)) → (ℂ
∖ {0}) ∈ (TopOpen‘ℂfld)) |
21 | 19, 20 | ax-mp 5 |
. . . . . 6
⊢ (ℂ
∖ {0}) ∈ (TopOpen‘ℂfld) |
22 | 21 | a1i 11 |
. . . . 5
⊢ (𝑁 ∈ ℕ0
→ (ℂ ∖ {0}) ∈
(TopOpen‘ℂfld)) |
23 | 3, 5, 9, 10, 11, 14, 12, 22 | dvmptres 25127 |
. . . 4
⊢ (𝑁 ∈ ℕ0
→ (ℂ D (𝑥 ∈
(ℂ ∖ {0}) ↦ (𝑥↑𝑁))) = (𝑥 ∈ (ℂ ∖ {0}) ↦
if(𝑁 = 0, 0, (𝑁 · (𝑥↑(𝑁 − 1)))))) |
24 | | ifid 4499 |
. . . . . 6
⊢ if(𝑁 = 0, (𝑁 · (𝑥↑(𝑁 − 1))), (𝑁 · (𝑥↑(𝑁 − 1)))) = (𝑁 · (𝑥↑(𝑁 − 1))) |
25 | | id 22 |
. . . . . . . . 9
⊢ (𝑁 = 0 → 𝑁 = 0) |
26 | | oveq1 7282 |
. . . . . . . . . 10
⊢ (𝑁 = 0 → (𝑁 − 1) = (0 −
1)) |
27 | 26 | oveq2d 7291 |
. . . . . . . . 9
⊢ (𝑁 = 0 → (𝑥↑(𝑁 − 1)) = (𝑥↑(0 − 1))) |
28 | 25, 27 | oveq12d 7293 |
. . . . . . . 8
⊢ (𝑁 = 0 → (𝑁 · (𝑥↑(𝑁 − 1))) = (0 · (𝑥↑(0 −
1)))) |
29 | | eldifsn 4720 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ (ℂ ∖ {0})
↔ (𝑥 ∈ ℂ
∧ 𝑥 ≠
0)) |
30 | | 0z 12330 |
. . . . . . . . . . . . 13
⊢ 0 ∈
ℤ |
31 | | peano2zm 12363 |
. . . . . . . . . . . . 13
⊢ (0 ∈
ℤ → (0 − 1) ∈ ℤ) |
32 | 30, 31 | ax-mp 5 |
. . . . . . . . . . . 12
⊢ (0
− 1) ∈ ℤ |
33 | | expclz 13807 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ ℂ ∧ 𝑥 ≠ 0 ∧ (0 − 1)
∈ ℤ) → (𝑥↑(0 − 1)) ∈
ℂ) |
34 | 32, 33 | mp3an3 1449 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) → (𝑥↑(0 − 1)) ∈
ℂ) |
35 | 29, 34 | sylbi 216 |
. . . . . . . . . 10
⊢ (𝑥 ∈ (ℂ ∖ {0})
→ (𝑥↑(0 −
1)) ∈ ℂ) |
36 | 35 | adantl 482 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ0
∧ 𝑥 ∈ (ℂ
∖ {0})) → (𝑥↑(0 − 1)) ∈
ℂ) |
37 | 36 | mul02d 11173 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ0
∧ 𝑥 ∈ (ℂ
∖ {0})) → (0 · (𝑥↑(0 − 1))) = 0) |
38 | 28, 37 | sylan9eqr 2800 |
. . . . . . 7
⊢ (((𝑁 ∈ ℕ0
∧ 𝑥 ∈ (ℂ
∖ {0})) ∧ 𝑁 = 0)
→ (𝑁 · (𝑥↑(𝑁 − 1))) = 0) |
39 | 38 | ifeq1da 4490 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ0
∧ 𝑥 ∈ (ℂ
∖ {0})) → if(𝑁 =
0, (𝑁 · (𝑥↑(𝑁 − 1))), (𝑁 · (𝑥↑(𝑁 − 1)))) = if(𝑁 = 0, 0, (𝑁 · (𝑥↑(𝑁 − 1))))) |
40 | 24, 39 | eqtr3id 2792 |
. . . . 5
⊢ ((𝑁 ∈ ℕ0
∧ 𝑥 ∈ (ℂ
∖ {0})) → (𝑁
· (𝑥↑(𝑁 − 1))) = if(𝑁 = 0, 0, (𝑁 · (𝑥↑(𝑁 − 1))))) |
41 | 40 | mpteq2dva 5174 |
. . . 4
⊢ (𝑁 ∈ ℕ0
→ (𝑥 ∈ (ℂ
∖ {0}) ↦ (𝑁
· (𝑥↑(𝑁 − 1)))) = (𝑥 ∈ (ℂ ∖ {0})
↦ if(𝑁 = 0, 0, (𝑁 · (𝑥↑(𝑁 − 1)))))) |
42 | 23, 41 | eqtr4d 2781 |
. . 3
⊢ (𝑁 ∈ ℕ0
→ (ℂ D (𝑥 ∈
(ℂ ∖ {0}) ↦ (𝑥↑𝑁))) = (𝑥 ∈ (ℂ ∖ {0}) ↦ (𝑁 · (𝑥↑(𝑁 − 1))))) |
43 | | eldifi 4061 |
. . . . . . . 8
⊢ (𝑥 ∈ (ℂ ∖ {0})
