MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvexp3 Structured version   Visualization version   GIF version

Theorem dvexp3 24581
Description: Derivative of an exponential of integer exponent. (Contributed by Mario Carneiro, 26-Feb-2015.)
Assertion
Ref Expression
dvexp3 (𝑁 ∈ ℤ → (ℂ D (𝑥 ∈ (ℂ ∖ {0}) ↦ (𝑥𝑁))) = (𝑥 ∈ (ℂ ∖ {0}) ↦ (𝑁 · (𝑥↑(𝑁 − 1)))))
Distinct variable group:   𝑥,𝑁

Proof of Theorem dvexp3
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 elznn0nn 11983 . 2 (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℕ0 ∨ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)))
2 cnelprrecn 10619 . . . . . 6 ℂ ∈ {ℝ, ℂ}
32a1i 11 . . . . 5 (𝑁 ∈ ℕ0 → ℂ ∈ {ℝ, ℂ})
4 expcl 13443 . . . . . 6 ((𝑥 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝑥𝑁) ∈ ℂ)
54ancoms 462 . . . . 5 ((𝑁 ∈ ℕ0𝑥 ∈ ℂ) → (𝑥𝑁) ∈ ℂ)
6 c0ex 10624 . . . . . . 7 0 ∈ V
7 ovex 7168 . . . . . . 7 (𝑁 · (𝑥↑(𝑁 − 1))) ∈ V
86, 7ifex 4473 . . . . . 6 if(𝑁 = 0, 0, (𝑁 · (𝑥↑(𝑁 − 1)))) ∈ V
98a1i 11 . . . . 5 ((𝑁 ∈ ℕ0𝑥 ∈ ℂ) → if(𝑁 = 0, 0, (𝑁 · (𝑥↑(𝑁 − 1)))) ∈ V)
10 dvexp2 24557 . . . . 5 (𝑁 ∈ ℕ0 → (ℂ D (𝑥 ∈ ℂ ↦ (𝑥𝑁))) = (𝑥 ∈ ℂ ↦ if(𝑁 = 0, 0, (𝑁 · (𝑥↑(𝑁 − 1))))))
11 difssd 4060 . . . . 5 (𝑁 ∈ ℕ0 → (ℂ ∖ {0}) ⊆ ℂ)
12 eqid 2798 . . . . . . 7 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
1312cnfldtopon 23388 . . . . . 6 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
1413toponrestid 21526 . . . . 5 (TopOpen‘ℂfld) = ((TopOpen‘ℂfld) ↾t ℂ)
1512cnfldhaus 23390 . . . . . . . 8 (TopOpen‘ℂfld) ∈ Haus
16 0cn 10622 . . . . . . . 8 0 ∈ ℂ
17 unicntop 23391 . . . . . . . . 9 ℂ = (TopOpen‘ℂfld)
1817sncld 21976 . . . . . . . 8 (((TopOpen‘ℂfld) ∈ Haus ∧ 0 ∈ ℂ) → {0} ∈ (Clsd‘(TopOpen‘ℂfld)))
1915, 16, 18mp2an 691 . . . . . . 7 {0} ∈ (Clsd‘(TopOpen‘ℂfld))
2017cldopn 21636 . . . . . . 7 ({0} ∈ (Clsd‘(TopOpen‘ℂfld)) → (ℂ ∖ {0}) ∈ (TopOpen‘ℂfld))
2119, 20ax-mp 5 . . . . . 6 (ℂ ∖ {0}) ∈ (TopOpen‘ℂfld)
2221a1i 11 . . . . 5 (𝑁 ∈ ℕ0 → (ℂ ∖ {0}) ∈ (TopOpen‘ℂfld))
233, 5, 9, 10, 11, 14, 12, 22dvmptres 24566 . . . 4 (𝑁 ∈ ℕ0 → (ℂ D (𝑥 ∈ (ℂ ∖ {0}) ↦ (𝑥𝑁))) = (𝑥 ∈ (ℂ ∖ {0}) ↦ if(𝑁 = 0, 0, (𝑁 · (𝑥↑(𝑁 − 1))))))
24 ifid 4464 . . . . . 6 if(𝑁 = 0, (𝑁 · (𝑥↑(𝑁 − 1))), (𝑁 · (𝑥↑(𝑁 − 1)))) = (𝑁 · (𝑥↑(𝑁 − 1)))
25 id 22 . . . . . . . . 9 (𝑁 = 0 → 𝑁 = 0)
26 oveq1 7142 . . . . . . . . . 10 (𝑁 = 0 → (𝑁 − 1) = (0 − 1))
2726oveq2d 7151 . . . . . . . . 9 (𝑁 = 0 → (𝑥↑(𝑁 − 1)) = (𝑥↑(0 − 1)))
