Step | Hyp | Ref
| Expression |
1 | | elznn0nn 12572 |
. 2
β’ (π β β€ β (π β β0 β¨
(π β β β§
-π β
β))) |
2 | | cnelprrecn 11203 |
. . . . . 6
β’ β
β {β, β} |
3 | 2 | a1i 11 |
. . . . 5
β’ (π β β0
β β β {β, β}) |
4 | | expcl 14045 |
. . . . . 6
β’ ((π₯ β β β§ π β β0)
β (π₯βπ) β
β) |
5 | 4 | ancoms 460 |
. . . . 5
β’ ((π β β0
β§ π₯ β β)
β (π₯βπ) β
β) |
6 | | c0ex 11208 |
. . . . . . 7
β’ 0 β
V |
7 | | ovex 7442 |
. . . . . . 7
β’ (π Β· (π₯β(π β 1))) β V |
8 | 6, 7 | ifex 4579 |
. . . . . 6
β’ if(π = 0, 0, (π Β· (π₯β(π β 1)))) β V |
9 | 8 | a1i 11 |
. . . . 5
β’ ((π β β0
β§ π₯ β β)
β if(π = 0, 0, (π Β· (π₯β(π β 1)))) β V) |
10 | | dvexp2 25471 |
. . . . 5
β’ (π β β0
β (β D (π₯ β
β β¦ (π₯βπ))) = (π₯ β β β¦ if(π = 0, 0, (π Β· (π₯β(π β 1)))))) |
11 | | difssd 4133 |
. . . . 5
β’ (π β β0
β (β β {0}) β β) |
12 | | eqid 2733 |
. . . . . . 7
β’
(TopOpenββfld) =
(TopOpenββfld) |
13 | 12 | cnfldtopon 24299 |
. . . . . 6
β’
(TopOpenββfld) β
(TopOnββ) |
14 | 13 | toponrestid 22423 |
. . . . 5
β’
(TopOpenββfld) =
((TopOpenββfld) βΎt
β) |
15 | 12 | cnfldhaus 24301 |
. . . . . . . 8
β’
(TopOpenββfld) β Haus |
16 | | 0cn 11206 |
. . . . . . . 8
β’ 0 β
β |
17 | | unicntop 24302 |
. . . . . . . . 9
β’ β =
βͺ
(TopOpenββfld) |
18 | 17 | sncld 22875 |
. . . . . . . 8
β’
(((TopOpenββfld) β Haus β§ 0 β
β) β {0} β
(Clsdβ(TopOpenββfld))) |
19 | 15, 16, 18 | mp2an 691 |
. . . . . . 7
β’ {0}
β (Clsdβ(TopOpenββfld)) |
20 | 17 | cldopn 22535 |
. . . . . . 7
β’ ({0}
β (Clsdβ(TopOpenββfld)) β (β
β {0}) β (TopOpenββfld)) |
21 | 19, 20 | ax-mp 5 |
. . . . . 6
β’ (β
β {0}) β (TopOpenββfld) |
22 | 21 | a1i 11 |
. . . . 5
β’ (π β β0
β (β β {0}) β
(TopOpenββfld)) |
23 | 3, 5, 9, 10, 11, 14, 12, 22 | dvmptres 25480 |
. . . 4
β’ (π β β0
β (β D (π₯ β
(β β {0}) β¦ (π₯βπ))) = (π₯ β (β β {0}) β¦
if(π = 0, 0, (π Β· (π₯β(π β 1)))))) |
24 | | ifid 4569 |
. . . . . 6
β’ if(π = 0, (π Β· (π₯β(π β 1))), (π Β· (π₯β(π β 1)))) = (π Β· (π₯β(π β 1))) |
25 | | id 22 |
. . . . . . . . 9
β’ (π = 0 β π = 0) |
26 | | oveq1 7416 |
. . . . . . . . . 10
β’ (π = 0 β (π β 1) = (0 β
1)) |
27 | 26 | oveq2d 7425 |
. . . . . . . . 9
β’ (π = 0 β (π₯β(π β 1)) = (π₯β(0 β 1))) |
28 | 25, 27 | oveq12d 7427 |
. . . . . . . 8
β’ (π = 0 β (π Β· (π₯β(π β 1))) = (0 Β· (π₯β(0 β
1)))) |
29 | | eldifsn 4791 |
. . . . . . . . . . 11