→ 𝑥 ∈
ℂ) |
44 | 43 | adantl 482 |
. . . . . . 7
⊢ (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ (ℂ ∖ {0}))
→ 𝑥 ∈
ℂ) |
45 | | simpll 764 |
. . . . . . . 8
⊢ (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ (ℂ ∖ {0}))
→ 𝑁 ∈
ℝ) |
46 | 45 | recnd 11003 |
. . . . . . 7
⊢ (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ (ℂ ∖ {0}))
→ 𝑁 ∈
ℂ) |
47 | | nnnn0 12240 |
. . . . . . . 8
⊢ (-𝑁 ∈ ℕ → -𝑁 ∈
ℕ0) |
48 | 47 | ad2antlr 724 |
. . . . . . 7
⊢ (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ (ℂ ∖ {0}))
→ -𝑁 ∈
ℕ0) |
49 | | expneg2 13791 |
. . . . . . 7
⊢ ((𝑥 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ -𝑁 ∈ ℕ0)
→ (𝑥↑𝑁) = (1 / (𝑥↑-𝑁))) |
50 | 44, 46, 48, 49 | syl3anc 1370 |
. . . . . 6
⊢ (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ (ℂ ∖ {0}))
→ (𝑥↑𝑁) = (1 / (𝑥↑-𝑁))) |
51 | 50 | mpteq2dva 5174 |
. . . . 5
⊢ ((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) → (𝑥 ∈ (ℂ ∖ {0})
↦ (𝑥↑𝑁)) = (𝑥 ∈ (ℂ ∖ {0}) ↦ (1 /
(𝑥↑-𝑁)))) |
52 | 51 | oveq2d 7291 |
. . . 4
⊢ ((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) → (ℂ
D (𝑥 ∈ (ℂ
∖ {0}) ↦ (𝑥↑𝑁))) = (ℂ D (𝑥 ∈ (ℂ ∖ {0}) ↦ (1 /
(𝑥↑-𝑁))))) |
53 | 2 | a1i 11 |
. . . . 5
⊢ ((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) → ℂ
∈ {ℝ, ℂ}) |
54 | | eldifsni 4723 |
. . . . . . . 8
⊢ (𝑥 ∈ (ℂ ∖ {0})
→ 𝑥 ≠
0) |
55 | 54 | adantl 482 |
. . . . . . 7
⊢ (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ (ℂ ∖ {0}))
→ 𝑥 ≠
0) |
56 | | nnz 12342 |
. . . . . . . 8
⊢ (-𝑁 ∈ ℕ → -𝑁 ∈
ℤ) |
57 | 56 | ad2antlr 724 |
. . . . . . 7
⊢ (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ (ℂ ∖ {0}))
→ -𝑁 ∈
ℤ) |
58 | 44, 55, 57 | expclzd 13869 |
. . . . . 6
⊢ (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ (ℂ ∖ {0}))
→ (𝑥↑-𝑁) ∈
ℂ) |
59 | 44, 55, 57 | expne0d 13870 |
. . . . . 6
⊢ (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ (ℂ ∖ {0}))
→ (𝑥↑-𝑁) ≠ 0) |
60 | | eldifsn 4720 |
. . . . . 6
⊢ ((𝑥↑-𝑁) ∈ (ℂ ∖ {0}) ↔
((𝑥↑-𝑁) ∈ ℂ ∧ (𝑥↑-𝑁) ≠ 0)) |
61 | 58, 59, 60 | sylanbrc 583 |
. . . . 5
⊢ (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ (ℂ ∖ {0}))
→ (𝑥↑-𝑁) ∈ (ℂ ∖
{0})) |
62 | | ovex 7308 |
. . . . . 6
⊢ (-𝑁 · (𝑥↑(-𝑁 − 1))) ∈ V |
63 | 62 | a1i 11 |
. . . . 5
⊢ (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ (ℂ ∖ {0}))
→ (-𝑁 · (𝑥↑(-𝑁 − 1))) ∈ V) |
64 | | simpr 485 |
. . . . . . 7