2825, 27oveq12d 7153 . . . . . . . 8 (𝑁 = 0 → (𝑁 · (𝑥↑(𝑁 − 1))) = (0 · (𝑥↑(0 − 1))))
29 eldifsn 4680 . . . . . . . . . . 11 (𝑥 ∈ (ℂ ∖ {0}) ↔ (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0))
30 0z 11980 . . . . . . . . . . . . 13 0 ∈ ℤ
31 peano2zm 12013 . . . . . . . . . . . . 13 (0 ∈ ℤ → (0 − 1) ∈ ℤ)
3230, 31ax-mp 5 . . . . . . . . . . . 12 (0 − 1) ∈ ℤ
33 expclz 13450 . . . . . . . . . . . 12 ((𝑥 ∈ ℂ ∧ 𝑥 ≠ 0 ∧ (0 − 1) ∈ ℤ) → (𝑥↑(0 − 1)) ∈ ℂ)
3432, 33mp3an3 1447 . . . . . . . . . . 11 ((𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) → (𝑥↑(0 − 1)) ∈ ℂ)
3529, 34sylbi 220 . . . . . . . . . 10 (𝑥 ∈ (ℂ ∖ {0}) → (𝑥↑(0 − 1)) ∈ ℂ)
3635adantl 485 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝑥 ∈ (ℂ ∖ {0})) → (𝑥↑(0 − 1)) ∈ ℂ)
3736mul02d 10827 . . . . . . . 8 ((𝑁 ∈ ℕ0𝑥 ∈ (ℂ ∖ {0})) → (0 · (𝑥↑(0 − 1))) = 0)
3828, 37sylan9eqr 2855 . . . . . . 7 (((𝑁 ∈ ℕ0𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑁 = 0) → (𝑁 · (𝑥↑(𝑁 − 1))) = 0)
3938ifeq1da 4455 . . . . . 6 ((𝑁 ∈ ℕ0𝑥 ∈ (ℂ ∖ {0})) → if(𝑁 = 0, (𝑁 · (𝑥↑(𝑁 − 1))), (𝑁 · (𝑥↑(𝑁 − 1)))) = if(𝑁 = 0, 0, (𝑁 · (𝑥↑(𝑁 − 1)))))
4024, 39syl5eqr 2847 . . . . 5 ((𝑁 ∈ ℕ0𝑥 ∈ (ℂ ∖ {0})) → (𝑁 · (𝑥↑(𝑁 − 1))) = if(𝑁 = 0, 0, (𝑁 · (𝑥↑(𝑁 − 1)))))
4140mpteq2dva 5125 . . . 4 (𝑁 ∈ ℕ0 → (𝑥 ∈ (ℂ ∖ {0}) ↦ (𝑁 · (𝑥↑(𝑁 − 1)))) = (𝑥 ∈ (ℂ ∖ {0}) ↦ if(𝑁 = 0, 0, (𝑁 · (𝑥↑(𝑁 − 1))))))
4223, 41eqtr4d 2836 . . 3 (𝑁 ∈ ℕ0 → (ℂ D (𝑥 ∈ (ℂ ∖ {0}) ↦ (𝑥𝑁))) = (𝑥 ∈ (ℂ ∖ {0}) ↦ (𝑁 · (𝑥↑(𝑁 − 1)))))
43 eldifi 4054 . . . . . . . 8 (𝑥 ∈ (ℂ ∖ {0}) → 𝑥 ∈ ℂ)
4443adantl 485 . . . . . . 7 (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ (ℂ ∖ {0})) → 𝑥 ∈ ℂ)
45 simpll 766 . . . . . . . 8 (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ (ℂ ∖ {0})) → 𝑁 ∈ ℝ)
4645recnd 10658 . . . . . . 7 (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ (ℂ ∖ {0})) → 𝑁 ∈ ℂ)
47 nnnn0 11892 . . . . . . . 8 (-𝑁 ∈ ℕ → -𝑁 ∈ ℕ0)
4847ad2antlr 726 . . . . . . 7 (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ (ℂ ∖ {0})) → -𝑁 ∈ ℕ0)
49 expneg2 13434 . . . . . . 7 ((𝑥 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ -𝑁 ∈ ℕ0) → (𝑥𝑁) = (1 / (𝑥↑-𝑁)))
5044, 46, 48, 49syl3anc 1368 . . . . . 6 (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ (ℂ ∖ {0})) → (𝑥𝑁) = (1 / (𝑥↑-𝑁)))
5150mpteq2dva 5125 . . . . 5 ((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) → (𝑥 ∈ (ℂ ∖ {0}) ↦ (𝑥𝑁)) = (𝑥 ∈ (ℂ ∖ {0}) ↦ (1 / (𝑥↑-𝑁))))