β’ (π₯ β (β β {0})
β (π₯ β β
β§ π₯ β
0)) |
30 | | 0z 12569 |
. . . . . . . . . . . . 13
β’ 0 β
β€ |
31 | | peano2zm 12605 |
. . . . . . . . . . . . 13
β’ (0 β
β€ β (0 β 1) β β€) |
32 | 30, 31 | ax-mp 5 |
. . . . . . . . . . . 12
β’ (0
β 1) β β€ |
33 | | expclz 14050 |
. . . . . . . . . . . 12
β’ ((π₯ β β β§ π₯ β 0 β§ (0 β 1)
β β€) β (π₯β(0 β 1)) β
β) |
34 | 32, 33 | mp3an3 1451 |
. . . . . . . . . . 11
β’ ((π₯ β β β§ π₯ β 0) β (π₯β(0 β 1)) β
β) |
35 | 29, 34 | sylbi 216 |
. . . . . . . . . 10
β’ (π₯ β (β β {0})
β (π₯β(0 β
1)) β β) |
36 | 35 | adantl 483 |
. . . . . . . . 9
β’ ((π β β0
β§ π₯ β (β
β {0})) β (π₯β(0 β 1)) β
β) |
37 | 36 | mul02d 11412 |
. . . . . . . 8
β’ ((π β β0
β§ π₯ β (β
β {0})) β (0 Β· (π₯β(0 β 1))) = 0) |
38 | 28, 37 | sylan9eqr 2795 |
. . . . . . 7
β’ (((π β β0
β§ π₯ β (β
β {0})) β§ π = 0)
β (π Β· (π₯β(π β 1))) = 0) |
39 | 38 | ifeq1da 4560 |
. . . . . 6
β’ ((π β β0
β§ π₯ β (β
β {0})) β if(π =
0, (π Β· (π₯β(π β 1))), (π Β· (π₯β(π β 1)))) = if(π = 0, 0, (π Β· (π₯β(π β 1))))) |
40 | 24, 39 | eqtr3id 2787 |
. . . . 5
β’ ((π β β0
β§ π₯ β (β
β {0})) β (π
Β· (π₯β(π β 1))) = if(π = 0, 0, (π Β· (π₯β(π β 1))))) |
41 | 40 | mpteq2dva 5249 |
. . . 4
β’ (π β β0
β (π₯ β (β
β {0}) β¦ (π
Β· (π₯β(π β 1)))) = (π₯ β (β β {0})
β¦ if(π = 0, 0, (π Β· (π₯β(π β 1)))))) |
42 | 23, 41 | eqtr4d 2776 |
. . 3
β’ (π β β0
β (β D (π₯ β
(β β {0}) β¦ (π₯βπ))) = (π₯ β (β β {0}) β¦ (π Β· (π₯β(π β 1))))) |
43 | | eldifi 4127 |
. . . . . . . 8
β’ (π₯ β (β β {0})
β π₯ β
β) |
44 | 43 | adantl 483 |
. . . . . . 7
β’ (((π β β β§ -π β β) β§ π₯ β (β β {0}))
β π₯ β
β) |
45 | | simpll 766 |
. . . . . . . 8
β’ (((π β β β§ -π β β) β§ π₯ β (β β {0}))
β π β
β) |
46 | 45 | recnd 11242 |
. . . . . . 7
β’ (((π β β β§ -π β β) β§ π₯ β (β β {0}))
β π β
β) |
47 | | nnnn0 12479 |
. . . . . . . 8
β’ (-π β β β -π β
β0) |
48 | 47 | ad2antlr 726 |
. . . . . . 7
β’ (((π β β β§ -π β β) β§ π₯ β (β β {0}))
β -π β
β0) |
49 | | expneg2 14036 |
. . . . . . 7
β’ ((π₯ β β β§ π β β β§ -π β β0)
β (π₯βπ) = (1 / (π₯β-π))) |
50 | 44, 46, 48, 49 | syl3anc 1372 |
. . . . . 6
β’ (((π β β β§ -π β β) β§ π₯ β (β β {0}))
β (π₯βπ) = (1 / (π₯β-π))) |
51 | 50 | mpteq2dva 5249 |
. . . . 5
β’ ((π β β β§ -π β β) β (π₯ β (β β {0})
β¦ (π₯βπ)) = (π₯ β (β β {0}) β¦ (1 /
(π₯β-π)))) |
52 | 51 | oveq2d 7425 |