⊢ (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑦 ∈ (ℂ ∖ {0}))
→ 𝑦 ∈ (ℂ
∖ {0})) |
65 | | eldifsn 4720 |
. . . . . . 7
⊢ (𝑦 ∈ (ℂ ∖ {0})
↔ (𝑦 ∈ ℂ
∧ 𝑦 ≠
0)) |
66 | 64, 65 | sylib 217 |
. . . . . 6
⊢ (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑦 ∈ (ℂ ∖ {0}))
→ (𝑦 ∈ ℂ
∧ 𝑦 ≠
0)) |
67 | | reccl 11640 |
. . . . . 6
⊢ ((𝑦 ∈ ℂ ∧ 𝑦 ≠ 0) → (1 / 𝑦) ∈
ℂ) |
68 | 66, 67 | syl 17 |
. . . . 5
⊢ (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑦 ∈ (ℂ ∖ {0}))
→ (1 / 𝑦) ∈
ℂ) |
69 | | negex 11219 |
. . . . . 6
⊢ -(1 /
(𝑦↑2)) ∈
V |
70 | 69 | a1i 11 |
. . . . 5
⊢ (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑦 ∈ (ℂ ∖ {0}))
→ -(1 / (𝑦↑2))
∈ V) |
71 | | simpr 485 |
. . . . . . 7
⊢ (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ ℂ) → 𝑥 ∈
ℂ) |
72 | 47 | ad2antlr 724 |
. . . . . . 7
⊢ (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ ℂ) → -𝑁 ∈
ℕ0) |
73 | 71, 72 | expcld 13864 |
. . . . . 6
⊢ (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ ℂ) → (𝑥↑-𝑁) ∈ ℂ) |
74 | 62 | a1i 11 |
. . . . . 6
⊢ (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ ℂ) → (-𝑁 · (𝑥↑(-𝑁 − 1))) ∈ V) |
75 | | dvexp 25117 |
. . . . . . 7
⊢ (-𝑁 ∈ ℕ → (ℂ
D (𝑥 ∈ ℂ ↦
(𝑥↑-𝑁))) = (𝑥 ∈ ℂ ↦ (-𝑁 · (𝑥↑(-𝑁 − 1))))) |
76 | 75 | adantl 482 |
. . . . . 6
⊢ ((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) → (ℂ
D (𝑥 ∈ ℂ ↦
(𝑥↑-𝑁))) = (𝑥 ∈ ℂ ↦ (-𝑁 · (𝑥↑(-𝑁 − 1))))) |
77 | | difssd 4067 |
. . . . . 6
⊢ ((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) → (ℂ
∖ {0}) ⊆ ℂ) |
78 | 21 | a1i 11 |
. . . . . 6
⊢ ((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) → (ℂ
∖ {0}) ∈ (TopOpen‘ℂfld)) |
79 | 53, 73, 74, 76, 77, 14, 12, 78 | dvmptres 25127 |
. . . . 5
⊢ ((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) → (ℂ
D (𝑥 ∈ (ℂ
∖ {0}) ↦ (𝑥↑-𝑁))) = (𝑥 ∈ (ℂ ∖ {0}) ↦ (-𝑁 · (𝑥↑(-𝑁 − 1))))) |
80 | | ax-1cn 10929 |
. . . . . 6
⊢ 1 ∈
ℂ |
81 | | dvrec 25119 |
. . . . . 6
⊢ (1 ∈
ℂ → (ℂ D (𝑦 ∈ (ℂ ∖ {0}) ↦ (1 /
𝑦))) = (𝑦 ∈ (ℂ ∖ {0}) ↦ -(1 /
(𝑦↑2)))) |
82 | 80, 81 | mp1i 13 |
. . . . 5
⊢ ((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) → (ℂ
D (𝑦 ∈ (ℂ
∖ {0}) ↦ (1 / 𝑦))) = (𝑦 ∈ (ℂ ∖ {0}) ↦ -(1 /
(𝑦↑2)))) |
83 | | oveq2 7283 |
. . . . 5
⊢ (𝑦 = (𝑥↑-𝑁) → (1 / 𝑦) = (1 / (𝑥↑-𝑁))) |
84 | | oveq1 7282 |
. . . . . . 7
⊢ (𝑦 = (𝑥↑-𝑁) → (𝑦↑2) = ((𝑥↑-𝑁)↑2)) |
85 | 84 | oveq2d 7291 |
. . . . . 6