5251oveq2d 7151 . . . 4 ((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) → (ℂ D (𝑥 ∈ (ℂ ∖ {0}) ↦ (𝑥𝑁))) = (ℂ D (𝑥 ∈ (ℂ ∖ {0}) ↦ (1 / (𝑥↑-𝑁)))))
532a1i 11 . . . . 5 ((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) → ℂ ∈ {ℝ, ℂ})
54 eldifsni 4683 . . . . . . . 8 (𝑥 ∈ (ℂ ∖ {0}) → 𝑥 ≠ 0)
5554adantl 485 . . . . . . 7 (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ (ℂ ∖ {0})) → 𝑥 ≠ 0)
56 nnz 11992 . . . . . . . 8 (-𝑁 ∈ ℕ → -𝑁 ∈ ℤ)
5756ad2antlr 726 . . . . . . 7 (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ (ℂ ∖ {0})) → -𝑁 ∈ ℤ)
5844, 55, 57expclzd 13511 . . . . . 6 (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ (ℂ ∖ {0})) → (𝑥↑-𝑁) ∈ ℂ)
5944, 55, 57expne0d 13512 . . . . . 6 (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ (ℂ ∖ {0})) → (𝑥↑-𝑁) ≠ 0)
60 eldifsn 4680 . . . . . 6 ((𝑥↑-𝑁) ∈ (ℂ ∖ {0}) ↔ ((𝑥↑-𝑁) ∈ ℂ ∧ (𝑥↑-𝑁) ≠ 0))
6158, 59, 60sylanbrc 586 . . . . 5 (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ (ℂ ∖ {0})) → (𝑥↑-𝑁) ∈ (ℂ ∖ {0}))
62 ovex 7168 . . . . . 6 (-𝑁 · (𝑥↑(-𝑁 − 1))) ∈ V
6362a1i 11 . . . . 5 (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ (ℂ ∖ {0})) → (-𝑁 · (𝑥↑(-𝑁 − 1))) ∈ V)
64 simpr 488 . . . . . . 7 (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑦 ∈ (ℂ ∖ {0})) → 𝑦 ∈ (ℂ ∖ {0}))
65 eldifsn 4680 . . . . . . 7 (𝑦 ∈ (ℂ ∖ {0}) ↔ (𝑦 ∈ ℂ ∧ 𝑦 ≠ 0))
6664, 65sylib 221 . . . . . 6 (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑦 ∈ (ℂ ∖ {0})) → (𝑦 ∈ ℂ ∧ 𝑦 ≠ 0))
67 reccl 11294 . . . . . 6 ((𝑦 ∈ ℂ ∧ 𝑦 ≠ 0) → (1 / 𝑦) ∈ ℂ)
6866, 67syl 17 . . . . 5 (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑦 ∈ (ℂ ∖ {0})) → (1 / 𝑦) ∈ ℂ)
69 negex 10873 . . . . . 6 -(1 / (𝑦↑2)) ∈ V
7069a1i 11 . . . . 5 (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑦 ∈ (ℂ ∖ {0})) → -(1 / (𝑦↑2)) ∈ V)
71 simpr 488 . . . . . . 7 (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ ℂ) → 𝑥 ∈ ℂ)
7247ad2antlr 726 . . . . . . 7 (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ ℂ) → -𝑁 ∈ ℕ0)
7371, 72expcld 13506 . . . . . 6 (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ ℂ) → (𝑥↑-𝑁) ∈ ℂ)
7462a1i 11 . . . . . 6 (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ ℂ) → (-𝑁 · (𝑥↑(-𝑁 − 1))) ∈ V)
75 dvexp 24556 . . . . . . 7 (-𝑁 ∈ ℕ → (ℂ D (𝑥 ∈ ℂ ↦ (𝑥↑-𝑁))) = (𝑥 ∈ ℂ ↦ (-𝑁 · (𝑥↑(-𝑁 − 1)))))
7675adantl 485 . . . . . 6 ((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) → (ℂ D (𝑥 ∈ ℂ ↦ (𝑥↑-𝑁))) = (𝑥 ∈ ℂ ↦ (-𝑁 · (𝑥↑(-𝑁 − 1)))))