. . . 4
β’ ((π β β β§ -π β β) β (β
D (π₯ β (β
β {0}) β¦ (π₯βπ))) = (β D (π₯ β (β β {0}) β¦ (1 /
(π₯β-π))))) |
53 | 2 | a1i 11 |
. . . . 5
β’ ((π β β β§ -π β β) β β
β {β, β}) |
54 | | eldifsni 4794 |
. . . . . . . 8
β’ (π₯ β (β β {0})
β π₯ β
0) |
55 | 54 | adantl 483 |
. . . . . . 7
β’ (((π β β β§ -π β β) β§ π₯ β (β β {0}))
β π₯ β
0) |
56 | | nnz 12579 |
. . . . . . . 8
β’ (-π β β β -π β
β€) |
57 | 56 | ad2antlr 726 |
. . . . . . 7
β’ (((π β β β§ -π β β) β§ π₯ β (β β {0}))
β -π β
β€) |
58 | 44, 55, 57 | expclzd 14116 |
. . . . . 6
β’ (((π β β β§ -π β β) β§ π₯ β (β β {0}))
β (π₯β-π) β
β) |
59 | 44, 55, 57 | expne0d 14117 |
. . . . . 6
β’ (((π β β β§ -π β β) β§ π₯ β (β β {0}))
β (π₯β-π) β 0) |
60 | | eldifsn 4791 |
. . . . . 6
β’ ((π₯β-π) β (β β {0}) β
((π₯β-π) β β β§ (π₯β-π) β 0)) |
61 | 58, 59, 60 | sylanbrc 584 |
. . . . 5
β’ (((π β β β§ -π β β) β§ π₯ β (β β {0}))
β (π₯β-π) β (β β
{0})) |
62 | | ovex 7442 |
. . . . . 6
β’ (-π Β· (π₯β(-π β 1))) β V |
63 | 62 | a1i 11 |
. . . . 5
β’ (((π β β β§ -π β β) β§ π₯ β (β β {0}))
β (-π Β· (π₯β(-π β 1))) β V) |
64 | | simpr 486 |
. . . . . . 7
β’ (((π β β β§ -π β β) β§ π¦ β (β β {0}))
β π¦ β (β
β {0})) |
65 | | eldifsn 4791 |
. . . . . . 7
β’ (π¦ β (β β {0})
β (π¦ β β
β§ π¦ β
0)) |
66 | 64, 65 | sylib 217 |
. . . . . 6
β’ (((π β β β§ -π β β) β§ π¦ β (β β {0}))
β (π¦ β β
β§ π¦ β
0)) |
67 | | reccl 11879 |
. . . . . 6
β’ ((π¦ β β β§ π¦ β 0) β (1 / π¦) β
β) |
68 | 66, 67 | syl 17 |
. . . . 5
β’ (((π β β β§ -π β β) β§ π¦ β (β β {0}))
β (1 / π¦) β
β) |
69 | | negex 11458 |
. . . . . 6
β’ -(1 /
(π¦β2)) β
V |
70 | 69 | a1i 11 |
. . . . 5
β’ (((π β β β§ -π β β) β§ π¦ β (β β {0}))
β -(1 / (π¦β2))
β V) |
71 | | simpr 486 |
. . . . . . 7
β’ (((π β β β§ -π β β) β§ π₯ β β) β π₯ β
β) |
72 | 47 | ad2antlr 726 |
. . . . . . 7
β’ (((π β β β§ -π β β) β§ π₯ β β) β -π β
β0) |
73 | 71, 72 | expcld 14111 |
. . . . . 6
β’ (((π β β β§ -π β β) β§ π₯ β β) β (π₯β-π) β β) |
74 | 62 | a1i 11 |
. . . . . 6
β’ (((π β β β§ -π β β) β§ π₯ β β) β (-π Β· (π₯β(-π β 1))) β V) |
75 | | dvexp 25470 |
. . . . . . 7
β’ (-π β β β (β
D (π₯ β β β¦
(π₯β-π))) = (π₯ β β β¦ (-π Β· (π₯β(-π β 1))))) |
76 | 75 | adantl 483 |
. . . . . 6
β’ ((π β β β§ -π β β) β (β
D (π₯ β β β¦
(π₯β-π))) = (π₯ β β β¦ (-π Β· (π₯β(-π β 1))))) |
77 | | difssd 4133 |
. . . . . 6