⊢ (𝑦 = (𝑥↑-𝑁) → (1 / (𝑦↑2)) = (1 / ((𝑥↑-𝑁)↑2))) |
86 | 85 | negeqd 11215 |
. . . . 5
⊢ (𝑦 = (𝑥↑-𝑁) → -(1 / (𝑦↑2)) = -(1 / ((𝑥↑-𝑁)↑2))) |
87 | 53, 53, 61, 63, 68, 70, 79, 82, 83, 86 | dvmptco 25136 |
. . . 4
⊢ ((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) → (ℂ
D (𝑥 ∈ (ℂ
∖ {0}) ↦ (1 / (𝑥↑-𝑁)))) = (𝑥 ∈ (ℂ ∖ {0}) ↦ (-(1 /
((𝑥↑-𝑁)↑2)) · (-𝑁 · (𝑥↑(-𝑁 − 1)))))) |
88 | | 2z 12352 |
. . . . . . . . . . . 12
⊢ 2 ∈
ℤ |
89 | 88 | a1i 11 |
. . . . . . . . . . 11
⊢ (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ (ℂ ∖ {0}))
→ 2 ∈ ℤ) |
90 | | expmulz 13829 |
. . . . . . . . . . 11
⊢ (((𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) ∧ (-𝑁 ∈ ℤ ∧ 2 ∈
ℤ)) → (𝑥↑(-𝑁 · 2)) = ((𝑥↑-𝑁)↑2)) |
91 | 44, 55, 57, 89, 90 | syl22anc 836 |
. . . . . . . . . 10
⊢ (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ (ℂ ∖ {0}))
→ (𝑥↑(-𝑁 · 2)) = ((𝑥↑-𝑁)↑2)) |
92 | 91 | eqcomd 2744 |
. . . . . . . . 9
⊢ (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ (ℂ ∖ {0}))
→ ((𝑥↑-𝑁)↑2) = (𝑥↑(-𝑁 · 2))) |
93 | 92 | oveq2d 7291 |
. . . . . . . 8
⊢ (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ (ℂ ∖ {0}))
→ (1 / ((𝑥↑-𝑁)↑2)) = (1 / (𝑥↑(-𝑁 · 2)))) |
94 | 93 | negeqd 11215 |
. . . . . . 7
⊢ (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ (ℂ ∖ {0}))
→ -(1 / ((𝑥↑-𝑁)↑2)) = -(1 / (𝑥↑(-𝑁 · 2)))) |
95 | | peano2zm 12363 |
. . . . . . . . . 10
⊢ (-𝑁 ∈ ℤ → (-𝑁 − 1) ∈
ℤ) |
96 | 57, 95 | syl 17 |
. . . . . . . . 9
⊢ (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ (ℂ ∖ {0}))
→ (-𝑁 − 1)
∈ ℤ) |
97 | 44, 55, 96 | expclzd 13869 |
. . . . . . . 8
⊢ (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ (ℂ ∖ {0}))
→ (𝑥↑(-𝑁 − 1)) ∈
ℂ) |
98 | 46, 97 | mulneg1d 11428 |
. . . . . . 7
⊢ (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ (ℂ ∖ {0}))
→ (-𝑁 · (𝑥↑(-𝑁 − 1))) = -(𝑁 · (𝑥↑(-𝑁 − 1)))) |
99 | 94, 98 | oveq12d 7293 |
. . . . . 6
⊢ (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ (ℂ ∖ {0}))
→ (-(1 / ((𝑥↑-𝑁)↑2)) · (-𝑁 · (𝑥↑(-𝑁 − 1)))) = (-(1 / (𝑥↑(-𝑁 · 2))) · -(𝑁 · (𝑥↑(-𝑁 − 1))))) |
100 | | zmulcl 12369 |
. . . . . . . . . 10
⊢ ((-𝑁 ∈ ℤ ∧ 2 ∈
ℤ) → (-𝑁
· 2) ∈ ℤ) |
101 | 57, 88, 100 | sylancl 586 |
. . . . . . . . 9
⊢ (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ (ℂ ∖ {0}))
→ (-𝑁 · 2)
∈ ℤ) |
102 | 44, 55, 101 | expclzd 13869 |
. . . . . . . 8
⊢ (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ (ℂ ∖ {0}))