77 difssd 4060 . . . . . 6 ((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) → (ℂ ∖ {0}) ⊆ ℂ)
7821a1i 11 . . . . . 6 ((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) → (ℂ ∖ {0}) ∈ (TopOpen‘ℂfld))
7953, 73, 74, 76, 77, 14, 12, 78dvmptres 24566 . . . . 5 ((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) → (ℂ D (𝑥 ∈ (ℂ ∖ {0}) ↦ (𝑥↑-𝑁))) = (𝑥 ∈ (ℂ ∖ {0}) ↦ (-𝑁 · (𝑥↑(-𝑁 − 1)))))
80 ax-1cn 10584 . . . . . 6 1 ∈ ℂ
81 dvrec 24558 . . . . . 6 (1 ∈ ℂ → (ℂ D (𝑦 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑦))) = (𝑦 ∈ (ℂ ∖ {0}) ↦ -(1 / (𝑦↑2))))
8280, 81mp1i 13 . . . . 5 ((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) → (ℂ D (𝑦 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑦))) = (𝑦 ∈ (ℂ ∖ {0}) ↦ -(1 / (𝑦↑2))))
83 oveq2 7143 . . . . 5 (𝑦 = (𝑥↑-𝑁) → (1 / 𝑦) = (1 / (𝑥↑-𝑁)))
84 oveq1 7142 . . . . . . 7 (𝑦 = (𝑥↑-𝑁) → (𝑦↑2) = ((𝑥↑-𝑁)↑2))
8584oveq2d 7151 . . . . . 6 (𝑦 = (𝑥↑-𝑁) → (1 / (𝑦↑2)) = (1 / ((𝑥↑-𝑁)↑2)))
8685negeqd 10869 . . . . 5 (𝑦 = (𝑥↑-𝑁) → -(1 / (𝑦↑2)) = -(1 / ((𝑥↑-𝑁)↑2)))
8753, 53, 61, 63, 68, 70, 79, 82, 83, 86dvmptco 24575 . . . 4 ((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) → (ℂ D (𝑥 ∈ (ℂ ∖ {0}) ↦ (1 / (𝑥↑-𝑁)))) = (𝑥 ∈ (ℂ ∖ {0}) ↦ (-(1 / ((𝑥↑-𝑁)↑2)) · (-𝑁 · (𝑥↑(-𝑁 − 1))))))
88 2z 12002 . . . . . . . . . . . 12 2 ∈ ℤ
8988a1i 11 . . . . . . . . . . 11 (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ (ℂ ∖ {0})) → 2 ∈ ℤ)
90 expmulz 13471 . . . . . . . . . . 11 (((𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) ∧ (-𝑁 ∈ ℤ ∧ 2 ∈ ℤ)) → (𝑥↑(-𝑁 · 2)) = ((𝑥↑-𝑁)↑2))
9144, 55, 57, 89, 90syl22anc 837 . . . . . . . . . 10 (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ (ℂ ∖ {0})) → (𝑥↑(-𝑁 · 2)) = ((𝑥↑-𝑁)↑2))
9291eqcomd 2804 . . . . . . . . 9 (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ (ℂ ∖ {0})) → ((𝑥↑-𝑁)↑2) = (𝑥↑(-𝑁 · 2)))
9392oveq2d 7151 . . . . . . . 8 (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ (ℂ ∖ {0})) → (1 / ((𝑥↑-𝑁)↑2)) = (1 / (𝑥↑(-𝑁 · 2))))
9493negeqd 10869 . . . . . . 7 (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ (ℂ ∖ {0})) → -(1 / ((𝑥↑-𝑁)↑2)) = -(1 / (𝑥↑(-𝑁 · 2))))
95 peano2zm 12013 . . . . . . . . . 10 (-𝑁 ∈ ℤ → (-𝑁 − 1) ∈ ℤ)
9657, 95syl 17 . . . . . . . . 9 (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ (ℂ ∖ {0})) → (-𝑁 − 1) ∈ ℤ)