β’ ((π β β β§ -π β β) β (β
β {0}) β β) |
78 | 21 | a1i 11 |
. . . . . 6
β’ ((π β β β§ -π β β) β (β
β {0}) β (TopOpenββfld)) |
79 | 53, 73, 74, 76, 77, 14, 12, 78 | dvmptres 25480 |
. . . . 5
β’ ((π β β β§ -π β β) β (β
D (π₯ β (β
β {0}) β¦ (π₯β-π))) = (π₯ β (β β {0}) β¦ (-π Β· (π₯β(-π β 1))))) |
80 | | ax-1cn 11168 |
. . . . . 6
β’ 1 β
β |
81 | | dvrec 25472 |
. . . . . 6
β’ (1 β
β β (β D (π¦ β (β β {0}) β¦ (1 /
π¦))) = (π¦ β (β β {0}) β¦ -(1 /
(π¦β2)))) |
82 | 80, 81 | mp1i 13 |
. . . . 5
β’ ((π β β β§ -π β β) β (β
D (π¦ β (β
β {0}) β¦ (1 / π¦))) = (π¦ β (β β {0}) β¦ -(1 /
(π¦β2)))) |
83 | | oveq2 7417 |
. . . . 5
β’ (π¦ = (π₯β-π) β (1 / π¦) = (1 / (π₯β-π))) |
84 | | oveq1 7416 |
. . . . . . 7
β’ (π¦ = (π₯β-π) β (π¦β2) = ((π₯β-π)β2)) |
85 | 84 | oveq2d 7425 |
. . . . . 6
β’ (π¦ = (π₯β-π) β (1 / (π¦β2)) = (1 / ((π₯β-π)β2))) |
86 | 85 | negeqd 11454 |
. . . . 5
β’ (π¦ = (π₯β-π) β -(1 / (π¦β2)) = -(1 / ((π₯β-π)β2))) |
87 | 53, 53, 61, 63, 68, 70, 79, 82, 83, 86 | dvmptco 25489 |
. . . 4
β’ ((π β β β§ -π β β) β (β
D (π₯ β (β
β {0}) β¦ (1 / (π₯β-π)))) = (π₯ β (β β {0}) β¦ (-(1 /
((π₯β-π)β2)) Β· (-π Β· (π₯β(-π β 1)))))) |
88 | | 2z 12594 |
. . . . . . . . . . . 12
β’ 2 β
β€ |
89 | 88 | a1i 11 |
. . . . . . . . . . 11
β’ (((π β β β§ -π β β) β§ π₯ β (β β {0}))
β 2 β β€) |
90 | | expmulz 14074 |
. . . . . . . . . . 11
β’ (((π₯ β β β§ π₯ β 0) β§ (-π β β€ β§ 2 β
β€)) β (π₯β(-π Β· 2)) = ((π₯β-π)β2)) |
91 | 44, 55, 57, 89, 90 | syl22anc 838 |
. . . . . . . . . 10
β’ (((π β β β§ -π β β) β§ π₯ β (β β {0}))
β (π₯β(-π Β· 2)) = ((π₯β-π)β2)) |
92 | 91 | eqcomd 2739 |
. . . . . . . . 9
β’ (((π β β β§ -π β β) β§ π₯ β (β β {0}))
β ((π₯β-π)β2) = (π₯β(-π Β· 2))) |
93 | 92 | oveq2d 7425 |
. . . . . . . 8
β’ (((π β β β§ -π β β) β§ π₯ β (β β {0}))
β (1 / ((π₯β-π)β2)) = (1 / (π₯β(-π Β· 2)))) |
94 | 93 | negeqd 11454 |
. . . . . . 7
β’ (((π β β β§ -π β β) β§ π₯ β (β β {0}))
β -(1 / ((π₯β-π)β2)) = -(1 / (π₯β(-π Β· 2)))) |
95 | | peano2zm 12605 |
. . . . . . . . . 10
β’ (-π β β€ β (-π β 1) β
β€) |
96 | 57, 95 | syl 17 |
. . . . . . . . 9
β’ (((π β β β§ -π β β) β§ π₯ β (β β {0}))
β (-π β 1)
β β€) |
97 | 44, 55, 96 | expclzd 14116 |
. . . . . . . 8
β’ (((π β β β§ -π β β) β§ π₯ β (β β {0}))
β (π₯β(-π β 1)) β
β) |
98 | 46, 97 | mulneg1d 11667 |
. . . . . . 7
β’ (((π β β β§ -π β β) β§ π₯ β (β β {0}))