→ (𝑥↑(-𝑁 · 2)) ∈
ℂ) |
103 | 44, 55, 101 | expne0d 13870 |
. . . . . . . 8
⊢ (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ (ℂ ∖ {0}))
→ (𝑥↑(-𝑁 · 2)) ≠
0) |
104 | 102, 103 | reccld 11744 |
. . . . . . 7
⊢ (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ (ℂ ∖ {0}))
→ (1 / (𝑥↑(-𝑁 · 2))) ∈
ℂ) |
105 | 46, 97 | mulcld 10995 |
. . . . . . 7
⊢ (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ (ℂ ∖ {0}))
→ (𝑁 · (𝑥↑(-𝑁 − 1))) ∈
ℂ) |
106 | 104, 105 | mul2negd 11430 |
. . . . . 6
⊢ (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ (ℂ ∖ {0}))
→ (-(1 / (𝑥↑(-𝑁 · 2))) · -(𝑁 · (𝑥↑(-𝑁 − 1)))) = ((1 / (𝑥↑(-𝑁 · 2))) · (𝑁 · (𝑥↑(-𝑁 − 1))))) |
107 | 104, 46, 97 | mul12d 11184 |
. . . . . . 7
⊢ (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ (ℂ ∖ {0}))
→ ((1 / (𝑥↑(-𝑁 · 2))) · (𝑁 · (𝑥↑(-𝑁 − 1)))) = (𝑁 · ((1 / (𝑥↑(-𝑁 · 2))) · (𝑥↑(-𝑁 − 1))))) |
108 | 44, 55, 101, 96 | expsubd 13875 |
. . . . . . . . 9
⊢ (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ (ℂ ∖ {0}))
→ (𝑥↑((-𝑁 − 1) − (-𝑁 · 2))) = ((𝑥↑(-𝑁 − 1)) / (𝑥↑(-𝑁 · 2)))) |
109 | | nncn 11981 |
. . . . . . . . . . . . 13
⊢ (-𝑁 ∈ ℕ → -𝑁 ∈
ℂ) |
110 | 109 | ad2antlr 724 |
. . . . . . . . . . . 12
⊢ (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ (ℂ ∖ {0}))
→ -𝑁 ∈
ℂ) |
111 | 80 | a1i 11 |
. . . . . . . . . . . 12
⊢ (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ (ℂ ∖ {0}))
→ 1 ∈ ℂ) |
112 | 101 | zcnd 12427 |
. . . . . . . . . . . 12
⊢ (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ (ℂ ∖ {0}))
→ (-𝑁 · 2)
∈ ℂ) |
113 | 110, 111,
112 | sub32d 11364 |
. . . . . . . . . . 11
⊢ (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ (ℂ ∖ {0}))
→ ((-𝑁 − 1)
− (-𝑁 · 2)) =
((-𝑁 − (-𝑁 · 2)) −
1)) |
114 | 110 | times2d 12217 |
. . . . . . . . . . . . . . 15
⊢ (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ (ℂ ∖ {0}))
→ (-𝑁 · 2) =
(-𝑁 + -𝑁)) |
115 | 110, 46 | negsubd 11338 |
. . . . . . . . . . . . . . 15
⊢ (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ (ℂ ∖ {0}))
→ (-𝑁 + -𝑁) = (-𝑁 − 𝑁)) |
116 | 114, 115 | eqtrd 2778 |
. . . . . . . . . . . . . 14
⊢ (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ (ℂ ∖ {0}))
→ (-𝑁 · 2) =
(-𝑁 − 𝑁)) |
117 | 116 | oveq2d 7291 |
. . . . . . . . . . . . 13
⊢ (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ (ℂ ∖ {0}))