9744, 55, 96expclzd 13511 . . . . . . . 8 (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ (ℂ ∖ {0})) → (𝑥↑(-𝑁 − 1)) ∈ ℂ)
9846, 97mulneg1d 11082 . . . . . . 7 (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ (ℂ ∖ {0})) → (-𝑁 · (𝑥↑(-𝑁 − 1))) = -(𝑁 · (𝑥↑(-𝑁 − 1))))
9994, 98oveq12d 7153 . . . . . 6 (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ (ℂ ∖ {0})) → (-(1 / ((𝑥↑-𝑁)↑2)) · (-𝑁 · (𝑥↑(-𝑁 − 1)))) = (-(1 / (𝑥↑(-𝑁 · 2))) · -(𝑁 · (𝑥↑(-𝑁 − 1)))))
100 zmulcl 12019 . . . . . . . . . 10 ((-𝑁 ∈ ℤ ∧ 2 ∈ ℤ) → (-𝑁 · 2) ∈ ℤ)
10157, 88, 100sylancl 589 . . . . . . . . 9 (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ (ℂ ∖ {0})) → (-𝑁 · 2) ∈ ℤ)
10244, 55, 101expclzd 13511 . . . . . . . 8 (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ (ℂ ∖ {0})) → (𝑥↑(-𝑁 · 2)) ∈ ℂ)
10344, 55, 101expne0d 13512 . . . . . . . 8 (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ (ℂ ∖ {0})) → (𝑥↑(-𝑁 · 2)) ≠ 0)
104102, 103reccld 11398 . . . . . . 7 (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ (ℂ ∖ {0})) → (1 / (𝑥↑(-𝑁 · 2))) ∈ ℂ)
10546, 97mulcld 10650 . . . . . . 7 (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ (ℂ ∖ {0})) → (𝑁 · (𝑥↑(-𝑁 − 1))) ∈ ℂ)
106104, 105mul2negd 11084 . . . . . 6 (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ (ℂ ∖ {0})) → (-(1 / (𝑥↑(-𝑁 · 2))) · -(𝑁 · (𝑥↑(-𝑁 − 1)))) = ((1 / (𝑥↑(-𝑁 · 2))) · (𝑁 · (𝑥↑(-𝑁 − 1)))))
107104, 46, 97mul12d 10838 . . . . . . 7 (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ (ℂ ∖ {0})) → ((1 / (𝑥↑(-𝑁 · 2))) · (𝑁 · (𝑥↑(-𝑁 − 1)))) = (𝑁 · ((1 / (𝑥↑(-𝑁 · 2))) · (𝑥↑(-𝑁 − 1)))))
10844, 55, 101, 96expsubd 13517 . . . . . . . . 9 (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ (ℂ ∖ {0})) → (𝑥↑((-𝑁 − 1) − (-𝑁 · 2))) = ((𝑥↑(-𝑁 − 1)) / (𝑥↑(-𝑁 · 2))))
109 nncn 11633 . . . . . . . . . . . . 13 (-𝑁 ∈ ℕ → -𝑁 ∈ ℂ)
110109ad2antlr 726 . . . . . . . . . . . 12 (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ (ℂ ∖ {0})) → -𝑁 ∈ ℂ)
11180a1i 11 . . . . . . . . . . . 12 (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ (ℂ ∖ {0})) → 1 ∈ ℂ)
112101zcnd 12076 . . . . . . . . . . . 12 (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ (ℂ ∖ {0})) → (-𝑁 · 2) ∈ ℂ)
113110, 111, 112sub32d 11018 . . . . . . . . . . 11 (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ (ℂ ∖ {0})) → ((-𝑁 − 1) − (-𝑁 · 2)) = ((-𝑁 − (-𝑁 · 2)) − 1))