β (-π Β· (π₯β(-π β 1))) = -(π Β· (π₯β(-π β 1)))) |
99 | 94, 98 | oveq12d 7427 |
. . . . . 6
β’ (((π β β β§ -π β β) β§ π₯ β (β β {0}))
β (-(1 / ((π₯β-π)β2)) Β· (-π Β· (π₯β(-π β 1)))) = (-(1 / (π₯β(-π Β· 2))) Β· -(π Β· (π₯β(-π β 1))))) |
100 | | zmulcl 12611 |
. . . . . . . . . 10
β’ ((-π β β€ β§ 2 β
β€) β (-π
Β· 2) β β€) |
101 | 57, 88, 100 | sylancl 587 |
. . . . . . . . 9
β’ (((π β β β§ -π β β) β§ π₯ β (β β {0}))
β (-π Β· 2)
β β€) |
102 | 44, 55, 101 | expclzd 14116 |
. . . . . . . 8
β’ (((π β β β§ -π β β) β§ π₯ β (β β {0}))
β (π₯β(-π Β· 2)) β
β) |
103 | 44, 55, 101 | expne0d 14117 |
. . . . . . . 8
β’ (((π β β β§ -π β β) β§ π₯ β (β β {0}))
β (π₯β(-π Β· 2)) β
0) |
104 | 102, 103 | reccld 11983 |
. . . . . . 7
β’ (((π β β β§ -π β β) β§ π₯ β (β β {0}))
β (1 / (π₯β(-π Β· 2))) β
β) |
105 | 46, 97 | mulcld 11234 |
. . . . . . 7
β’ (((π β β β§ -π β β) β§ π₯ β (β β {0}))
β (π Β· (π₯β(-π β 1))) β
β) |
106 | 104, 105 | mul2negd 11669 |
. . . . . 6
β’ (((π β β β§ -π β β) β§ π₯ β (β β {0}))
β (-(1 / (π₯β(-π Β· 2))) Β· -(π Β· (π₯β(-π β 1)))) = ((1 / (π₯β(-π Β· 2))) Β· (π Β· (π₯β(-π β 1))))) |
107 | 104, 46, 97 | mul12d 11423 |
. . . . . . 7
β’ (((π β β β§ -π β β) β§ π₯ β (β β {0}))
β ((1 / (π₯β(-π Β· 2))) Β· (π Β· (π₯β(-π β 1)))) = (π Β· ((1 / (π₯β(-π Β· 2))) Β· (π₯β(-π β 1))))) |
108 | 44, 55, 101, 96 | expsubd 14122 |
. . . . . . . . 9
β’ (((π β β β§ -π β β) β§ π₯ β (β β {0}))
β (π₯β((-π β 1) β (-π Β· 2))) = ((π₯β(-π β 1)) / (π₯β(-π Β· 2)))) |
109 | | nncn 12220 |
. . . . . . . . . . . . 13
β’ (-π β β β -π β
β) |
110 | 109 | ad2antlr 726 |
. . . . . . . . . . . 12
β’ (((π β β β§ -π β β) β§ π₯ β (β β {0}))
β -π β
β) |
111 | 80 | a1i 11 |
. . . . . . . . . . . 12
β’ (((π β β β§ -π β β) β§ π₯ β (β β {0}))
β 1 β β) |
112 | 101 | zcnd 12667 |
. . . . . . . . . . . 12
β’ (((π β β β§ -π β β) β§ π₯ β (β β {0}))
β (-π Β· 2)
β β) |
113 | 110, 111,
112 | sub32d 11603 |
. . . . . . . . . . 11
β’ (((π β β β§ -π β β) β§ π₯ β (β β {0}))
β ((-π β 1)
β (-π Β· 2)) =
((-π β (-π Β· 2)) β
1)) |
114 | 110 | times2d 12456 |
. . . . . . . . . . . . . . 15
β’ (((π β β β§ -π β β) β§ π₯ β (β β {0}))
β (-π Β· 2) =
(-π + -π)) |
115 | 110, 46 | negsubd 11577 |
. . . . . . . . . . . . . . 15
β’ (((π β β β§ -π β β) β§ π₯ β (β β {0}))
β (-π + -π) = (-π β π)) |