→ (-𝑁 − (-𝑁 · 2)) = (-𝑁 − (-𝑁 − 𝑁))) |
118 | 110, 46 | nncand 11337 |
. . . . . . . . . . . . 13
⊢ (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ (ℂ ∖ {0}))
→ (-𝑁 − (-𝑁 − 𝑁)) = 𝑁) |
119 | 117, 118 | eqtrd 2778 |
. . . . . . . . . . . 12
⊢ (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ (ℂ ∖ {0}))
→ (-𝑁 − (-𝑁 · 2)) = 𝑁) |
120 | 119 | oveq1d 7290 |
. . . . . . . . . . 11
⊢ (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ (ℂ ∖ {0}))
→ ((-𝑁 − (-𝑁 · 2)) − 1) =
(𝑁 −
1)) |
121 | 113, 120 | eqtrd 2778 |
. . . . . . . . . 10
⊢ (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ (ℂ ∖ {0}))
→ ((-𝑁 − 1)
− (-𝑁 · 2)) =
(𝑁 −
1)) |
122 | 121 | oveq2d 7291 |
. . . . . . . . 9
⊢ (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ (ℂ ∖ {0}))
→ (𝑥↑((-𝑁 − 1) − (-𝑁 · 2))) = (𝑥↑(𝑁 − 1))) |
123 | 97, 102, 103 | divrec2d 11755 |
. . . . . . . . 9
⊢ (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ (ℂ ∖ {0}))
→ ((𝑥↑(-𝑁 − 1)) / (𝑥↑(-𝑁 · 2))) = ((1 / (𝑥↑(-𝑁 · 2))) · (𝑥↑(-𝑁 − 1)))) |
124 | 108, 122,
123 | 3eqtr3rd 2787 |
. . . . . . . 8
⊢ (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ (ℂ ∖ {0}))
→ ((1 / (𝑥↑(-𝑁 · 2))) · (𝑥↑(-𝑁 − 1))) = (𝑥↑(𝑁 − 1))) |
125 | 124 | oveq2d 7291 |
. . . . . . 7
⊢ (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ (ℂ ∖ {0}))
→ (𝑁 · ((1 /
(𝑥↑(-𝑁 · 2))) · (𝑥↑(-𝑁 − 1)))) = (𝑁 · (𝑥↑(𝑁 − 1)))) |
126 | 107, 125 | eqtrd 2778 |
. . . . . 6
⊢ (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ (ℂ ∖ {0}))
→ ((1 / (𝑥↑(-𝑁 · 2))) · (𝑁 · (𝑥↑(-𝑁 − 1)))) = (𝑁 · (𝑥↑(𝑁 − 1)))) |
127 | 99, 106, 126 | 3eqtrd 2782 |
. . . . 5
⊢ (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ (ℂ ∖ {0}))
→ (-(1 / ((𝑥↑-𝑁)↑2)) · (-𝑁 · (𝑥↑(-𝑁 − 1)))) = (𝑁 · (𝑥↑(𝑁 − 1)))) |
128 | 127 | mpteq2dva 5174 |
. . . 4
⊢ ((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) → (𝑥 ∈ (ℂ ∖ {0})
↦ (-(1 / ((𝑥↑-𝑁)↑2)) · (-𝑁 · (𝑥↑(-𝑁 − 1))))) = (𝑥 ∈ (ℂ ∖ {0}) ↦ (𝑁 · (𝑥↑(𝑁 − 1))))) |
129 | 52, 87, 128 | 3eqtrd 2782 |
. . 3
⊢ ((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) → (ℂ
D (𝑥 ∈ (ℂ
∖ {0}) ↦ (𝑥↑𝑁))) = (𝑥 ∈ (ℂ ∖ {0}) ↦ (𝑁 · (𝑥↑(𝑁 − 1))))) |
130 | 42, 129 | jaoi 854 |
. 2
⊢ ((𝑁 ∈ ℕ0 ∨
(𝑁 ∈ ℝ ∧
-𝑁 ∈ ℕ)) →
(ℂ D (𝑥 ∈
(ℂ ∖ {0}) ↦ (𝑥↑𝑁))) = (𝑥 ∈ (ℂ ∖ {0}) ↦ (𝑁 · (𝑥↑(𝑁 − 1))))) |
131 | 1, 130 | sylbi 216 |
1
⊢ (𝑁 ∈ ℤ → (ℂ
D (𝑥 ∈ (ℂ
∖ {0}) ↦ (𝑥↑𝑁))) = (𝑥 ∈ (ℂ ∖ {0}) ↦ (𝑁 · (𝑥↑(𝑁 − 1))))) |