114110times2d 11869 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ (ℂ ∖ {0})) → (-𝑁 · 2) = (-𝑁 + -𝑁))
115110, 46negsubd 10992 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ (ℂ ∖ {0})) → (-𝑁 + -𝑁) = (-𝑁𝑁))
116114, 115eqtrd 2833 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ (ℂ ∖ {0})) → (-𝑁 · 2) = (-𝑁𝑁))
117116oveq2d 7151 . . . . . . . . . . . . 13 (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ (ℂ ∖ {0})) → (-𝑁 − (-𝑁 · 2)) = (-𝑁 − (-𝑁𝑁)))
118110, 46nncand 10991 . . . . . . . . . . . . 13 (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ (ℂ ∖ {0})) → (-𝑁 − (-𝑁𝑁)) = 𝑁)
119117, 118eqtrd 2833 . . . . . . . . . . . 12 (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ (ℂ ∖ {0})) → (-𝑁 − (-𝑁 · 2)) = 𝑁)
120119oveq1d 7150 . . . . . . . . . . 11 (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ (ℂ ∖ {0})) → ((-𝑁 − (-𝑁 · 2)) − 1) = (𝑁 − 1))
121113, 120eqtrd 2833 . . . . . . . . . 10 (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ (ℂ ∖ {0})) → ((-𝑁 − 1) − (-𝑁 · 2)) = (𝑁 − 1))
122121oveq2d 7151 . . . . . . . . 9 (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ (ℂ ∖ {0})) → (𝑥↑((-𝑁 − 1) − (-𝑁 · 2))) = (𝑥↑(𝑁 − 1)))
12397, 102, 103divrec2d 11409 . . . . . . . . 9 (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ (ℂ ∖ {0})) → ((𝑥↑(-𝑁 − 1)) / (𝑥↑(-𝑁 · 2))) = ((1 / (𝑥↑(-𝑁 · 2))) · (𝑥↑(-𝑁 − 1))))
124108, 122, 1233eqtr3rd 2842 . . . . . . . 8 (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ (ℂ ∖ {0})) → ((1 / (𝑥↑(-𝑁 · 2))) · (𝑥↑(-𝑁 − 1))) = (𝑥↑(𝑁 − 1)))
125124oveq2d 7151 . . . . . . 7 (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ (ℂ ∖ {0})) → (𝑁 · ((1 / (𝑥↑(-𝑁 · 2))) · (𝑥↑(-𝑁 − 1)))) = (𝑁 · (𝑥↑(𝑁 − 1))))
126107, 125eqtrd 2833 . . . . . 6 (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ (ℂ ∖ {0})) → ((1 / (𝑥↑(-𝑁 · 2))) · (𝑁 · (𝑥↑(-𝑁 − 1)))) = (𝑁 · (𝑥↑(𝑁 − 1))))
12799, 106, 1263eqtrd 2837 . . . . 5 (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ (ℂ ∖ {0})) → (-(1 / ((𝑥↑-𝑁)↑2)) · (-𝑁 · (𝑥↑(-𝑁 − 1)))) = (𝑁 · (𝑥↑(𝑁 − 1))))
128127mpteq2dva 5125 . . . 4 ((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) → (𝑥 ∈ (ℂ ∖ {0}) ↦ (-(1 / ((𝑥↑-𝑁)↑2)) · (-𝑁 · (𝑥↑(-𝑁 − 1))))) = (𝑥 ∈ (ℂ ∖ {0}) ↦ (𝑁 · (𝑥↑(𝑁 − 1)))))
12952, 87, 1283eqtrd 2837 . . 3 ((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) → (ℂ D (𝑥 ∈ (ℂ ∖ {0}) ↦ (𝑥𝑁))) = (𝑥 ∈ (ℂ ∖ {0}) ↦ (𝑁 · (𝑥↑(𝑁 − 1)))))