116 | 114, 115 | eqtrd 2773 |
. . . . . . . . . . . . . 14
β’ (((π β β β§ -π β β) β§ π₯ β (β β {0}))
β (-π Β· 2) =
(-π β π)) |
117 | 116 | oveq2d 7425 |
. . . . . . . . . . . . 13
β’ (((π β β β§ -π β β) β§ π₯ β (β β {0}))
β (-π β (-π Β· 2)) = (-π β (-π β π))) |
118 | 110, 46 | nncand 11576 |
. . . . . . . . . . . . 13
β’ (((π β β β§ -π β β) β§ π₯ β (β β {0}))
β (-π β (-π β π)) = π) |
119 | 117, 118 | eqtrd 2773 |
. . . . . . . . . . . 12
β’ (((π β β β§ -π β β) β§ π₯ β (β β {0}))
β (-π β (-π Β· 2)) = π) |
120 | 119 | oveq1d 7424 |
. . . . . . . . . . 11
β’ (((π β β β§ -π β β) β§ π₯ β (β β {0}))
β ((-π β (-π Β· 2)) β 1) =
(π β
1)) |
121 | 113, 120 | eqtrd 2773 |
. . . . . . . . . 10
β’ (((π β β β§ -π β β) β§ π₯ β (β β {0}))
β ((-π β 1)
β (-π Β· 2)) =
(π β
1)) |
122 | 121 | oveq2d 7425 |
. . . . . . . . 9
β’ (((π β β β§ -π β β) β§ π₯ β (β β {0}))
β (π₯β((-π β 1) β (-π Β· 2))) = (π₯β(π β 1))) |
123 | 97, 102, 103 | divrec2d 11994 |
. . . . . . . . 9
β’ (((π β β β§ -π β β) β§ π₯ β (β β {0}))
β ((π₯β(-π β 1)) / (π₯β(-π Β· 2))) = ((1 / (π₯β(-π Β· 2))) Β· (π₯β(-π β 1)))) |
124 | 108, 122,
123 | 3eqtr3rd 2782 |
. . . . . . . 8
β’ (((π β β β§ -π β β) β§ π₯ β (β β {0}))
β ((1 / (π₯β(-π Β· 2))) Β· (π₯β(-π β 1))) = (π₯β(π β 1))) |
125 | 124 | oveq2d 7425 |
. . . . . . 7
β’ (((π β β β§ -π β β) β§ π₯ β (β β {0}))
β (π Β· ((1 /
(π₯β(-π Β· 2))) Β· (π₯β(-π β 1)))) = (π Β· (π₯β(π β 1)))) |
126 | 107, 125 | eqtrd 2773 |
. . . . . 6
β’ (((π β β β§ -π β β) β§ π₯ β (β β {0}))
β ((1 / (π₯β(-π Β· 2))) Β· (π Β· (π₯β(-π β 1)))) = (π Β· (π₯β(π β 1)))) |
127 | 99, 106, 126 | 3eqtrd 2777 |
. . . . 5
β’ (((π β β β§ -π β β) β§ π₯ β (β β {0}))
β (-(1 / ((π₯β-π)β2)) Β· (-π Β· (π₯β(-π β 1)))) = (π Β· (π₯β(π β 1)))) |
128 | 127 | mpteq2dva 5249 |
. . . 4
β’ ((π β β β§ -π β β) β (π₯ β (β β {0})
β¦ (-(1 / ((π₯β-π)β2)) Β· (-π Β· (π₯β(-π β 1))))) = (π₯ β (β β {0}) β¦ (π Β· (π₯β(π β 1))))) |
129 | 52, 87, 128 | 3eqtrd 2777 |
. . 3
β’ ((π β β β§ -π β β) β (β
D (π₯ β (β
β {0}) β¦ (π₯βπ))) = (π₯ β (β β {0}) β¦ (π Β· (π₯β(π β 1))))) |
130 | 42, 129 | jaoi 856 |
. 2
β’ ((π β β0 β¨
(π β β β§
-π β β)) β
(β D (π₯ β
(β β {0}) β¦ (π₯βπ))) = (π₯ β (β β {0}) β¦ (π Β· (π₯β(π β 1))))) |
131 | 1, 130 | sylbi 216 |
1
β’ (π β β€ β (β
D (π₯ β (β
β {0}) β¦ (π₯βπ))) = (π₯ β (β β {0}) β¦ (π Β· (π₯β(π β 1))))) |