13042, 129jaoi 854 . 2 ((𝑁 ∈ ℕ0 ∨ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (ℂ D (𝑥 ∈ (ℂ ∖ {0}) ↦ (𝑥𝑁))) = (𝑥 ∈ (ℂ ∖ {0}) ↦ (𝑁 · (𝑥↑(𝑁 − 1)))))
1311, 130sylbi 220 1 (𝑁 ∈ ℤ → (ℂ D (𝑥 ∈ (ℂ ∖ {0}) ↦ (𝑥𝑁))) = (𝑥 ∈ (ℂ ∖ {0}) ↦ (𝑁 · (𝑥↑(𝑁 − 1)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  wo 844   = wceq 1538  wcel 2111  wne 2987  Vcvv 3441  cdif 3878  ifcif 4425  {csn 4525  {cpr 4527  cmpt 5110  cfv 6324  (class class class)co 7135  cc 10524  cr 10525  0cc0 10526  1c1 10527   + caddc 10529   · cmul 10531  cmin 10859  -cneg 10860   / cdiv 11286  cn 11625  2c2 11680  0cn0 11885  cz 11969  cexp 13425  TopOpenctopn 16687  fldccnfld 20091  Clsdccld 21621  Hauscha 21913   D cdv 24466
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604  ax-addf 10605  ax-mulf 10606
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-of 7389  df-om 7561  df-1st 7671  df-2nd 7672  df-supp 7814  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-oadd 8089  df-er 8272  df-map 8391  df-pm 8392  df-ixp 8445  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-fsupp 8818  df-fi 8859  df-sup 8890  df-inf 8891  df-oi 8958  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-q 12337  df-rp 12378  df-xneg 12495  df-xadd 12496  df-xmul 12497  df-icc 12733  df-fz 12886  df-fzo 13029  df-seq 13365  df-exp 13426  df-hash 13687  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-starv 16572  df-sca 16573  df-vsca 16574  df-ip 16575  df-tset 16576  df-ple 16577  df-ds 16579  df-unif 16580  df-hom 16581  df-cco 16582  df-rest 16688  df-topn 16689  df-0g 16707  df-gsum 16708  df-topgen 16709  df-pt 16710  df-prds 16713  df-xrs 16767  df-qtop 16772  df-imas 16773  df-xps 16775  df-mre 16849  df-mrc 16850  df-acs 16852  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-submnd 17949  df-mulg 18217  df-cntz 18439  df-cmn 18900  df-psmet 20083  df-xmet 20084  df-met 20085  df-bl 20086  df-mopn 20087  df-fbas 20088  df-fg 20089  df-cnfld 20092  df-top 21499  df-topon 21516  df-topsp 21538  df-bases 21551  df-cld 21624  df-ntr 21625  df-cls 21626  df-nei 21703  df-lp 21741  df-perf 21742  df-cn 21832  df-cnp 21833  df-t1 21919  df-haus 21920  df-tx 22167  df-hmeo 22360  df-fil 22451  df-fm 22543  df-flim 22544  df-flf 22545  df-xms 22927  df-ms 22928  df-tms 22929  df-cncf 23483  df-limc 24469  df-dv 24470
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator